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Summary
Background Risk stratification for ventricular arrhythmias currently relies on static measurements that fail to
adequately capture dynamic interactions between arrhythmic substrate and triggers over time. We trained and
internally validated a dynamic machine learning (ML) model and neural network that extracted features from
longitudinally collected electrocardiograms (ECG), and used these to predict the risk of malignant ventricular
arrhythmias.

Methods A multicentre study in patients implanted with an implantable cardioverter-defibrillator (ICD) between 2007
and 2021 in two academic hospitals was performed. Variational autoencoders (VAEs), which combine neural
networks with variational inference principles, and can learn patterns and structure in data without explicit
labelling, were trained to encode the mean ECG waveforms from the limb leads into 16 variables. Supervised
dynamic ML models using these latent ECG representations and clinical baseline information were trained to
predict malignant ventricular arrhythmias treated by the ICD. Model performance was evaluated on a hold-out set,
using time-dependent receiver operating characteristic (ROC) and calibration curves.

Findings 2942 patients (61.7 ± 13.9 years, 25.5% female) were included, with a total of 32,129 ECG recordings during
a mean follow-up of 43.9 ± 35.9 months. The mean time-varying area under the ROC curve for the dynamic model
was 0.738 ± 0.07, compared to 0.639 ± 0.03 for a static (i.e. baseline-only model). Feature analyses indicated dynamic
changes in latent ECG representations, particularly those affecting the T-wave morphology, were of highest
importance for model predictions.

Interpretation Dynamic ML models and neural networks effectively leverage routinely collected longitudinal ECG
recordings for personalised and updated predictions of malignant ventricular arrhythmias, outperforming static
models.
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Research in context

Evidence before this study
A comprehensive search was conducted on June 26th, 2023,
using PubMed’s title/abstract database. The search terms used
were “Ventricular arrhythmia” OR “Sudden cardiac death” OR
“ICD shock” AND “Machine Learning” OR “Deep Learning”
AND “ECG” OR “electrophysiology.” The search yielded 25
relevant papers. All of these studies used supervised machine
learning techniques, specifically for prediction of malignant
ventricular arrhythmias using static data. None of these
studies addressed a dynamic machine learning model using
longitudinal ECG data.

Added value of this study
We present the development and validation of a dynamic
machine learning model that is capable of providing updated
predictions, leveraging electrocardiograms (ECG) recorded
over time. Using an autoencoder, a type of neural networks
for unsupervised learning, information was extracted from 6-
lead ECGs to a latent space and used to predict malignant

ventricular arrhythmias treated by an implantable
cardioverter-defibrillator. Integrating these longitudinal ECG-
derived features within a dynamic machine learning model
resulted in improved predictive accuracy (time-varying area
under the receiver operating characteristic curve (AUROC) of
0.738 ± 0.07), compared to a static model (time-dependent
AUROC of 0.639 ± 0.03). Feature importance analysis and
latent space traversal were used to understand and evaluate
how different features affect the ECG morphology and model
predictions.

Implications of all the available evidence
High volumes of personalised electrophysiological data
collected over time are effectively leveraged by supervised and
unsupervised models to facilitate dynamic predictions of
malignant ventricular arrhythmias. The feasibility of
translating this approach to clinical practice and
generalisability of findings to different patient populations
should be investigated in a prospective study.
Introduction
Ventricular arrhythmias are an important cause of
sudden cardiac death (SCD), affecting approximately
250,000 cases in the European Union alone.1 The core
component of SCD prevention in patients at high risk, is
an implantable cardioverter-defibrillator (ICD).2–4 Risk-
stratification for SCD is typically based on static risk
predictors, such as a history of sustained ventricular
arrhythmias (ventricular tachycardia (VT) or ventricular
fibrillation (VF)) and a reduced left ventricular ejection
fraction (LVEF) despite optimal medical treatment.2

However, the complex and dynamic pathophysiological
processes that underlie the onset of malignant ventric-
ular arrhythmias are unlikely to be fully reflected by
static measurements and baseline clinical patient char-
acteristics alone.5 The vast amounts of personalised
electrophysiological data collected real-time through
digital health tools, such as wearables and intra-cardiac
devices, may reflect dynamic changes in the arrhyth-
mogenic substrate and triggering mechanisms preced-
ing arrhythmia onset.6,7 Machine learning methods (ML)
that can accommodate time-varying and baseline data
have emerged as an alternative to prognostic models
that rely on static data only. In contrast to common
statistical techniques, these dynamic ML models can
learn non-linear relationships and patterns within
multimodal longitudinal dataset to provide updated
predictions.8–10 Therefore, we hypothesised that the high
volumes of (ambulatory) ECG recordings collected over
time could be leveraged within a dynamic ML frame-
work to predict the risk of impending ventricular
arrhythmias.

Furthermore, deep learning models have been
established as a superior approach for detection of ECG
signatures that are unrecognisable by the human eye
and impossible to obtain through classic signal theory/
processing techniques hitherto.8,11–14 State-of-the-art
deep learning models have been shown to be effective
for detection of arrhythmias and diagnosis of cardio-
myopathies, genetic heart diseases, valvular pathologies
and prediction of patient outcomes.8,15,16 Among these
techniques, variational autoencoders (VAEs), a class of
artificial neural network capable of learning patterns and
structures in data without relying on explicit labelling,
enable the representation of data to a compressed, latent
space. This compressed representation of the ECG
summarises the key features of the original signal, and
may be used to generate new samples from the encoded
variables. Prior studies have demonstrated encoder-
decoder architecture neural networks to be able to
extract physiologically-relevant ECG features in a latent
feature space.17–21 Considering that this latent space
provides a comprehensive representation of the under-
lying ECG brought back to a pre-defined number of
variables, it can be subsequently used for classification
and regressions tasks.22 In this study, we examine the
potential of accommodating a supervised dynamic
ML model with the learned low-dimensional
www.thelancet.com Vol 99 January, 2024
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representations from longitudinal ECGs spanning a
duration of 44 months. We hypothesised that a ML
model that incorporates dynamic time-varying ECG
features as well as static clinical data would better pre-
dict malignant ventricular arrhythmias, whose patho-
physiology is known to result from dynamic as well as
static clinical and structural factors.
Methods
Study design
A multicentre, retrospective, observational study using
patient data obtained from two hospitals in Amster-
dam, The Netherlands, was performed (Amsterdam
Medical Center and the VU University Medical Cen-
ter). Patients implanted with an ICD with or without
resynchronisation therapy (CRT) between 2007 and
2021 for primary or secondary prevention of SCD were
included. Implanted devices were single-chamber
ICDs (VR, n = 1076), dual-chamber ICDs (DR,
n = 788), subcutaneous ICDs (S-ICD, n = 399) and
cardiac resynchronisation therapy-defibrillators (CRT-
D, n = 679). The defibrillators used were manufactured
by Biotronik (Germany), Medtronic (USA), Abbott/
Saint Jude Medical (USA) or Boston Scientific (USA).
Patients were followed from de novo device implanta-
tion onwards, and had bi-yearly follow-up visits. All
patients <18 years old at device implantation were
excluded. The requirement for written informed con-
sent was waived by the Institutional Review Board.
This study adheres to the reporting guidelines for
Transparent Reporting of a multivariable prediction
model for Individual Prognosis Or Diagnosis
(TRIPOD), where applicable.23

Outcome of interest
The outcome of interest was malignant ventricular
arrhythmia, defined as an episode of sustained ventric-
ular tachycardia or ventricular fibrillation, treated by the
ICD through a shock and/or anti-tachycardia pacing
(ATP). Outcomes were collected from the electronic
health record (EHR).

Clinical variables
Clinical baseline information at device implantation was
extracted from the EHR, including medical history,
medication usage (i.e. anti-arrhythmic, anti-coagulant,
anti-hypertensive, lipid-lowering), demographics (age,
sex), body mass index (BMI), and laboratory values
(i.e. serum creatinine, potassium and sodium levels).
Missing data were imputed using Random Forests
for non-parametric imputation (missForest package
(v. 1.1.3.) in Python).24 Variables with ≥30% missing
values were excluded (Supplementary Table S1 shows
missing values per variable). Categorical variables were
one-hot encoded, and continuous variables were stand-
ardised using z-score.
www.thelancet.com Vol 99 January, 2024
Electrocardiography
Raw-format, standard 12-lead 10-second resting ECGs
were collected retrospectively on both sites. A total of
77,099 ECGs were retrieved, of which 23,423 from
Hospital A and 53,676 from Hospital B. ECGs that were
recorded at 500hz were downsampled to 250 Hz. Noise
filtering and baseline wander removal was performed on
the raw signals, by implementing a Savitzky–Golay Fil-
ter and subtracting low resolution Fourier series. In
order to smooth data, the Savitzky–Golay filter deploys a
low-pass filter that fits high-order polynomials at the
local level through a least-squares technique.25 To
eliminate baseline wander, a low-resolution Fourier
cosine series reconstruction was employed by subtract-
ing it from the original signal. Supplementary Figure S1
visually demonstrates the results of ECG filtering and
noise reduction techniques. No visual inspection of
ECGs was performed. These operations were performed
using Python libraries NumPy (version 1.24.3), and
tqdm (version 4.64.1). On both sites, the majority of
ECGs have been recorded using GE Healthcare ECG
devices (approximately 70% of ECGs). Other vendors
were Welch Allyn, CSYS and DataM (all roughly 10%).
In total, 44,629 ECGs (median 8 ECGs per patient [IQR
4–15]) were recorded during follow-up. Supplementary
Figure S2a shows the distribution of the number of
ECGs among patients. In cases where multiple ECGs
were recorded on the same day, only the first ECG was
selected, which resulted in 32,129 ECGs used within the
dynamic framework. In total, 28% of ECGs were
recorded within the first year of follow-up, 15% during
the second year, 12% during third year, 10% during the
fourth year, 8% during the fifth year (Supplementary
Figure S2b). As wearable devices are currently only
able to record the six (limb) leads of the 12-lead ECG (i.e.
leads I, II, III, aVR, aVL and aVF), we used these in the
present analysis.26 Individual heartbeats were isolated by
automatic marking of individual R-peak locations, and
subsequent extraction of heartbeat templates given a list
of these locations. Mean waveforms were calculated by
averaging individual waveforms per unique lead. ECG
waveforms were pre-processed by normalising the
signals between 0 and 1.

Clinical ECG classifications
Human-interpretable, clinical ECG classifications were
obtained using a deep neural network developed by
Ribeiro et al., which provides an end-to-end learning
approach to predict rhythm disorders and conduction
disturbances from 12-lead raw ECG signals.27 A con-
volutional neural network (CNN) trained and tested on
2,322,513 ECGs from 1,676,384 patients was able to
accurately predict six ECG abnormalities: 1st degree
AV block, right bundle branch block (RBBB), left
bundle branch block (LBBB), sinus bradycardia (SB),
sinus tachycardia (ST) and atrial fibrillation (AF). We
used the weights of this trained neural network to
3
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predict these classes for each of the 12-lead ECGs,
which are publicly accessible. Alongside these classifi-
cations, standard ECG measurements, including ven-
tricular heart rate, QRS-duration, QT-interval and
PQ-time, were extracted.

Variational autoencoder
We trained a custom β-VAE model (VAE for simplicity)
to map information in the raw ECG waveforms into a
lower-dimensional latent space, preserving important
features. A plain autoencoder is a type of neural network
commonly used in unsupervised learning that can learn
a compact representation of high dimensional data. It
consists of an encoder part, which maps the input into a
latent space (normally of smaller dimension) designed
to meaningfully represent the original data, and a
decoder part, which takes that lower dimension latent
space and aims to reconstruct the original input. A VAE
adds a probabilistic component to the plain autoencoder
network. Our VAE architecture was pre-trained on
256,205 ECGs (1,537,230 waveforms), to reach an initial
state in the common domain of ECG signals morphol-
ogies. The pre-train ECG database consisted of routine
ECGs collected at the general ward and outpatient clinic
of the Amsterdam Medical Center between 1998 and
2018.28 The ECGs were extracted from the MUSEweb
data management system (GE Healthcare, Chicago, Il-
linois, United States of America). The database includes
one ECG per patient (mean age of 50 years, range 18–60
years, 52% male). Subsequently, this model was tuned
on the ECGs of the ICD patient cohort.

In particular, the architecture of our VAE consists of
a 3-layer encoder, with ReLu activation functions,
ending into a mean and a standard deviation latent
parameter layer, which parametrise a Gaussian distri-
bution in the latent space. A Monte Carlo mechanism is
used to provide a sample to feedforward the 3-layer
symmetric decoder, which reconstructs the original
ECG input. The loss function to train the VAE is
comprised of two parts, as arises from the evidence
lower bound (ELBO): the reconstruction error (for our
data we used the mean square error, given the non-
binary nature of the input) and the Kullback-Leibler
(KL) divergence, both derived from the energy expres-
sion of the probabilistic model. The KL-divergence
component of the loss function pushes the distribu-
tion of the encoder to be as close as possible to a
multivariate normal distribution, regularising the latent
space,29 providing our model with generalisability to
other ECG recordings. The Monte Carlo sampling step
ensures that the VAE learns a continuous and struc-
tured latent space.29,30 The decoder’s task is to recon-
struct the original input from these sampled latent
representations. The combination of the reconstruction
loss (how well the decoder reconstructs the input from
the sampled latent representation) and the KL-
divergence (aiming to regularise the latent space)
ensures that the latent space captures the most salient
and meaningful features of the input data.

Two VAEs were trained, one was trained on the
waveforms from the six limb leads and the other was
trained on lead II only, both encoding a latent space
consisting of 16 variables. The performance of the VAE
to reconstruct ECG waveforms was assessed by calcu-
lating the Pearson’s correlation coefficient, root mean
square Error (RMSE), percentage root mean square
Distance (PRD) and dynamic time warping (DTW) be-
tween the original and the reconstructed signals. To
match the studies by Beetz et al. (2022) and Zhu et al.
(2019)18,31 we applied min–max normalisation to both
the input and predicted ECG waveforms before calcu-
lating the metrics. VAEs were developed using Tensor-
flow Keras (version 2.13.1). The architectural details of
the model, comprising a total of 343,692 parameters, are
presented in Supplementary Figure S3.

Time-varying cox regression
A Cox’s time-varying proportional hazard model was
used to examine associations between baseline clinical
variables, time-varying latent ECG representations, and
the outcome of interest.32 In order to incorporate time-
varying covariates into the model, it was necessary to
restructure the data into a person-period format, which
enables the modification of feature values for a patient
over time, by creating multiple rows where different
feature values can be assigned.33 Hazard ratio’s (HR)
and confidence intervals (CI) were obtained.

Random survival forests for dynamic and static
models
Supervised ML survival models were trained, for which
data was split in a training and a hold-out test set with
an 80:20 ratio. Individual patients were assigned to
either training or testing fold to prevent data leakage.
The first model, a static random survival forest (RSF)
model, incorporated clinical variables and ECG latent
variables obtained at device implantation to estimate a
personalised survival function. RSF is an ensemble of
tree-based learners that predicts survival outcomes by
aggregating the predictions of individual trees in the
ensemble. We developed the RSF using the scikit-
survival library (version 0.11).34 The second model, a
dynamic model, integrated baseline data and time-
varying ECG latent variables collected during follow-
up. To develop the dynamic model, we utilised the
Random Forest for Survival, Longitudinal, and Multi-
variate (RF-SLAM) methodology.35 RF-SLAM is a hybrid
statistical and ML approach that uses a continuous-time
random forest method for survival analysis to estimate
individualised Bayes hazard rates. The input to the static
RSF and dynamic RF-SLAM models was a combination
of baseline clinical variables (medical history, medica-
tion usage, demographics, and laboratory values) and,
respectively, baseline and dynamic ECG latent variables.
www.thelancet.com Vol 99 January, 2024
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Unlike the static RSF model, RF-SLAM requires longi-
tudinal data to be binned in a pre-specified time interval
(counting process information units, CPIU), allowing
the predictor variables to change from one interval to
another and the model to predict the probability of an
event of interest during each CPIU. To apply this
approach, the data were pre-processed by partitioning
the data from record-per-subject into record-per-interval.
The event time was defined as a discrete interval of 90
days during which the subject was continuously at risk
of the event. These discrete intervals were set to align
with the recommended timeframes outlined in the
guidelines for remote patient management of in-
dividuals with an ICD.36 The use of CPIUs allows for the
time-varying ECG features to change over time, whereas
the baseline features remain static. A last value carried
forward approach was used if no new ECG data was
available for a discrete time period. Model probabilities
derived for each of the CPIUs (individuals have different
number of CPIUs depending on the follow-up duration)
were used to obtain a piecewise-constant hazard func-
tion. A Poisson regression splitting criterion was used
that does not require the proportional hazards
assumption. If censoring or the outcome of interest
occurred prior to the end of the 90 days period, the risk
time was the time from start of the CPIU to the time of
censoring or the outcome. We tuned the hyper-
parameters of the RF-SLAM and RSF models using a
grid search, employing k-fold cross-validation (5 folds)
on the development cohort. We tuned the number of
trees, mtry (the number of variables randomly selected
as candidates for splitting a node), and the terminal
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node size. Supplementary Table S2 provides the
hyperparameters space and their corresponding final
values. All analyses were performed using Python
(version 3.6.7), except the RF-SLAM modelling was
performed using R statistical software (version 3.6.2, R
Core Team).37 The RF-SLAM methodology has been
successfully applied during the COVID-19 pandemic to
facilitate real-time prediction of clinical worsening by
using longitudinal measurements of vital signs and
laboratory values.38

Sensitivity analyses
Sensitivity analyses was performed by training separate
dynamic ML models on a combination of ECG human-
interpretable classes and clinical variables and ii) latent
variables obtained from a single lead ECG and clinical
variables. Furthermore, two dynamic ML models were
trained to predict i) all-cause mortality and ii) malignant
ventricular arrhythmias treated by ICD shock (excluding
arrhythmias treated by ATP).

Latent space exploration and feature importance
Model explainability and interpretability are paramount
for adoption in clinical practice. Within our proposed
pipeline, there are two stages where model decisions are
made through implicit learning: the unsupervised VAE
for feature extraction from the ECG waveforms and the
supervised dynamic ML for outcome prediction (Fig. 1f
and g).

First, to better understand the low-dimensional rep-
resentations that the VAE has mapped the ECG wave-
forms explored the latent space through a factor
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nning 48 months. (f) Feature permutation importance analysis was
The latent space of the model was explored, providing insights into
’s behaviour and predictions.
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traversal. At the model level, we visualised the effect of
individual latent space variables on the ECG
morphology by varying the values of the individual
latent space variables (5th, 25th, 75th and 95th percen-
tiles of the original value), while reconstructing the
signal using the decoder. Considering all other factors
were kept constant during the procedure, we were able
to visualise the effect each latent space variable poten-
tially has on the morphology of a mean waveform.
Additionally, to assess potential correlations between
latent space variables and human-interpretable ECG
measurements, we conducted an analysis to examine
the relationships among latent space variables, the pre-
dicted probabilities associated with human-interpretable
ECG classifications (such as 1st degree AV block, RBBB,
LBBB, SB, ST, AF), and ECG measurements (such as
ventricular heart rate, QRS duration, QT interval, and
PQ time).

Second, we assessed permutation feature importance
to better explain predictions of the dynamic ML model.
Permutation feature importance measures the impact of
permuting the values of individual features to identify
which contribute most to model performance. We
repeated permutations five times per feature (both latent
space variables and clinical features), and calculated the
average feature importance. A higher positive score sug-
gests that the feature is important for model predictions,
while a lower or negative score indicates the converse.

Statistics
Continuous variables were presented by its median,
mean, interquartile range (IQR) and standard deviation
(SD). Categorical sociodemographic and clinical vari-
ables were presented as frequencies (percentages) and
compared using Fisher’s exact test when appropriate,
otherwise using Chi-square test. For each individual
time point, the time-specific receiver operating charac-
teristics (ROC) curve and area under the ROC curve
(AUROC) were obtained. From this, the time-dependent
AUROC was created, defined as the area under the time-
specific ROC curve. Model calibration was evaluated
with the decile method, in which predicted risks are
grouped into 10 deciles. Performance was assessed on
the hold-out test set after model optimisation on the
training set, evaluated on 500 iterations of bootstrapped
test sets where unique patient samples were randomly
drawn with replacement. Probabilistic models, although
effective in making inferences based on patterns within
large datasets, are susceptible to systematic unfairness,
which can result in disparate predictions across
different subgroups. To evaluate the fairness of pre-
dictions, we compared model performance within the
following subpopulations: male versus female patients,
ischaemic cardiomyopathy versus non-ischaemic car-
diomyopathy, primary versus secondary prevention ICD
indication, and patients with a LVEF below 35% versus
LVEF above 35%.
Ethics
The requirement for written informed consent for this
retrospective study was waived by the Institutional Re-
view Board, as the medical research involving Human
Subjects Act did not apply.

Role of the funding source
The funding source had no role in the study design, data
collection, data analyses, interpretation, or writing of
report.
Results
A total of 2942 patients were included in the analysis,
with 1144 from Hospital A and 1798 from Hospital B
(Fig. 1). As summarised in Table 1, 1225 (41.6%) had an
ischaemic cardiomyopathy, 678 (23.0%) a dilated car-
diomyopathy and 186 (6.3%) a hypertrophic cardiomy-
opathy. A total of 905 (30.8%) patients were diagnosed
with an atrial arrhythmia, 578 (19.6%) with diabetes
mellitus and 360 (12.2%) had suffered a cerebral
vascular accident. The majority of patients (76.6%) used
a β-blocker at baseline. Patients received one of four
types of ICDs: single-chamber (36.6%), dual-chamber
(26.8%), subcutaneous ICD (13.6%), or CRT-D
(23.1%). During a mean follow-up of 43.9 months ±
35.9, 840 (28.6%) patients had a malignant ventricular
arrhythmia treated by the ICD: 15.0% received an
appropriate shock, 7.2% ATP followed by shock and
6.4% only ATP (Table 2). A total of 631 (21.4%) patients
died during the follow-up period. Supplementary
Figure S4 shows the survival curves for the outcome
of interest, and all-cause mortality. The average Pearson
correlation coefficient between the original and the
reconstructed ECG waveforms was 0.93 ± 0.09, the
RMSE was 0.0495 ± 0.026, the PRD was 9.49 ± 5.03 and
DTW was 4.61 ± 2.90. An example of a reconstructed
signal is depicted in Supplementary Figure S5. The
single-lead VAE reconstructed signals with a Pearson’s
correlation coefficient of 0.99 ± 0.01.

Cox’s time varying proportional hazard model
In multivariable time-varying Cox regression, latent
space variables AE8 and AE0 were significantly associ-
ated with the outcome of interest (HR 1.19, 95% CI
1.01–1.40, p = 0.036, HR 1.19, 95% CI 1.01–1.41,
p = 0.034, respectively). In addition, significant associ-
ations were observed for a prior sustained VT or VF,
dilated and ischaemic cardiomyopathy, male sex,
reduced LVEF and sotalol usage. Cardiac resynchroni-
sation therapy was found to have a negative association
with malignant ventricular arrhythmias, with a HR of
0.72 (95% CI 0.59–0.89, p < 0.001). Sensitivity analyses
demonstrated no significant associations between the
outcome of interest and latent space variables derived
from single-lead ECG or the six human-interpretable
ECG classifications.
www.thelancet.com Vol 99 January, 2024
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Total cohort (n = 2942) Hospital A (n = 1144) Hospital B (n = 1798) p value

Age, mean (SD) 61.7 (13.9) 64.3 (12.0) 60.1 (14.8) <0.001

Male, yes (%) 2193 (74.5) 878 (76.7) 1315 (73.1) 0.032

Primary prevention ICD indication, yes (%) 1779 (60.5) 712 (62.2) 1067 (59.3) 0.127

LVEF, yes (%)

>45% 671 (22.8) 146 (12.8) 525 (29.2) <0.001

35–45% 489 (16.6) 250 (21.9) 239 (13.3)

≤35% 1782 (60.6) 748 (65.4) 1034 (57.5)

OHCA, yes (%) 814 (27.7) 336 (29.4) 478 (26.6) 0.109

Prior ventricular arrhythmia, yes (%)

None 1410 (47.9) 585 (51.1) 825 (45.9) <0.001

Ventricular fibrillation 792 (26.9) 331 (28.9) 461 (25.6)

Sustained VT 403 (13.7) 123 (10.8) 280 (15.6)

Non-sustained VT 337 (11.5) 105 (9.2) 232 (12.9)

Cardiomyopathy, yes (%)

Ischaemic 1225 (41.6) 608 (53.1) 617 (34.3) <0.001

Dilated 678 (23.0) 326 (28.5) 352 (19.6)

Hypertrophic 186 (6.3) 46 (4.0) 140 (7.8)

Non-ischaemic 158 (5.4) 12 (1.0) 146 (8.1)

Primary arrhythmia syndrome 68 (2.3) 26 (2.3) 42 (2.3)

Medical history, yes (%)

Percutaneous coronary intervention 991 (33.7) 442 (38.6) 549 (30.5) <0.001

Coronary artery bypass grafting 456 (15.5) 203 (17.7) 253 (14.1) 0.008

Myocardial infarction 1363 (46.3) 572 (50.0) 791 (44.0) 0.002

Atrial arrhythmia 905 (30.8) 337 (29.5) 568 (31.6) 0.238

CVA 360 (12.2) 135 (11.8) 225 (12.5) 0.605

COPD 212 (7.2) 91 (8.0) 121 (6.7) 0.238

Diabetes mellitus 578 (19.6) 251 (21.9) 327 (18.2) 0.014

BMI, mean (SD) 27.1 (4.2) 27.1 (4.6) 27.1 (4.0) 0.639

Peripheral artery disease 164 (5.6) 67 (5.9) 97 (5.4) 0.653

Hypertension 1262 (42.9) 579 (50.6) 683 (38.0) <0.001

CHD 80 (2.7) 10 (0.9) 70 (3.9) <0.001

Laboratory, mean (SD)

Sodium, mmol/L 139.5 (2.9) 139.5 (3.0) 139.5 (2.7) 0.885

Potassium, mmol/L 4.3 (1.0) 4.3 (0.5) 4.2 (1.2) 0.155

Creatinine, umol/L 100.2 (60.7) 101.2 (58.4) 99.6 (62.2) 0.501

Medication, yes (%)

Vitamin K antagonist 781 (26.5) 398 (34.8) 383 (21.3) <0.001

NOAC 286 (9.7) 79 (6.9) 207 (11.5) <0.001

Sotalol 173 (5.9) 35 (3.1) 138 (7.7) <0.001

Digoxin 171 (5.8) 72 (6.3) 99 (5.5) 0.418

Amiodarone 258 (8.8) 92 (8.0) 166 (9.2) 0.296

β-blocker 2253 (76.6) 959 (83.8) 1294 (72.0)) <0.001

Mineralocorticoid receptor antagonist 783 (26.6) 382 (33.4) 401 (22.3) <0.001

Diuretic 1351 (45.9) 51.2 (58.6) 765 (42.5) <0.001

ARB/ACEi, 2089 (71.0) 904 (79.0) 1185 (65.9) <0.001

GDMTa 542 (18.4) 281 (24.6) 261 (14.5) <0.001

Device, yes (%) <0.001

Single-chamber ICD 1076 (36.6) 373 (32.6) 703 (39.1)

Dual-chamber ICD 788 (26.8) 411 (35.9) 377 (21.0)

CRT-D 679 (23.1) 297 (26.0) 382 (21.2)

S-ICD 399 (13.6) 63 (5.5) 336 (18.7)

Abbreviations: ARB: Angiotensin receptor blockers, ACEi: angiotensin-converting-enzyme inhibitors, BMI: body mass index, CHD: congenital heart disease, COPD: chronic
obstructive pulmonary disease, CRT: cardiac resynchronisation therapy, CVA: cerebral vascular accident, GDMT: guideline-directed medical therapy, ICD: implantable
cardioverter-defibrillator, LVEF: left ventricular ejection fraction, NOAC: novel oral anticoagulants, OHCA: out-of-hospital cardiac arrest, SD: standard deviation, S-ICD:
subcutaneous ICD, VT: ventricular tachycardia. aβ-blocker, angiotensin-converting enzyme (ACE) inhibitors/angiotensin receptor blockers inhibitors, and a mineralocorticoid
receptor antagonists (MRA).

Table 1: Baseline characteristics.
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Total cohort (n = 2942) Hospital A (n = 1144) Hospital B (n = 1798) p value

Malignant ventricular arrhythmia, yes (%) 840 (28.6) 314 (27.4) 526 (29.3) 0.310

Treated by shock 441 (15.0) 165 (14.4) 276 (15.4)

Treated by ATP 187 (6.4) 88 (7.7) 99 (5.5)

Treated by shock and ATP 212 (7.2) 61 (5.3) 151 (8.4)

All-cause mortality, yes (%) 631 (21.4) 276 (24.1) 355 (19.7) 0.005

Abbreviations: ATP: anti-tachycardia pacing.

Table 2: Event rates during follow-up.
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Predictive performance of dynamic and static
models
The time-dependent AUROC for the dynamic model
and static model are visualised in Fig. 2. For the dy-
namic model, the mean time-dependent AUROC on the
hold-out set was 0.738 ± 0.07, compared to 0.639 ± 0.03
for the static model. Visual inspection of the AUROC
over time demonstrated that the discriminative ability of
the dynamic model increased over 2–4 years of follow-
up, while that of the static model fell. Model calibra-
tion assessed by risk decile showed good agreement
between the predicted probabilities and the observed
outcomes (Supplementary Figure S6). Sensitivity ana-
lyses indicated dynamic models trained on latent space
variables from single-lead ECGs and human-
interpretable ECG classifications had lower AUROCs,
respectively 0.688 ± 0.07 and AUROC 0.694 ± 0.08
(Supplementary Figures S7 and S8). The dynamic ML
model predicted all-cause mortality with a mean time-
Fig. 2: Time-varying area under the ROC curve for the dynamic and static
ability of the dynamic model trained on time-varying ECG data increase
formation only falls. p-values indicating statistical differences in time-vary
the 12-month follow-up onwards.
varying AUROC of 0.782 ± 0.07 (Supplementary
Figure S9), and malignant ventricular arrhythmias
treated by ICD shock only with a mean time-varying
AUROC of 0.743 ± 0.07 (Supplementary Figure S10).
Model performance in subpopulations showed higher
AUROC in female patients compared to male patients
(Supplementary Figure S11), while performance was
similar for other subgroups.

Feature importance and latent space exploration
In Fig. 3, feature permutation importance is presented
for both the static model and the dynamic model. With
respect to the dynamic model (Fig. 3, panel b), high
permutation importance was observed for latent space
variables (AE1, AE9, AE7, AE2) and age. In the static
model (Fig. 3, panel a), features that demonstrated
highest permutation importance were prior malignant
ventricular arrhythmia(s), implantation indication and
serum creatinine levels. Fig. 4 shows the morphological
machine learning models in the hold-out test set. The discriminative
d over time, while that of the static model trained on baseline in-
ing area under the ROC were consistently below 0.05, starting from
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Fig. 3: Feature permutation importance for the static (a) and the dynamic (b) machine learning models for the prediction of malignant
ventricular arrhythmias. Permutation feature importance gauges the perturbation impact of individual feature values on the model’s predictive
error, to identify features that affect the model’s performance the most. The permutation procedure was iterated five times for each feature
category (latent space variables and clinical attributes). A higher positive score denotes greater importance in the model’s predictions, whereas a
lower or negative score indicates potential detriment to the model’s predictive performance. Abbreviations: AE: autoencoder, BMI: body mass
index, LVEF: left ventricular ejection fraction, MRA: mineralocorticoid receptor antagonist, OHCA: out-of-hospital cardiac arrest, Prior VT/VF: any
prior episode of ventricular tachycardia or fibrillation prior to ICD implantation, implantation indication: reason for ICD implantation (primary
prevention versus secondary of sudden cardiac death). Potassium, sodium and creatinine were numeric serum levels.

Articles
changes in the ECG waveform during traversal of the
latent space, in which values of latent space variable AE1
were systematically changed while keeping other
Fig. 4: Visualisation of the morphological changes in the electrocardiograp
(AE1). Latent space variables were changed to the 5th, 25th, 75th and 95th
passed through the decoder to generate reconstructed waveforms. The
morphologies (i.e. the regions of the ECG mean waveform with greatest

www.thelancet.com Vol 99 January, 2024
variables constant, and the altered latent space was
subsequently passed through the decoder to generate
reconstructed waveforms. Factor traversal of AE1
hic waveform by factor traversal analysis of the latent space variable
percentile of the original value. The altered latent space vectors were
heatmap represents the magnitude of the differences in the ECG
variation) between latent variables.
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affected in particular the morphology of the T-wave,
reflecting ventricular repolarisation. Supplementary
Figure S12 displays the latent space traversal for each
latent space variable. Correlations between human-
interpretable ECG classifications and measurements,
and latent space variables, are depicted in
Supplementary Figure S13. Moderate correlations were
observed for RBBB, LBBB, sinus bradycardia and sinus
tachycardia, while atrial fibrillation, 1st degree AV block
and ECG measurements exhibited weak correlations
with latent space variables. Latent space variables with
moderate correlations to clinical ECG classifications
(AE0, AE3, AE8 and AE10), displayed low feature
importance for dynamic predictions.
Discussion
We present the training and validation of a dynamic ML
model that integrated baseline covariates and time-
varying deep learning latent ECG representations for
the prediction of malignant ventricular arrhythmias.
Using a variational autoencoder, low-dimensional latent
representations were extracted from the ECG, which
potentially reflect ventricular arrhythmic risk and
may not be captured by standard clinical ECG in-
terpretations. Unlike static models, this dynamic model
was capable of providing updated predictions over time,
capturing disease trajectories and handling complex
non-linear relationships among predictors. Overall,
our findings suggest that integrating the dynamics be-
tween triggering mechanisms and static ventricular
arrhythmic substrates captured in the ECG can be rep-
resented by deep learning models to accurately predict
onset of malignant ventricular arrhythmias.

The exponential increase in personalised and
continuously collected data through digital health tools
(e.g. wearable sensors, remote device monitoring), has
led to a growing interest in models designed to update
predictions over time.10,39–41 Highly granular physiolog-
ical data can be leveraged by ML models to detect
intricate and non-linear interactions, revealing patterns
and associations that may not be apparent through
traditional statistical methods.8 In the context of cardiac
arrhythmogenesis, where structural cardiac abnormal-
ities provide the substrate on which transient risk
factors operate, dynamic models using data collected
real-time or at frequent intervals are particularly perti-
nent.6,7,42 Machine learning (e.g. RF-SLAM, LTRC for-
ests) and deep learning (e.g. DeepHit, DeepSurv)
methodologies that facilitate the integration of time-
varying covariates for outcome prediction have become
more widely available over the past decade.43–45 Among
the first studies to address the potential advantage of
time-varying covariates and updated predictions in
terms of the predictive accuracy was by Wu et al., who
validated a ML model that incorporated serial mea-
surements from cardiac magnetic resonance imaging
(CMR) in 382 primary prevention ICD patients. This
dynamic model yielded a mean time-dependent
AUROC of 0.88 (95% CI 0.75–0.96), outperforming
static models during internal validation (no independent
validation of this model was performed).46 As opposed to
CMR, ECG serves as a widely available, cost-effective
and non-invasive alternative to cardiac imaging tech-
niques which may even be acquired in remote settings
through the use of wearable devices. Deep learning
approaches, in particular, have potential to extract and
process features from high dimensional, complex elec-
trophysiological signals unrecognisable to human-eye,
and use these to predict arrhythmia risk.8,47 Kwon
et al. trained and validated a convolutional neural
network for predicting in-hospital cardiac arrest on
32,294 ECGs, which yielded an AUROC of 0.930 on an
external, retrospectively collected patient cohort.11

However, despite high discriminative power, the posi-
tive predictive value at the point of high sensitivity was
only 8%. In their study, Perez-Alday et al. investigated
the potential of longitudinal, hand-crafted ECG metrics
for predicting arrhythmia onset, and observed that the
prognostic accuracy of these metrics, particularly for
events happening within 3–9 months, was low.48 We
hypothesised that by employing a ML approach that
integrated low-dimensional latent ECG representations
extracted from longitudinal ECGs, we would be able to
better capture arrhythmic substrates and triggers and
use these for accurate arrhythmia prediction.19,49 The
improved predictive performance of the dynamic model
over static models, and these predictions being pre-
dominantly driven by time-varying latent ECG repre-
sentations, points towards the potential benefits of
integrating temporal variability of covariates within
prediction models. Moreover, prior studies have
demonstrated deep learning models specifically
designed to handle sequential data, for example recur-
rent neural networks, are able to capture the complex
patterns within large longitudinal datasets.40 This differs
from our approach, where we demonstrated that we can
effectively extract the pertinent features that summarise
the ECG waveforms using neural networks, and use
these in a simpler supervised ML model to predict
outcomes. This is akin to using a pure deep learning
model, but with more controlled features in a well-
regulated environment, which may be preferable in
situations where the number of cases is low. In addition,
while supervised deep learning models excel at
capturing complex patterns and intricate relationships
in the data these models are faced with the critical trade-
off between explainability and performance, in contrast
ensemble methods tend to be more interpretable. Using
a two-staged methodology which harnesses the ability of
deep learning for feature extraction and representation
learning, while also benefiting from the transparency
and interpretability of traditional machine learning
models, we were able to gain a deeper understanding of
www.thelancet.com Vol 99 January, 2024
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the underlying relationships between time-varying ECG
data and baseline clinical information.

By utilising the strength of neural networks and
probabilistic models, variational autoencoders are
capable of learning to compress any given ECG signal
into a set of explanatory and independent factors,
allowing them to operate as generative networks. Our
model provided reconstructed original ECG signals
favourably compared to the literature (Supplementary
Table S3). Various convolutional models have been
developed to represent ECG waveforms,18,20,49 and 10-s
ECG signals.19 Conversely, our relatively simple VAE
with only 3 fully connected layers reconstructed mean 6-
lead waveforms with a Pearson’s correlation coefficient
of 0.93 ± 0.09. We accept that while these results
compare favourably with previously published models,
there were substantial differences in datasets and in pre-
processing steps (Supplementary Table S3) and should
be regarded the basis for future comparisons.

The predictive capacity of latent space variables for
arrhythmia prediction reportedly outperforms standard
ECG criteria and clinical interpretations, which in-
dicates the ability of autoencoders to map unique
prognostic ECG features to a latent representation not
reflected by traditional ECG parameters.17,18,20,21 The
framework used in this study, which integrates an un-
supervised learning branch (the autoencoder) and a
supervised learning branch (the dynamic ML model), is
related to the concept of digital twins, which create vir-
tual replicas of individual patients by continuously
integrating and analysing their real-time physiological
data.50,51 Despite the potential of deep learning networks
to extract features from high dimensional data and aid
clinical decision-making, the interpretability and
explainability of neural networks remains a significant
challenge and an active field of research. While latent
space variables can reflect clinically-relevant morpho-
logical changes in the ECG, such as ST depression and
T-wave amplitude, not every feature in the latent space
has a direct one-to-one correspondence with a specific
clinical change.19,20,49 To better understand the nature of
the latent space variables, we used a trained CNN to
obtain human-interpretable ECG classifications along-
side traditional ECG measurements and correlated
them with the latent features. We found only moderate
correlations between latent space variables and human-
interpretable ECG classifications, in particular the
presence of bundle branch blocks (LBBB and RBBB)
and an abnormal heart rate (sinus bradycardia and
tachycardia). Second, we employed a factor traversal
technique to explore the latent space and visualise the
contribution of each variable to the (reconstructed) ECG
morphology. Notably, we observed that latent space
variables ranked highest in terms of feature importance
(AE0, AE7, AE8, AE9) affected the morphology of the T-
wave, in particular inversion of the T-wave in lead III.
Abnormalities in ventricular repolarisation, represented
www.thelancet.com Vol 99 January, 2024
by the T-wave, have been associated with ventricular
arrhythmic substrates such as myocardial fibrosis, and
may arguably explain the relevance of these particular
latent space variable for the dynamic model.52–55 Related
to this is the notion that there may be cardiac pathol-
ogies where beat-to-beat variations changes in the T-
wave morphology are observed (e.g. due to ventricular
ectopy), although it is not clear whether these variations
are captured during the encoding process. Moreover,
feature permutation importance analyses of the static
and dynamic ML models showed some notable differ-
ences. Although both models incorporated the same
clinical variables, the dynamic ML model predictions
were mainly driven by time-varying latent variables
extracted from the ECG, while the static model built at a
single snapshot in time validated well-known features of
other models including prior VT or VF, indication for
ICD implantation, elevated serum creatinine, prolonged
QRS-duration, age and sex. These findings underscore
the exciting potential to improve upon malignant ven-
tricular arrhythmia prediction using continuous data
streams such as are increasingly available from con-
sumer wearables as well as clinical monitors. Future
studies may assess the impact of incorporating both
time-varying ECG information and changes in clinical
variables over time on the performance of such models.
All in all, the superior accuracy of the model trained
using latent space variables, compared to human-
interpretable ECG classifications, suggests that autoen-
coders capture prognostically relevant ECG features, not
reflected by traditional human-interpretable ECG
interpretations.

Limitations
There are several limitations to acknowledge. First, due
to the retrospective nature of this study, details on the
programming of the ICD (i.e. detection times and
zones) were not available, although variations in device
programming may affect the incidence of ICD-therapy
for malignant ventricular arrhythmias. Second, prior
studies have identified predictors for ventricular ar-
rhythmias from imaging modalities, including CMR
and echocardiography.46,56 From this study we are not
able to fully explain the extent to which the autoencoder
has captured features from ECG that reflect informa-
tion from these domains, such as left ventricular
functionality and myocardial fibrosis. Of note, autoen-
coders have been applied to learn latent representation
of 3D cardiac anatomy that, potentially in combination
with ECG, could be used to train multi-domain
autoencoders with a shared latent space.18,57,58 Third,
we have trained our models on a selected population of
ICD carriers, with a high a priori probability of malig-
nant ventricular arrhythmias, which affects the gen-
eralisability of the model to other populations. We
explored the risk of unrecognised bias leading to ‘un-
fair’ predictions by evaluating model performance
11
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within clinically-relevant subgroups, however, it is
imperative that future studies assess the robustness of
this model prospectively, and across external patient
cohorts, taking into account potential biased behaviours
in underrepresented groups.59 We were able to include
data from two different settings in the current study,
however, model validation on external patient cohorts
are crucial to assess the robustness of the model.
Fourth, latent traversal, employed to evaluate the
impact of individual latent variables on the ECG
morphology, depicts their effects on a standardised
waveform and does not provide explainability on a
patient-level. Factor traversal in autoencoders assumes
that the latent factors are independent attributes or
features, although autoencoders may exhibit in-
teractions between latent factors. It remains to be
studied if such limitations, are still more explainable
than deep learning the massively parallel connections
with non-linear relationships of deep neural networks.
Future work should map latent factors to inputs for
clinical interpretability, since it is difficult to relate
factor traversal to specific semantic attributes. These
factors contribute to an incomplete disentanglement
and a semantic gap, limiting the interpretability of
factor traversal in autoencoders. Last, ML techniques
fail to provide insights in underlying mechanisms as
these seek correlation rather than causality, which
compromises the interpretability of model predictions.
The integration of ML to find correlations in very large
datasets and multiscale modelling to identify causality
and mechanisms could proposedly be the next step
towards explainable dynamic predictions.60

Conclusion
Utilising dynamic ML models and variational autoen-
coders, prognostic information from routinely collected
ECGs can be extracted and leveraged to provide per-
sonalised predictions of malignant ventricular arrhyth-
mias in patients with an ICD. This approach has
potential for integration within settings where ECG data
is collected real-time or at frequent intervals, for
instance through wearable sensors or implanted cardiac
devices. Before clinical adoption, future studies are
warranted to prospectively and externally validate these
findings.
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