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Abstract

Recently, attention mechanism and derived models have gained significant traction in drug development due to their outstanding
performance and interpretability in handling complex data structures. This review offers an in-depth exploration of the principles
underlying attention-based models and their advantages in drug discovery. We further elaborate on their applications in various aspects
of drug development, from molecular screening and target binding to property prediction and molecule generation. Finally, we discuss
the current challenges faced in the application of attention mechanisms and Artificial Intelligence technologies, including data quality,
model interpretability and computational resource constraints, along with future directions for research. Given the accelerating pace of
technological advancement, we believe that attention-based models will have an increasingly prominent role in future drug discovery.
We anticipate that these models will usher in revolutionary breakthroughs in the pharmaceutical domain, significantly accelerating
the pace of drug development.
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INTRODUCTION
Drug development has traditionally been a time-consuming,
intricate and capital-intensive process [1]. Taking a drug from
discovery to market often spans over a decade and requires
billions of dollar in investments [2]. This complex journey is
significantly hampered by inefficiencies in primary screening,
the intricacies of biological tests and the unpredictability of
clinical trials [3]. However, with the growing sophistication
of Artificial Intelligence (AI), its role in drug development is
being increasingly recognized, gradually reshaping conventional
paradigms [4–6]. Particularly under the influence of deep learning,
AI demonstrates its outstanding performance in handling vast
amounts of data, enhancing prediction accuracy and automating
intricate workflows [7]. Throughout the drug discovery and

clinical research, AI reveals its extensive application potential
(Figure 1): from swiftly screening numerous compounds, assisting
in drug synthesis design, to clinical drug trials, risk assessment
of medicines and personalized medication [8–10]. Furthermore,
by analyzing extensive chemical data, AI unveils the intrinsic
relationship between efficacy and molecular structure, thereby
generating novel drug molecule candidates [11–13]. Data-driven
approaches also empower researchers to delve deeper into the
molecular mechanisms of diseases, paving the way for more
targeted treatments [14].

Among the vast AI model spectrum, the attention mechanism
and its derived models such as Transformer, Graph Attention
Networks (GATs), Bidirectional Encoder Representations from
Transformers (BERT) and Generative Pre-trained Transformer
(GPT) have gained substantial traction in drug development
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Figure 1. The application of AI in drug discovery and clinical drug research.

in recent years [15–20]. The attention mechanism dynamically
focuses on crucial data segments during processing, significantly
boosting model expressiveness and prediction accuracy [21].
Notably, attention-based models, compared with traditional deep
learning techniques, are more interpretable, allowing researchers
to discern which molecular sections the model prioritizes—an
invaluable insight for examining structure–activity relationships
[22, 23]. Even more critical is that, thanks to their self-attention
properties, these models can process data in parallel, greatly
enhancing computational efficiency [24].

This review centers on the applications and emerging trends
of the attention mechanism and its related models in small
molecule drug development, excluding nucleic acid and protein
biopharmaceuticals. We first introduce the foundational princi-
ples of the attention mechanism and its extended models (e.g.
GAT, Transformer, BERT, GPT), followed by their specific applica-
tions in drug development. Subsequently, we provide a compre-
hensive review of these techniques’ applications in six key tasks in
drug development: Drug–Drug Interaction (DDI), Synergistic Drug
Combinations, Molecular Generation, Molecular Property Predic-
tion, Drug Response and Drug–Target Interaction (DTI). Finally, we
discuss the challenges faced by these technologies in the realm of
drug development and look forward to future trends.

ATTENTION-BASED MODELS AND THEIR
ADVANTAGES IN DRUG DISCOVERY
The emergence of the attention mechanism can be traced back
to its initial use in machine translation tasks, effectively address-
ing long-distance dependencies in sequences [25]. This brought
about a more flexible and efficient mode of operation for deep
learning models. Then, the introduction of the Transformer archi-
tecture amplified the capabilities of attention, heralding signifi-
cant changes in the research domain [26]. Transformers not only
elegantly handle complex sequence information but also intro-
duce unparalleled parallel processing capabilities. This evolution
spawned giants in the pre-trained model world, such as BERT
[27] and GPT [28], which have exhibited outstanding performance
across numerous Natural Language Processing (NLP) tasks, ush-
ering in the era of pre-trained models. Notably, the rise of large
language models (LLMs) such as ChatGPT (https://chat.openai.
com/) further propelled the popularity of such models, spurring
extensive research and discussions [29].

However, the story does not end here. Attention-based models
have displayed promising potential in the realms of biomedicine
and drug discovery [21, 30]. These models can precisely cap-
ture intricate interactions between drug molecules, achieving
commendable results in drug binding site prediction, toxicity
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Figure 2. Illustrations of attention mechanism and derived models. (A) Illustration of attention mechanism. (B) Illustration of multi-head attention.
(C) Illustration of GAT. (D) Illustration of transformer. (E) Illustration of Bert. (F) Illustration of GPT.

forecasting and drug interaction forecasting [31–35]. Their appli-
cations in protein structure and gene sequence studies have also
carved a new chapter for precision medicine and personalized
treatments [36–42]. In this section, we delve into the evolution of
the attention mechanism, its various derived models and archi-
tectures, and underscore their superiorities and application sce-
narios in drug discovery.

The attention mechanism
The inception of the attention mechanism dates back to its appli-
cation in machine translation by Bahdanau et al. in 2014 [25]. Dur-
ing sequence data processing, the model dynamically allocates
attention to various sequence positions, effectively capturing the
significance of different parts. This mechanism mirrors human
attention focus, allowing it to hone in on different sections of the
input sequence. In short, the essence of attention lies in assigning
distinct weights to different input data, allowing the model to
‘focus’ on pivotal information.

In the attention mechanism, sequence or word vectors map
to Query (Q), Key (K) and Value (V) vectors (Figure 2A). Attention
scores are then computed to measure the relevance between Q
and K, typically using methods such as dot product, scaled dot
product, additive, general, concat, etc. This mechanism allows
the model to adjust its attention based on different parts of the
input sequence, improving its data representation and retrieval
capacities. Using the self-attention mechanism as an example,
Q, K and V can be derived from word vectors multiplied by three
distinct weight matrices wq, wk and wv. For a specific word vector,
the computation of similarity between Q and K in Scaled Dot-
Product attention is

attention (Q, K, V) = softmax
(
QKT/

√
dk

)
, (1)

where QKT denotes the correlation between different input word
vectors, and dk represents the dimension of the input vector.

As the effectiveness of the attention mechanism in processing
sequence data became evident, researchers sought to further

refine and optimize it. This led to the introduction of multi-head
attention, centered on considering multiple subspace representa-
tions of data (Figure 2B). Multi-head attention does not just apply
the attention operation once. Instead, it concurrently performs
this operation across multiple different representation spaces or
‘heads’. Each ‘head’ has its unique weights, implying they might
focus on different parts of the input data. Outputs from all heads
are computed in parallel and then consolidated into a unified
output

Headi = attention
(
QWQ

i , KWK
i , VWV

i

)
(2)

MultiHead (Q, K, V) = Concat
(
Head1, . . . , Headk

)
WO, (3)

WO is an additional weight matrix.
Attention operates by dynamically weighing input information

in the model. This capability allows the model to emphasize
certain relevant or crucial sections during data processing. In
drug discovery, drug molecules often exhibit intricate structure–
activity relationships, where certain sections are more pivotal
than others. The attention mechanism enables the model to
autonomously weigh the importance of these parts, improving
prediction accuracy. For instance, predicting DTIs is inherently
complex. The attention mechanism lets the model focus on the
most crucial parts of the interactions, such as key binding sites or
active pockets, offering invaluable insights for activity prediction
and drug design [43, 44].

In fields of drug development, researchers typically integrate
various attention variants, such as cross attention, substructure
attention, feature-wise attention (FA) and hierarchical attention,
to precisely represent data. For instance, Qian et al. [45] and Kurata
et al. [46] adopted the cross-attention mechanism to encode and
integrate features of drug molecules and their target proteins for
DTI prediction. Due to its bidirectional interactions between drug
and target features, cross attention achieved enhanced feature
fusion, notably improving DTI prediction accuracy. Additionally,
Ma et al. [47] and Yang et al. [48] employed the substructure
attention mechanism to automatically extract drug substructures
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for DDI prediction. This is because it can capture and allocate
unique weights for substructures of varying sizes and shapes,
precisely representing key substructures related to DDI. Zhu et al.
[49], aiming to bolster molecular property prediction accuracy,
introduced a module termed FA. This module, by modeling
relationships among feature dimensions, automatically adjusts
atomic representations, enhancing the precision of drug molecule
representation.

Graph attention networks
As advancements in bioinformatics and chemoinformatics
unfold, increasing attention is being paid to complex structured
data, such as molecular chemical structures and biological molec-
ular networks such as protein–protein interactions (PPIs). These
structures are often represented as graphs where nodes symbolize
entities such as atoms or proteins, and edges signify chemical
bonds or interactions between them. Graph Neural Networks
(GNNs) have shown significant efficacy for these non-Euclidean
data by learning the representation of nodes, edges or the entire
graph through information propagation and aggregation [50–
52]. Traditional GNNs, such as Graph Convolutional Networks
(GCNs), often assume that the contribution from all neighboring
nodes is uniform, or based on predefined weights, potentially
overlooking intricate inter-node interactions and dependencies.
To address this, GATs were introduced [53]. GAT employs attention
mechanisms to provide different attention weights to different
neighbors. The importance of each neighboring node may vary
depending on the task or the specific context of the central node.
This is particularly relevant in drug discovery, where data often
naturally appear as graphs [54]. For example, a molecule can be
seen as a graph where atoms are nodes, and chemical bonds
are edges. GAT can capture intra-molecular interactions more
precisely, such as covalent and hydrogen bonds, resulting in a
more comprehensive and accurate molecular representation [55].

GATs are implemented by stacking simple graph attention
layers (Figure 2C). In this setup, the attention score ei,j reflects the
similarity between two nodes and is calculated as

ei,j = a
(

W
⇀

hi, W
⇀

hj

)
, (4)

where hi and hj are the vector representations of nodes i and j, W
is the corresponding weight parameter and a is a function that
computes the similarity between two nodes, which could theoret-
ically be any differentiable function. These attention scores are
then normalized to obtain attention coefficients αi,j that represent
each neighbor’s weighted contribution

αi,j = softmax
(
ei,j

)
. (5)

The final output feature for each node is calculated as a linear
combination of the features of its neighbors, weighted by the
attention coefficients

⇀

h′
i = σ

⎛
⎝∑

j∈Ni

αi,jW
⇀

hj

⎞
⎠ , (6)

where Ni denotes the neighbors of the node, and σ is a sig-
moid function. For multi-head attention mechanisms extracting
different node features, features from different ‘heads’ can be

concatenated

⇀

h′
i =

∥∥∥∥
K

k=1
σ

⎛
⎝∑

j∈Ni

αk
i,jW

k
⇀

hj

⎞
⎠ , (7)

where || represents vector concatenation.
In the drug discovery domain, GATs are one of the most com-

monly used deep models. GATs can allocate weights based on
each node’s context, considering both local substructures and
global information for a more accurate molecular representation.
Furthermore, GATs offer an intuitive way to understand why
a particular prediction was made, enabling scientists to easily
identify the most critical atoms or molecular fragments for a
given prediction—an invaluable feature for compound design and
optimization [56].

Current research extensively employs GAT-based models and
their variants to represent molecular structures and biological
molecular networks in various drug discovery studies, such as
DTI, drug response (DR), molecular property prediction and syn-
ergistic drug combinations. For instance, Xiong et al. [54] built a
compound molecular representation method, Attentive FP, based
on GAT, displaying excellent performance in multiple molecular
property prediction tasks. Liu et al. [57] proposed an attention-
wise graph masking strategy, utilizing GAT as a molecular graph
encoder and the learned attention weights as masking guides
to generate enhanced molecular graphs for property prediction.
Wang et al. [58] modeled relationships between drug combinations
and cell lines as heterogeneous graphs, then used a heteroge-
neous GAT to encode these relationships for predicting synergistic
drug combinations. Jiang et al. [59] decomposed drug molecules
into multiple fragments containing pharmacophores, retaining
inter-fragment reaction information to construct heterogeneous
molecular graphs, then used a heterogeneous GAT for molecular
feature representation. Moreover, numerous methods in the field
integrate various other GNN models with attention mechanisms,
such as combining GCN with supervised Attention for drug–
target affinity (DTA) prediction [60], or integrating self-attention
with GNNs to extract 1D substructure sequence information and
2D chemical structure graphs for adverse drug reaction (ADR)
prediction [61].

Transformer
The Transformer model has emerged as a significant innovation
in the deep learning domain in recent years. Unique in its design,
it exclusively relies on attention mechanisms, sidestepping tradi-
tional Recurrent Neural Networks (RNNs) or Convolutional Neural
Networks (CNNs). The core principle of the Transformer is its
capacity to allow data at any position to interact directly, effec-
tively capturing long-distance dependencies. Since its inception,
the architecture of Transformer has been rapidly adopted across
various NLP tasks and has gradually penetrated fields such as life
sciences and drug discovery [62, 63].

At its core, the Transformer model boasts a classic encoder–
decoder structure (Figure 2D). Within the encoder, the Feed For-
ward Network (FFN) essentially consists of two fully connected
layers, represented by the following formula:

FFN = max
(
0, xW1 + b1

)
W2 + b2, (8)

where x is the input vector, and W1, W2, b1 and b2 are the respec-
tive weight matrices and biases for the two layers. Furthermore,
the encoder connects add and layer normalization after both the
attention layer and the FFN. The addition, or residual network,
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adds the pre-input and post-input vectors together, efficiently
counteracting the vanishing gradient issue. Layer normalization,
on the other hand, accelerates model convergence, as shown in
the following formula:

LN (xi) = α (xi − μL)

√
σ 2

L + ε + β, (9)

where α and β are learnable parameters, while σ and μ represent
the standard deviation and mean of the input word vectors,
respectively. Compared with the encoder, the decoder adds
an encoder–decoder attention layer before the self-attention
layer, offering context for generative tasks such as sequence or
molecule generation.

When representing drug molecules, the Transformer’s self-
attention mechanism captures potentially long-distance interac-
tions between atoms, especially in larger molecules or proteins.
This precision offers invaluable insights for drug design [64, 65].
Compared with RNNs, Transformers boast parallelism, processing
vast datasets rapidly—a critical attribute for large-scale chemical
library screening. They can also concurrently learn various drug-
related tasks, such as hydrophilicity, lipophilicity and bioactivity
prediction, enhancing model generalization and accuracy. More-
over, the Transformer can be trained as a generative model for
de novo drug design, learning chemical space distributions and
generating promising new molecules [64, 66]. Its superior inter-
pretability, through attention weights, allows researchers to more
transparently understand the decision-making process, identify-
ing key molecular structures or groups [67].

Currently, the Transformer finds myriad applications in var-
ious domains of small molecule drugs. For example, Lin et al.
[68] employed the Transformer encoder to merge different drug
combination features, predicting DDI. Schwarz et al. [69] utilized
a Siamese transformer model to represent and integrate various
drug molecules for DDI prediction. Jiang et al. [70] harnessed the
Transformer to represent drug molecular features combined with
transcriptomic data to predict cancer drug reactions. Wang et al.
[71] used the Transformer encoder to represent protein–ligand
interaction features at character and fragment levels, predicting
the affinity between proteins and ligands. As a generative model,
the Transformer not only excels in data representation but also in
molecular generation. Liu et al. [72] constructed a molecular struc-
ture generator, DrugEx v3, based on the graph transformer model.
Harnessing the Transformer’s prowess with sequence tasks, Kim
et al. [73] learned the molecular structure and properties infor-
mation in the latent space of compound SMILES Language. Using
a decoder, they sampled molecular information from this latent
space and given conditions, generating novel molecules with
desired attributes. Mao et al. [74] designed TransAntivirus based on
the Transformer model, facilitating effective and enhanced sam-
pling of the molecular chemical space for antiviral drug virtual
screening and molecular design.

Bidirectional encoder representations from
transformers
BERT is a pre-trained model based on the Transformer archi-
tecture that has achieved remarkable success in the realm of
NLP (Figure 2E). BERT’s distinguishing feature is its bidirectional
contextual modeling, complemented by a pre-training stage. Dur-
ing its training, BERT uses a Masked Language Model approach,
where a portion of the input data is randomly masked, and the
model aims to predict these occluded sections. This deep and
bidirectional representation opens up substantial opportunities
for applications in drug discovery.

Firstly, BERT’s bidirectional nature enables it to capture
nuanced information within molecular structures, including
interactions among atoms and the molecule’s overall configu-
ration. This capability offers a highly detailed representation for
complex drug molecules [75–77]. Furthermore, BERT employs a
pre-train/fine-tune paradigm, allowing it to be initially trained
on large datasets and later fine-tuned for specific tasks. In drug
discovery, this means leveraging existing large-scale biomolecular
data for pre-training and subsequently fine-tuning the model
for specialized tasks. Although deep learning models are often
perceived as ‘black boxes’, BERT’s attention mechanism offers a
window into understanding the model’s decisions. For instance,
one can identify which atoms and bonds the model focuses
on when processing drug molecules. Owing to BERT’s ability
to capture the sequential relationships within molecules, the
resulting molecular representations are stable and consistent,
thereby enhancing the accuracy of downstream tasks such as
activity prediction and drug optimization [78, 79].

Currently, in drug discovery, BERT models are primarily
employed for molecular representation, forming the backbone
of pre-trained models that are applied to various downstream
prediction tasks. For example, Wu et al. [80] developed a
knowledge-based BERT model involving three pre-training
tasks: atomic feature prediction, molecular feature prediction
and contrastive learning. This significantly enhanced BERT’s
capability in molecular feature extraction, showing promising
potential across multiple tasks, including molecular generation
and property prediction. Zhang et al. [81] employed BERT to
represent 1D, 2D and 3D information of compound molecules for
molecular property prediction. Chithrananda et al. [82], in 2020,
trained ChemBERT, a large-scale self-supervised model based on
BERT, on a dataset comprising over 77 million SMILES, focusing on
molecular property prediction. The team subsequently released
an updated version of ChemBERT in 2022, further augmenting the
model’s performance across a variety of downstream tasks [83].

Generative pre-trained transformer
GPT, developed by OpenAI, is a model grounded in the Trans-
former architecture, designed for pre-training on vast amounts
of unlabeled data and subsequent fine-tuning across various
tasks. The GPT model fully adopts the decoder structure of the
Transformer and is pre-trained upon it. GPT’s pre-training task
revolves around a left-to-right language modeling task, where the
model predicts the subsequent word or token, and this structure
involves multiple stacked Transformer decoders (Figure 2F).

GPT possesses distinct advantages for de novo drug design [30].
Firstly, as a generative model, GPT is especially adept at molec-
ular generation tasks. It can learn and discern latent patterns
within molecular representations and generate novel molecules
potentially possessing desired characteristics [84]. Furthermore,
similar to BERT, GPT’s pre-train/fine-tune paradigm allows it to
initially be trained on expansive molecular libraries and then
tailored for specific generation tasks, aiding the model in better
understanding and producing molecules with the desired prop-
erties. Moreover, researchers can adapt the structure and size of
GPT according to specific drug discovery tasks, such as designing
custom versions of GPT for particular activity predictions or drug
optimization.

In early 2023, the debut of ChatGPT garnered widespread global
attention, particularly in the field of drug development, where it
quickly became a focal point among researchers. Industry experts
generally agree that ChatGPT’s value in drug discovery primarily
lies in assisting researchers with in-depth literature searches,
efficient data analysis and the development of innovative
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hypotheses. This tool can swiftly process and analyze large
volumes of scientific literature, effectively aiding researchers
in uncovering new drug targets and mechanisms of action.
Additionally, ChatGPT excels in assisting with the design of
experimental plans and the optimization of molecular structures
of drugs, significantly accelerating the drug development process
and greatly enhancing the efficiency and innovation of drug
discovery [85, 86].

Currently, in drug discovery, GPT models are primarily applied
for de novo design and other molecular generation tasks. For
instance, Bagal et al. [87] employed the GPT model to learn SMILES
sequences of molecules for drug molecule generation. Wang et al.
[88], working from a conditional GPT architecture, studied the
SMILES characters of drugs, aiming to generate SMILES strings
of drug-like compounds with or without specified targets. Tak-
ing a different approach, Wang et al. [89] combined the SMILES
information of drug molecules with physicochemical properties
and amino acid information of target proteins, leveraging the
GPT model to guide molecular generation. Hu et al. [90] utilized
GPT-2 to learn from ∼1.9 million bioactive molecules and then
designed novel molecular inhibitors for the SARS-CoV-2 3C-like
protease. Liang et al. [91] developed DrugChat, a prototype system
combining GNNs and LLMs, similar to ChatGPT, to enable inter-
active Q&A and textual descriptions of drug molecular graphs.
DrugChat aims to revolutionize interactions with drug molecular
graphs, accelerating drug discovery, predicting drug properties
and offering suggestions for drug design and optimization.

APPLICATIONS OF ATTENTION-BASED
MODELS IN DRUG DISCOVERY
The attention mechanisms, inspired by the human brain’s selec-
tive focus, allow AI algorithms to allocate varying degrees of
attention to different elements within a dataset, amplifying their
significance. This heightened focus has far-reaching implications
for drug research, providing solutions to numerous challenges
faced by the pharmaceutical industry. As shown in Figure 3, this
section will review the applications of attention mechanism in
drug research, mainly covering six types of tasks: DDI, DTI, DTA,
Molecular Property Prediction, Molecular Generation, DR and Syn-
ergistic Drug Combinations.

DDI prediction
In the complex world of pharmaceutical research and health-
care, understanding and predicting DDIs are crucial for ensuring
patient safety and optimizing treatment outcomes. This section
explores the role of attention mechanisms in DDIs research.

The role of attention mechanisms in DDIs research
Attention mechanisms have emerged as indispensable tools in
DDIs research. They empower models to discern subtle yet sig-
nificant patterns and connections among drugs, genes and bio-
logical pathways, shedding light on potential DDIs. For exam-
ple, the Att-BLSTM model, enriched with attention-based com-
ponents, significantly improves DDI detection and classification
[92]. By highlighting salient words in biomedical texts related to
specific drug pairs, it enhances overall accuracy. Another study
by Yu et al. [93] utilized biomedical knowledge graphs (KGs) to
detect DDIs, introducing the SumGNN (knowledge summarization
GNN) method. SumGNN efficiently identified relevant subgraphs
within KGs, improving multi-typed DDI predictions through self-
attention-based subgraph summarization. Additional research

explored novel approaches such as DDKG framework, using atten-
tion mechanisms to enhance DDIs prediction accuracy [94, 95].
These models achieved commendable results across various met-
rics and datasets. In multi-classification scenarios, the MSEDDI
model employed self-attention to fuse features from different
channels, demonstrating superior performance in predicting DDIs
for new drugs [96]. Other model such as MuFRF integrated drug
molecular structure and biomedical KGs for DDIs prediction,
excelling in both binary and multi-class tasks [48, 97]. All these
models excelled in both binary and multi-class DDIs prediction
tasks, underlining the significance of combining molecular struc-
ture and semantic information in DDIs research.

Substructure attention mechanisms for enhanced DDIs
prediction
Substructure attention mechanisms offer a granular view of
chemical substructures, accommodating variations in size and
shape commonly observed in molecules. The SA-DDI model, for
example, introduces a substructure-aware GNN equipped with
substructure attention [48]. This adaptable approach captures
evolving substructures and enhances the understanding of
complex relationships driving DDIs. Another innovative approach,
DGNN-DDI, leverages dual GNNs and substructure attention [47].
These networks collaboratively extract molecular substructure
features and determine the significance of various substructure
features in predicting drug pair interactions. Its predictive
capabilities are validated against real datasets.

Graphing insights with attention
Graph attention mechanisms have ushered in a transformative
era in DDIs research, allowing researchers to unveil intricate
patterns and relationships within vast biomedical KGs, molecular
structures and drug attributes. DGAT-DDI, a directed GAT,
addresses the often-neglected asymmetrical roles of drugs in
interactions [98]. It adeptly learns drug embeddings for source,
target and self-roles, offering insights into how drugs influence
and are influenced within DDIs. Concurrently, GNN-DDI employs
a multi-layer GAT to derive concise drug feature representations
from chemical molecular graphs [98]. This multi-layer approach
effectively captures diverse substructure functional groups,
enhancing feature representation. Lastly, LaGAT, the link-aware
graph attention method for DDIs prediction, generates different
attention pathways for drug entities based on different drug
pair links. Experimental results on two datasets demonstrate the
effectiveness of this model compared with several state-of-the-art
works [48].

Transformer models for DDIs prediction
The ability of Transformer to capture intricate long-range depen-
dencies and relationships between drugs, genes and molecular
components positions it as a formidable tool for processing large-
scale datasets and unraveling complex DDI mechanisms. Atten-
tionDDI, a Siamese self-attention multi-modal neural network,
exemplifies this transformation [69]. By integrating various drug
similarity measures derived from drug characteristic compar-
isons, it strikes a balance between predictive accuracy and model
explainability. Addressing the need for accurate DDI prediction,
the MDF-SA-DDI approach harnesses multi-source drug fusion,
multi-source feature fusion and the Transformer self-attention
mechanism [68]. AMDE (Attention-Based Multidimensional Fea-
ture Encoder), a novel attention-mechanism-based multidimen-
sional feature encoder for DDIs prediction. Specifically, in AMDE,
drug features are encoded from multiple dimensions, including



Attention is all you need | 7

Figure 3. Applications of attention-based models in drug discovery.

information from both Simplified Molecular-Input Line-Entry Sys-
tem sequence and atomic graph of the drug. Experimental results
show that AMDE performs better than other classic machine
learning and deep learning strategies [94].

In conclusion
In DDIs research, attention mechanisms have brought significant
advancements. This section began with a discussion of their
fundamental role and then explored their application in substruc-
ture and graph analysis. Finally, it highlighted the effectiveness
of Transformer models. For a quick reference, please consult
Table 1, summarizing the discussed models. These case studies
collectively emphasize the pivotal role of attention mechanisms
in elevating the accuracy, interpretability and scientific rigor of
DDI research outcomes.

DTI and DTA prediction: accelerating discovery
Understanding DTI and DTA is fundamental in drug discovery and
development. Specifically, DTI primarily investigates whether a
drug interacts with its target. DTA focuses on the strength of the
interaction between the drug and the target, that is, the affinity.
In simple terms, DTI asks ‘Is there an interaction?’ while DTA
asks ‘How strong is the interaction?’. Recent advancements in
deep learning and attention mechanisms have revolutionized
predictive accuracy and interpretability in this domain. This sec-
tion delves into pivotal roles played by attention mechanisms in

deciphering the intricate web of DTIs, DTA and Compound–
Protein Interaction (CPI), shedding light on their applications,
advantages and implications in drug discovery and precision
medicine.

Attention mechanism in DTIs prediction
Several models employ attention mechanisms to enhance feature
representation in DTI prediction. For instance, CSConv2d extends
DEEPScreen, utilizing 2D structural representations of com-
pounds with Convolutional Block attention Modules for effective
interaction prediction [101]. MHSADTI leverages GATs and multi-
head self-attention to extract distinctive features from drugs and
proteins, significantly improving accuracy and interpretability
[22]. Furthermore, the HyperAttentionDTI innovatively uses 1D-
CNN layers to learn feature matrices from SMILES strings of
drugs and amino acid sequences of proteins, enhancing feature
representation and DTI prediction performance [102].

On the other hand, graph-based models offer unique advan-
tages for DTI prediction, and several related methods have also
been proposed in recent years. Among these graph-based strate-
gies, GVDTI integrates various pairwise representations, utilizing
a graph convolutional autoencoder (AE) to predict drug–protein
interactions effectively [103]. Meanwhile HGDTI introduces a het-
erogeneous GNN, aggregating data from diverse sources to signif-
icantly enhance DTI prediction accuracy [104]. GCDTI, incorporat-
ing attention mechanisms in a GNN, captures multi-type neighbor
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Table 1: The attention-based models in DDIs prediction

Model name Attention-based model Jointly used model or strategy Reference

Att-BLSTM Attention LSTM [92]
DDKG Attention Bi-LSTM [95]
MuFRF Multi-head Attention CNN/Auto-encoder [97]
SumGNN Self-attention GNN [93]
MSEDDI Self-attention GNN [96]
SSIM Substructure Attention MPNN [48]
DGNN-DDI Substructure Attention DMPNN [47]
DGAT-DDI Directed GAT [98]
LaGAT Link-aware GAT [99]
GNN-DDI GAT [100]
AttentionDDI Transformer Siamese network [69]
MDF-SA-DDI Transformer Siamese network, CNN/AE [68]
AMDE Transformer/MPAN [94]

topologies for drug and protein nodes, demonstrating superior
performance over existing methods [105]. Additionally, Attention-
SiteDTI, a graph-based model, incorporates structural features
of small molecules and protein binding sites, effectively iden-
tifying regions likely to bind drugs for superior prediction per-
formance [106]. Another notable method, DTiGNN, introduces a
multifaceted approach, one that considers multiple perspectives
in feature learning. This model’s ability to identify previously
unknown drug–target pairs is a testament to the power of com-
prehensive feature exploration [107].

Incorporating multimodal information can also enrich DTI
prediction. MCL-DTI integrates multimodal information related
to drugs, capturing their characteristics from various perspec-
tives through semantic learning and bidirectional cross-attention
[45]. ICAN focuses on attention mechanisms, specifically cross-
attention, considering sub-sequence interactions between drugs
and proteins, demonstrating superior prediction accuracy and
paving the way for advancements in DTI prediction [46].

Another noteworthy approach involves a classification work-
flow. A recent novel machine learning-based multiclass classifi-
cation workflow categorizes DTIs into active, inactive and inter-
mediate pairs. This involves transforming drug molecules, protein
sequences and molecular descriptors into machine-interpretable
embeddings, resulting in models that significantly outperform
baseline methods [108].

The method of hierarchical attention mechanism is also
applied in the prediction of DDIs. Multiview Heterogeneous
Information Network Embedding with hierarchical attention
mechanisms (MHADTI) constructs distinct similarity networks
for drugs and targets, amalgamating multisource information
and incorporating the known DTI network [109]. Hierarchical
attention mechanisms are employed, enhancing the quality of
drug and target embeddings.

Leveraging GAT in DTIs prediction
In the quest to enhance DTIs prediction, graph attention
mechanisms have been instrumental in achieving breakthroughs.
Here, we delve into various models, each offering a unique
perspective on how attention can elevate prediction accuracy.
The model DTI-MGNN distinguishes itself by harnessing the
power of multi-channel GCNs and graph attention mechanisms.
This combination effectively melds structural and semantic
features, offering a holistic approach to DTI prediction [110].
Shifting gears, DTI-HETA frames DTI prediction as a link prediction

challenge. This model constructs a heterogeneous graph and
deploys a graph CNN, enriched with attention mechanisms,
to navigate this complex landscape [111]. Taking an end-to-
end deep collaborative learning approach, EDC-DTI skillfully
integrates various drug-target-related information. At its core is
an enhanced GAT, seamlessly incorporating heterogeneous data
to enhance DTI prediction [112]. Lastly, IMCHGAN introduces
a two-level neural attention mechanism, leveraging latent
features from a heterogeneous network. This innovative approach
demonstrates its prowess in predicting DTIs, highlighting the
potential of dual-level attention [113].

Advancing DTIs prediction with transformer models
Transformer-based models have emerged as game-changers in
the prediction of DTIs. These models offer innovative approaches
to overcome traditional limitations. MolTrans leads the way by
addressing existing DTI prediction challenges [114]. It employs
a knowledge-inspired sub-structural pattern mining algorithm
and an interaction modeling module to significantly enhance
prediction accuracy and interpretability. Another model, FastDTI
takes on the complexities of computational load and multimodal
representation in DTI prediction with its unique approach [115].
By leveraging advancements from NLP and GNNs, FastDTI uni-
fies diverse drug and protein modalities into an efficient single
model. It streamlines sequence and graph representations, reduc-
ing computational complexity, and elevates prediction accuracy
through the incorporation of drug and protein properties. On the
other hand, TransDTI introduces a transformer-based language
model framework for multiclass classification and regression of
DTIs. Molecular docking and simulation analyses validate Trans-
DTI’s predictions, highlighting its potential in advancing person-
alized therapy and clinical decision-making. These transformer-
based models showcase the potential of end-to-end models in
predicting DTIs. By employing self-attention layers, these models
effectively capture biological and chemical contexts, providing
more accurate predictions compared with traditional methods.

DTA prediction by attention mechanisms
Attention mechanisms significantly refine binding affinity predic-
tions. The model based on attention demonstrates the effective-
ness of attention in capturing compound substructure and pro-
tein sub-sequence relationships, leading to enhanced prediction
accuracy. Several models leverage graph attention mechanisms
to enhance DTA predictions. GEFA, for instance, represents drugs
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as nested atom graphs within larger complex graphs and employs
pre-trained protein embeddings for accurate modeling [116]. SAG-
DTA addresses the intricacies of drug and protein representations
by harnessing self-attention on drug molecular graphs [117].
Another notable model, AttentionDTA, employs attention mech-
anisms to identify key subsequences within drug and protein
sequences during affinity prediction [118]. MultiscaleDTA employs
self-attention to boost feature relevance, making accurate
predictions based solely on primary sequence data [119]. Addi-
tionally, GSATDTA utilizes self-attention to capture compound
substructure and protein sub-sequence relationships, exhibiting
adaptability across diverse protein 3D structures [120]. GraphATT-
DTA takes a unique approach by emphasizing local-to-global
interactions through an attention-based framework, efficiently
processing raw drug graph data and protein amino acid sequences
with the aid of 1D CNNs [121].

In a distinct category, several models employ unique attention
strategies for protein-ligand affinity prediction. CAPLA introduces
a cross-attention mechanism that enhances protein–ligand
binding affinity prediction by capturing mutual interaction
features between protein pockets and ligands [122]. Meanwhile,
SEGSA_DTA adopts a novel approach by learning feature represen-
tations from protein and ligand graph structures using multiple
supervised attention blocks, providing valuable insights for
structure-based lead optimization [60]. BindingSite-AugmentedDTA
improves DTA predictions by identifying probable protein
binding sites, enhancing prediction efficiency while maintaining
interpretability. Another noteworthy model, NHGNN-DTA offers
a dynamic acquisition of feature representations for drugs and
proteins, facilitating information interaction at the graph level.
Conversely, ArkDTA introduces an explainable deep model for
predicting DTIs, featuring NCI-aware attention regularization
[123]. By adjusting attention weights to distinguish between active
and inactive residues, ArkDTA enhances interpretability while
maintaining prowess.

Transformer models in DTA research
In recent DTA research, innovative Transformer-based models
have emerged, showing promise in enhancing DTA predictions.
DTITR utilizes self-attention and cross-attention layers to repre-
sent biological and chemical contexts of proteins and compounds,
achieving competitive performance [17]. ELECTRA-DTA employs
unsupervised learning to train contextual embedding models for
amino acids and compound SMILES strings, showcasing superi-
ority on challenging datasets and potential for drug repurpos-
ing [124]. The Multigranularity Protein-Ligand Interaction (MGPLI)
model leverages Transformer encoders to capture character and
fragment-level features, leading to substantial improvements in
prediction performance [71]. These models highlight the potential
of Transformer architectures in advancing DTA research.

Attention mechanism in CPI research
In predicting CPIs, early work utilized GNN and CNN, showcasing
the potential of low-dimensional neural networks and attention
mechanisms for superior performance and clearer visualizations
without traditional feature engineering [125]. BACPI, another
model, employed GAT and CNN, integrating compound and
protein representations to focus on local effective sites and
enhance interpretability [126]. SSGraphCPI framework based
on attention mechanism improved accuracy by combining
GCNN and BiGRU to extract molecular information and local
chemical background, further enhanced in SSGraphCPI2 by
incorporating protein amino acid sequence data [127]. Lastly, the

Perceiver CPI network employed cross-attention mechanisms
and extended-connectivity fingerprints, exhibiting commendable
performance and advancing CPI prediction through attention
mechanisms [128]. These studies collectively highlight the
potential of attention-based approaches in CPI prediction and
their impact on bioinformatics.

Several studies have explored the application of Transformer
and BERT models in CPIs prediction. One research endeavor intro-
duces DISAE, a deep learning framework that leverages evolution-
ary insights and self-supervised learning to predict chemical bind-
ing onto poorly annotated proteins [129]. The CAT-CPI model com-
bines CNN and transformer encoders to enhance molecular image
learning and protein sequence representation [130]. CAT-CPI uti-
lizes Feature Relearning to capture interaction features, achieving
optimal outcomes and extending its application to DDI tasks.
Additionally, the MDL-CPI approach employs a hybrid architecture
integrating BERT, CNN and GNNs for protein and compound
feature extraction [131]. MDL-CPI’s unified feature space demon-
strates superior predictive performance, highlighting the value
of learned interactive information between compounds and pro-
teins in enhancing accuracy. These studies collectively showcase
the potential of Transformer and BERT models in advancing CPI
prediction and exploring chemical landscapes across sequenced
genomes.

In conclusion
The section on attention mechanisms in DTI, DTA and CPI
research provides a comprehensive exploration of cutting edge
techniques. It begins by introducing the transformative potential
of attention mechanisms within deep learning frameworks,
especially emphasizing the role of the Transformer model. Several
case studies illustrate how attention mechanisms revolutionize
predictive accuracy and model interpretability in these critical
domains (Table 2). For instance, in DTI prediction, the section
discusses how attention-based approaches enhance feature
representation, facilitating more accurate predictions. Similarly,
in DTA prediction, the utilization of attention mechanisms
greatly refines binding affinity predictions, especially when
combined with transformer-based models. Furthermore, atten-
tion mechanisms in CPI research extract intricate relationships
and improve information extraction between compounds and
proteins. Overall, this section underscores the transformative
impact of attention mechanisms and the Transformer model in
advancing predictive capabilities and understanding complex
interactions in DTI, DTA and CPI research.

Molecular property prediction
In the rapidly evolving landscape of Molecular Property Prediction,
attention mechanisms have ushered in a profound paradigm
shift, significantly influencing the analysis and prediction of
molecular characteristics. Inspired by human cognitive processes,
attention mechanisms have surpassed their initial domains of
NLP and computer vision, offering a transformative approach
to model and comprehend intricate molecular structures. The
application of attention mechanisms in Molecular Property
Prediction encompasses several key areas, each contributing to
the enhancement of predictive accuracy and interpretability, thus
promising a future of enhanced precision in pharmacokinetics
and related fields.

Enhancing interpretability through attention mechanisms
The realm of molecular property prediction has seen the
emergence of several innovative models that focus on enhancing
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Table 2: The attention-based models in DDI, DTA and CPI research

Tool Attention-based model Jointly used model or strategy Task Reference

HyperAttentionDTI Attention CNN DTI [102]
GVDTI Attention VAE, GCN DTI [103]
HGDTI Attention Bi-LSTM DTI [104]
/ Attention GCNN/Bi-LSTM DTI [108]
GCDTI Attention GNN/CNN DTI [105]
AttentionSiteDTI Attention/GAT GNN DTI [106]
GCHN-DTI Attention GCN DTI [132]
CSConv2d Channel Attention/Spatial Attention CNN DTI [101]
MHSADTI Multi-Head Self-Attention/GAT DTI [22]
MHADTI Hierarchical Attention Multi-view Learning DTI [109]
MCL-DTI Cross-attention/Multi-head Self-attention DTI [45]
ICAN Cross-attention CNN DTI [46]
DTI-MGNN GAT GCN DTI [110]
DTI-HETA GAT GCN DTI [111]
EDC-DTI GAT RWR DTI [112]
DTiGNN attention GNN/CNN DTI [107]
IMCHGAN Heterogeneous GAT DTI [113]
MolTrans Augmented Transformer DTI [114]
TransDTI Transformer DTI [115]
FastDTI Transformer Multimodality DTI [133]
GEFA Self-attention GCN DTA [116]
MultiscaleDTA Self-attention CNN DTA [119]
GSATDTA Graph–sequence Attention/Transformer BiGRU/GNN DTA [120]
GraphATT-DTA Attention CNN/GNN DTA [121]
AttentionDTA Attention CNN DTA [118]
BindingSite-AugmentedDTA Self-attention/GAT DTA [134]
NHGNN-DTA Multi-head Self-attention BiLSTM DTA [135]
ArkDTA Cross-attention DTA [123]
CAPLA Cross-attention DTA [122]
SEGSA_DTA Supervised Attention GCN DTA [60]
SAG-DTA Self-attention GCN DTA [117]
DTITR Transformer/Cross-attention DTA [17]
ELECTRA-DTA Transformer DTA [124]
MGPLI Transformer CNN/Highway Network DTA [71]
CPI prediction Attention GNN/CNN CPI [125]
SSGraphCPI Attention GNN/CNN CPI [127]
Perceiver CPI Cross-attention/Self-attention CNN CPI [128]
BACPI GAT CNN CPI [126]
DISAE Transformer/ALBERT CPI [129]
CAT-CPI Transformer CNN CPI [130]
MDL-CPI BERT CNN/GNN/AE CPI [131]

interpretability and precision. The Self-attention-based Message-
Passing Neural Network (SAMPN) stands as a significant mile-
stone, dynamically assigning importance levels to substructures
during the learning phase, effectively revolutionizing property
predictions [136]. Moreover, models such as attention MPNN
and Edge Memory NN, introduced by Withnall et al. [137],
have proven to be formidable competitors against traditional
techniques, elegantly leveraging the molecular graph structure
for improved predictions. On the other hand, Substructure-
Mask Explanation (SME) offers a distinctive approach, identifying
pivotal substructures within molecules, thereby providing deeper
insights into the mechanisms influencing property predictions
[56]. Addressing the challenges of leveraging unlabeled data, the
Cascaded Attention Network and Graph Contrastive Learning
(CasANGCL) presents a pre-training and fine-tuning model,
substantially enhancing prediction performance in downstream
tasks [138]. Lastly, the Hierarchical Informative Graph Neural
Network (HiGNN) utilizes co-representation learning from molec-
ular graphs and the chemical synthesis of retrosynthetically

interesting chemical substructure (BRICS) fragments, offering
powerful deep learning assistance to chemists and pharmacists.

Graph attention mechanisms in molecular property
prediction
Graph attention mechanisms have played a pivotal role in
advancing precision in the field of molecular property prediction.
FraGAT, a fragment-oriented multi-scale graph attention model,
excels in capturing diverse views of molecule features, especially
emphasizing functional groups that play a crucial role in a
molecule’s properties [139]. ATMOL, on the other hand, introduces
attention-wise graph masking, significantly enhancing molecular
representation and consequently, downstream molecular prop-
erty prediction tasks [57]. FP-GNN represents a notable stride by
effectively combining information from molecular graphs and
fingerprints, resulting in precise molecular property prediction
[140]. Furthermore, the advent of Multi-Order Graph Attention
Network (MoGAT) has significantly enhanced predictions related
to water solubility, allowing for a deeper understanding of atom
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importance [141]. In a distinctive approach, PredPS, an attention-
based GNN, demonstrates exceptional utility in binary class
prediction of compound plasma stability [142].

BERT model in molecular property prediction
The integration of BERT models into Molecular Property Prediction
research has brought a dynamic and efficient approach to
encoding molecular structures, signifying a pivotal stride in the
field. Among these strategies, Molecular Graph BERT (MG-BERT)
masterfully amalgamates local message passing mechanisms
from GNNs with the BERT model [81]. This fusion enables self-
supervised pretraining on extensive unlabeled molecular data,
yielding crucial contextual insights for precise property predic-
tions. K-BERT, another model, distinguishes itself through three
distinct pre-training tasks [80]. This differentiation empowers
K-BERT to exhibit exceptional performance across a diverse
array of 15 pharmaceutical datasets, extending the horizons of
molecular property prediction research. MolRoPE-BERT takes a
novel approach by utilizing rotary position embeddings instead
of absolute position embeddings, broadening the spectrum of
molecular representation learning [78]. Fingerprints-BERT (FP-
BERT) harnesses self-supervised learning, effectively extracting
semantic representations of molecules from SMILES data [143].
The incorporation of 3D parameters in Stereo Molecular Graph
BERT (SMG-BERT) enables precise chemical representations
for diverse molecules [144]. SMILES-BERT, a semi-supervised
model, efficiently generalizes across tasks through pretraining
on a large-scale unlabeled dataset using a Masked SMILES
Recovery task [145]. These advancements collectively underline
the transformative potential of BERT-based models, promising a
future of enhanced precision in pharmacokinetics and related
fields.

Transformer in molecular property prediction
The infusion of Transformers into molecular property prediction
research signals the dawn of a new era, signifying a substantial
leap forward. Models such as ABT-MPNN and TranGRU have
demonstrated the transformative potential of Transformers in
enhancing the understanding of molecular information [146–
148]. ABT-MPNN, by seamlessly integrating the self-attention
mechanism with MPNNs, refines molecular representation
embedding, achieving competitive or superior performance
across various datasets in quantitative structure–property
relationship tasks. TranGRU, on the other hand, enhances the
understanding of both local and global molecular information,
positioning itself as a versatile sequence encoder for molec-
ular representation extraction. DHTNN, a novel algorithmic
framework, introduces the innovative Beaf activation function
and leverages a Transformer with Double-head attention for
molecular feature extraction, resulting in a robust approach
that ensures model convergence and rational weight assignments
[149]. Two strategies, MolHGT and PharmHGT, both of them applied
the Heterogeneous Graph Transformer mechanism in molecular
property research. MolHGT adeptly accommodates heterogeneous
structures, capturing distinct node and edge types, thus providing
a comprehensive view of molecular property prediction, while
PharmHGT excels in capturing diverse views of heterogeneous
molecular graph features, consistently outperforming advanced
baselines on benchmark datasets [59]. The introduction of these
two HGT-based methods underscores the immense potential of
harnessing Transformer technology to advance molecular prop-
erty prediction. Lastly, GROVER harnessing well-designed self-
supervision and highly expressive pre-trained models to achieve

significant performance enhancements across challenging
benchmarks [150].

In conclusion
In conclusion, these diverse approaches collectively underscore
the remarkable potential of attention mechanisms and Trans-
formers in advancing Molecular Property Prediction research.
They not only enhance predictive accuracy but also elevate
interpretability, promising a future of enhanced precision in
pharmacokinetics and related fields (Table 3). With a thorough
understanding of molecular structures and properties, these
advancements significantly contribute to drug discovery and
related scientific domains, setting the stage for a new frontier
in pharmacology and molecular research.

Molecular generation
In the rapidly evolving field of De Novo Drug Design, attention
mechanisms have emerged as a transformative innovation,
reshaping how we approach molecular generation. Attention
mechanisms now provide a sophisticated means to capture
intricate relationships between molecular components. These
mechanisms empower deep learning models to selectively focus
on specific elements within complex molecular structures,
enhancing precision, interpretability and the potential to
accelerate drug discovery.

Attention mechanism: Illuminating molecular relationships
By selectively focusing on specific elements within complex
molecular structures, the attention mechanisms decodes the
complexities of molecular structures and properties, paving
the way for accelerated drug discovery and the tailored design
of molecules with precise attributes. For example, a model
named CProMG has been introduced to address the challenge of
designing molecules with both high binding affinities and desired
physicochemical properties [154]. By combining hierarchical
protein perspectives and jointly embedding molecule sequences
with their drug-like characteristics, CProMG has the ability
to autonomously generate custom-designed molecules with
superior binding affinity and drug-like properties. This model
relies on the attention mechanism, which integrates fine-
grained atomic views with coarse-grained amino acid views to
provide a more accurate representation of 3D protein structures
(pockets). Additionally, it employs multi-head attention modules
to compute the proximity between molecular tokens and protein
residues and atoms, thereby capturing crucial interactions
between protein pockets and molecules.

GPT model in molecular generation
The GPTmodel has emerged as a powerful player in the field
of Molecular Generation. Originally designed for NLP, GPT has
been adeptly adapted to tackle complex molecular design chal-
lenges. Operating as a language model, GPT predicts the next
token or element in a sequence based on learned patterns and
relationships, enabling the precise generation of novel molecules.
PETrans, is a deep learning approach tailored for generating ligands
specific to particular targets [89]. It extracts contextual features
of molecules using GPT and employs transfer learning to fine-
tune the model for generating molecules with superior binding
affinity to target proteins. Similarly, cMolGPT, a conditional Trans-
former architecture, auto-regressively produces target-specific
compounds through fine-tuning on target-specific datasets [112].
Additionally, MolGPT, inspired by the success of GPT models in
text generation, performs equivalently in generating valid, unique
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Table 3: The attention-based models in molecular property prediction research

Tool Attention-based model Jointly used model or strategy Reference

SAMPN self-attention MPNN [136]
/ Attention MPNN [137]
MV-GNN Attention GCN/Multi-view Learning [151]
SME Attention GCN [56]
EAGCN Edge Attention GCN [152]
CasANGCL Cascaded Attention Pre-training/Graph Contrastive Learning [138]
HiGNN Feature-Wise Attention GNN [49]
MG-BERT BERT GNN [81]
K-BERT BERT Pre-training/Contrastive

Learning/Fine-tuning
[80]

MolRoPE-BERT BERT Pre-training/Fine-tuning [78]
FP-BERT BERT CNN [143]
SMG-BERT BERT [144]
ChemBERTa BERT Pre-training [82]
ChemBERTa-2 BERT Pre-training [83]
SMILES-BERT BERT Pre-training [145]
FraGAT GAT [139]
ATMOL GAT Graph Contrastive Learning [57]
FP-GNN GAT [140]
MoGAT GAT [141]
PredPS GAT [142]
ExGCN GAT GCN [153]
ABT-MPNN Transformer MPNN [147]
TranGRU Transformer BiGRU [148]
DHTNN Transformer [149]
MolHGT Heterogeneous Graph Transformer [146]
PharmHGT [59]
GROVER GNN Transformer Pre-training [150]

and novel molecules [87]. Its conditional training capabilities
allow control over multiple molecular properties and scaffold
generation.

Among other studies using GPT model in De Novo Drug Design,
there are two other studies that deserve attention. An efficient
pipeline has been proposed to generate novel SARS-CoV-2 3C-
like protease inhibitors, leveraging the GPT2 generator and pre-
cise multi-task predictors [90]. This approach yields numerous
novel compounds, enhancing the chemical space for generation
and providing valuable insights for potential therapeutic agents.
Another novel model for de novo drug design utilizing the GPT
architecture and relative attention has been introduced by Haroon
et al. [30]. This model offers enhanced validity, uniqueness and
novelty, emphasizing the potential of relative attention and trans-
fer learning within the GPT framework for improved de novo drug
design.

Transformer-based approaches for molecular design
Owing to the exceptional capacity to capture intricate rela-
tionships between molecular components and exploit the
potential of attention mechanisms, Transformers have seamlessly
transitioned to the generation of molecular structures. At the
beginning, one innovative approach reframes molecular design
as a translation task [21]. Using transformer-based models, it
translates protein amino acid sequences into molecular struc-
tures. These models not only generate valid molecular structures
but also predict their affinity for target proteins, aligning with
physicochemical characteristics, drug-likeness and synthetic
accessibility metrics. They demonstrate the remarkable capability
to craft molecules tailored to specific targets. Later, models, such
as TransVAE [155], leverage attention mechanisms to explore

intricate substructural representations of molecular features.
Another noteworthy method named Generative Chemical Trans-
former (GCT) merges transformer models’ language recognition
capabilities with the conditional generative power of variational
models [73]. Proficient in understanding chemical semantics and
adhering to grammar rules, GCT satisfies multiple preconditions
simultaneously, offering profound insights into molecular
design within the transformer framework. In another recent
study, researches proposed a novel approach named the multi-
constraint molecular generation (MCMG). This model can satisfy
multiple constraints by combining conditional transformer and
reinforcement learning algorithms through knowledge distillation
[156].

Some other strategies have also been introduced in the molec-
ular generation with transformer model. One innovative study
introduces strategies for warm-starting molecule generation
models, aiming to accelerate the process [157]. Conditional
Randomized Transformers effectively explore drug-like chemical
space, expanding the boundaries of molecular design and
offering fresh insights into drug discovery [158]. Incorporating the
transformer model, another framework Motif2Mol connections
between amino acid sequences and molecular structures [159].
It minimizes irrelevant sequence noise, directly assessing the
model’s capability to generate active compounds. Recently,
an update to DrugEx model (verson 3) introduces scaffold-
based drug design, enabling the design of molecules based
on scaffolds comprising multiple fragments as input [72]. This
approach employs a novel positional encoding scheme, allowing
multiple fragments within a scaffold to grow simultaneously
and connect, ensuring the validity of generated molecules.
Another noteworthy approach Taiga combines transformers and
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Table 4: The attention-based models in molecular generation research

Tool Attention-based model Jointly used model or strategy Reference

/ GEFA GGNN/Reinforcement learning [162]
CProMG Multi-head Attention/Cross-attention [154]
PETrans GPT Transfer Learning [89]
cMolGPT GPT Pre-Training [88]
MolGPT GPT Pre-Training [87]
/ GPT2 Pre-Training [90]
/ Relative Attention/GPT Transfer Learning [30]
/ Transformer [21]
GCT Transformer [73]
/ Transformer VAE [155]
Motif2Mol Transformer [159]
Taiga Transformer Reinforcement learning [160]
TransAntivirus Transformer [74]
/ ChemBERTa/Protein RoBERTa Pre-Training [157]
CRTmaccs Conditional Randomized Transformer [158]
AlphaDrug Lmser Transformer [163]
DrugEx v3 Graph Transformer Reinforcement learning [72]
cTransformer Conditional Transformer [164]
/ BERT [161]

reinforcement learning for molecule graph generation [160]. This
integration enables the generation of molecules with specific
properties by fine-tuning a continuous vector space.

The researchers have also developed a series of tools based
on the transformer mechanism for molecular design. In recent
3 years, COVID-19 has become a major threat to human health.
TransAntivirus, a transformer-based model, explores designing
antiviral lead compounds by translating IUPAC names into
SMILES strings for molecular optimization, with potential
implications for addressing challenges such as SARS-CoV-2 [74].
The BERT model has also been applied, and a notable tool using
adaptive training strategy has also been proposed to explore the
adaptation of language models to enhance molecule generation
for optimization tasks [161]. In summary, these transformer-based
approaches collectively redefine molecular design, precision
medicine and drug development. Their ability to comprehend,
manipulate and generate molecular representations positions
them as driving forces behind innovation in these pivotal
domains.

In conclusion
Attention mechanisms have emerged as valuable tools, revolu-
tionizing the design and synthesis of molecules. This section illu-
minated their pivotal role in molecular generation, showcased the
versatility of GPT models and delved into the myriad applications
of transformers. For a concise overview, please refer to Table 4,
summarizing the featured models. Collectively, these case studies
underscore the paramount significance of attention mechanisms
in reshaping molecular generation research, offering innovative
and effective avenues for designing molecules tailored to precise
properties and functions.

DR and ADRs
Predicting how individuals will respond to specific drugs and
anticipating adverse reactions is paramount for personalized
medicine. Attention mechanisms enable the precise modeling
of patient-specific responses by capturing intricate relationships
between molecular features and DRs. This section delves into
how attention mechanisms are reshaping our understanding of

drug efficacy and safety, ultimately paving the way for tailored
treatments.

Attention in DR
In the context of DR research, attention mechanisms have
emerged as valuable tools, significantly enhancing predictive
accuracy and interpretability. These mechanisms harness the
capabilities of deep learning to decipher intricate interactions
among drugs, molecular structures and biological data. By
selectively focusing on specific elements within these complex
datasets, attention mechanisms facilitate the identification
of crucial features for predicting DRs and adverse reactions.
Moreover, they shed light on the underlying biological mech-
anisms driving DRs, thus facilitating the discovery of novel
therapeutic interventions and improving patient outcomes.
For instance, an attention-based multimodal neural approach
has been introduced to enhance the interpretability of drug
sensitivity prediction [165]. This approach integrates multiple
data modalities, including SMILES string encoding of drug com-
pounds, transcriptomics data from cancer cells and intracellular
interactions integrated into a PPI network. A comprehensive
comparative study demonstrates the superiority of using raw
SMILES strings, especially the newly proposed MCA architecture,
for predictive performance. The efficacy of the drug attention
mechanism is validated through its strong correlation with
established structural similarity measures. A gene attention
mechanism focusing on informative genes for IC50 prediction is
also introduced, enhancing model explainability. Based on this
model, a webserver called PaccMann has also been developed
[166]. This gene-based approach offers computational tractability
and suggests potential extensions involving pathway scores and
associated pathway attention mechanisms to further enhance
tumor cell representation.

Transformers in DR prediction
Integration of Transformers into DR research holds the promise
of improving drug discovery and development while also pro-
viding insights into the intricate mechanisms governing drug
efficacy and safety, ultimately advancing the field of personalized
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medicine. Several innovative models have been introduced to
enhance drug sensitivity prediction and improve our understand-
ing of patient-specific responses to clinical treatments. For exam-
ple, DeepTTA incorporates a transformer architecture with self-
attention modules to capture essential drug characteristics from
compound substructures [70]. In recent studies, innovative neural
network architectures such as GrapTransDRP and TCR have been
introduced to enhance DR prediction on cell lines [167, 168].
GrapTransDRP [167] leverages Graph Transformer with a fusion of
GAT-GCN to improve drug representation extraction from molec-
ular graphs. Multi-omics data are also incorporated to enhance
predictive capabilities. On the other hand, TCR adopts a trans-
former network with multi-head atom omics attention to model
drug atom/substructure interactions alongside multiomics data.
It combines GCN and transformer networks, emphasizing the
effectiveness of learning to rank with a cross-sampling strat-
egy. Both models demonstrate superior effectiveness in predict-
ing DRs compared with existing methods, underscoring their
potential value in precision medicine. Another strategy named
DRPreter stands out as an interpretable drug-response prediction
model that merges biological and chemical-domain knowledge
with deep learning technologies [67]. By integrating cancer-related
pathways and cell line networks, it provides detailed representa-
tions and insights into drug mechanisms. To against the COVID-
19, a novo model, DeepCoVDR was proposed [169]. This framework
employs a transfer learning approach using a graph transformer
for predicting COVID-19 DR. DeepCoVDR showcases proficiency in
regression and classification tasks, and it demonstrates accuracy
through the screening of FDA-approved drugs and drug candi-
dates.

Graph attention mechanisms in ADR detection
Innovative models based on Graph attention Mechanisms such as
GCRS, iADRGSE and GCAP have been developed to ADDRESs the
challenges of ADR detection [61, 170, 171]. GCRS predicts drug-
side effect associations by encoding specific topologies, common
topologies and pairwise attributes of drugs and side effects. Iadrgse
focuses on early-stage ADR identification in drug discovery by
combining a self-attentive module and a graph-network mod-
ule. GCAP predicts the severity of adverse reactions to drugs,
encompassing potential drug–ADR interactions and determin-
ing classes of serious clinical outcomes. These models demon-
strate superior performance, independence from known drug–
ADR interactions and broader predictive capabilities, expanding
their potential applications in safeguarding patients and ensuring
drug safety. On the other hand, the Graph Machine Learning neu-
ral network model MultiGML has also been developed to enhance
ADR classification [172]. MultiGML significantly outperforms tra-
ditional classifiers in terms of performance, particularly in classi-
fying ADRs into multiple categories. Transformers have also made
significant contributions to ADR research. DeepPSE, for instance,
leverages deep drug pair representations and a self-attention
mechanism to predict polypharmacy side effects [173]. By explor-
ing various drug fusion methods, DeepPSE aims to enhance the
prediction accuracy of polypharmacy side effect, ultimately con-
tributing to safer drug development and patient care.

In conclusion
In conclusion, the integration of attention mechanisms and
Transformers in both DR and ADR research has led to a paradigm
shift, vastly improving predictive accuracy and interpretability.
These advancements hold immense promise for the field of
personalized medicine, enabling tailored treatments and a deeper

understanding of drug efficacy and safety. The ability to model
intricate relationships between molecular features and DRs
offers the potential for highly precise predictions, early detection
of adverse events and enhanced patient safety. For a concise
overview of the models discussed, please refer to Table 5. As
researchers continue to refine and innovate upon these models,
the future of pharmacovigilance and drug development appears
increasingly bright.

Synergistic drug combinations
The pursuit of potent drug combinations that surpass the efficacy
of individual drugs has historically been resource-intensive
in pharmaceutical research. However, the integration of AI,
particularly attention mechanisms, has transformed this field
by allowing for a precise focus on molecular interactions driving
synergistic effects. In this section, we explore the applications,
advantages and emerging trends of attention mechanisms
in synergistic drug research, offering innovative solutions for
addressing complex diseases.

Graphs attention in synergistic drug combinations
The fusion of attention mechanisms with GNNs and GCNs has
proven to be a potent approach in synergistic drug combina-
tion research. This synergy enables the capture of intricate
relationships within graph-structured drug data, shedding light
on drug, gene and molecular interactions. The introduction of
attention mechanisms into these networks empowers researchers
to prioritize vital nodes and edges within the graph, improving
both predictive accuracy and model interpretability. A notable
application of this fusion is seen in DeepDDS, a cutting-edge
model for forecasting drug combination effects [94]. DeepDDS
utilizes graph-based representations of drug chemical structures
and employs GCN and attention mechanisms to compute
drug embeddings. The model excels in fusing genomic and
pharmaceutical data, allowing precise prediction of synergistic
drug combinations tailored to specific cancer cell lines. Another
anticancer drug research, GraphSynergy, harnesses GCN and
attention mechanisms to identify tailored synergistic drug
combinations for specific cancer cell lines, promising significant
advancements in precision medicine [175].

However, GNNs and GCNs, while proficient in capturing
unique features in specific cell lines, often overlook invariant
patterns across cell lines. To address this limitation, SDCNet,
a novel GCN-based approach, was introduced [176]. SDCNet
predicts cell line-specific synergistic drug combinations without
relying on cell line data such as gene expressions. An attention
mechanism enhances feature fusion across different network
layers, significantly improving predictive performance. Another
remarkable approach, AttenSyn, is an attention-based deep GNN
that automatically learns high-latent features for predicting
drug combination synergies [177]. AttenSyn eliminates the need
for manual feature engineering and identifies crucial chemical
substructures within drugs through its attention-based pooling
module, outperforming classical machine-learning techniques
and deep-learning methods. Beyond the prominent models
discussed, there are two additional noteworthy applications of
attention mechanisms with graph strategy in synergistic drug
combination research. MGAE-DC combined attention mechanism
and graph AE, which focuses on predicting drug combination
synergies across various cell lines, treating additive or antag-
onistic combinations as distinct channels [178]. This approach
incorporates cell-line-specific drug embeddings and an attention
mechanism, amplifying its predictive power. CGMS, another
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Table 5: The attention-based models in DR and ADR research

Tool Attention-based model Jointly used model or strategy Task Reference

/ Attention RNN, CNN DR [165]
PaccMann Attention DR [166]
DeepTTA Transformer DR [70]
DRPreter Transformer GNN DR [67]
GraTransDRP Graph Transformer GAT-GCN DR [167]
DeepCoVDR Graph Transformer/Cross-attention DR [169]
TCR Transformer GCN DR [168]
GCAP Multi-level Graph Attention CNN ADR [171]
GCRS Attention GCA ADR [170]
Iadrgse Self-attention GNN ADR [61]
/ Cross-attention ADR [174]
MultiGML GAT GCN ADR [172]
DeepPSE Transformer CNN/AE/Siamese network ADR [173]

innovative approach, utilizes a complete graph framework to
identify anti-cancer synergistic drug combinations [58]. By
integrating a heterogeneous graph attention network and multi-
task learning, CGMS eliminates order dependency, enhances
whole-graph embeddings and offers interpretability through its
attention mechanism.

BERT in synergistic drug combinations
BERT has emerged as a valuable tool in synergistic drug com-
bination research due to its exceptional ability to capture con-
textual information in textual data. This contextual understand-
ing extends to molecular properties, DDIs and gene expression
data, significantly enhancing predictive capabilities and model
interpretability. One example of BERT’s impact is evident in the
Dual Feature Fusion Network for Drug–Drug Synergy Prediction
(DFFNDDS) [179]. It effectively predicts drug combination syner-
gies using drug SMILES representations, hashed atom pair fin-
gerprints and cell line gene expression data. The incorporation
of fine-tuned BERT models for drug feature extraction and a
double-view feature fusion mechanism consistently outperforms
other methods. Furthermore, intensive research efforts focusing
on drug combinations have led to computational predictions of
drug synergy. An impressive case is DCE-Dforest [180], which uti-
lizes BERT to encode drug information and employs a deep forest
approach to model drug-cell line relationships. This model con-
sistently outperforms other methods, contributing significantly to
our understanding of drug synergy in cancer therapy.

Transformer in synergistic drug combinations
The Transformer excels in encoding molecular structures, DTIs
and genetic information, making it invaluable for learning
intricate patterns and dependencies essential for predicting
synergistic drug combinations. The TranSynergy model, devel-
oped by Liu et al. [181], enhances synergistic drug combination
prediction using a self-attention transformer and deep learning.
It models cellular effects of drugs through gene dependencies,
interactions, and drug-target interactions. The novel SA-GSEA
method further aids in identifying critical genes, improving
interpretability. Benchmark studies show TranSynergy’s good
performance over existing methods, highlighting its potential
in mechanism-driven machine learning. Following this ground-
breaking approach, a refined dual-transformer-based deep neural
network, DTSyn, captures intricate biological associations by
leveraging GCN for chemical features and self-attention for

extracting key interactions [182]. Moreover, DeepTraSynergy, yet
another approach, employed deep learning techniques to predict
drug combination synergy scores [183]. With the utilization
of multimodal inputs and a multitask framework, it achieved
superior performance compared with classical and state-of-
the-art models. In addition to the models mentioned above,
EGTSyn [184], an Edge-based Graph Transformer stands out for
its effectiveness in capturing global structural information and
critical chemical bond details using specialized GNNs. Its strong
generalization capabilities make it a valuable tool for predicting
synergistic drug combinations.

In conclusion
In conclusion, the integration of advanced technologies and
deep learning models has revolutionized Synergistic Drug
Combination research. Notably, the Transformer and BERT, with
their contextual understanding, empower the comprehension of
intricate drug interactions. The fusion of attention mechanisms
with GNNs and GCNs has emerged as a potent strategy, facilitating
the precise prediction of drug combination effects. Models such
as DeepDDS and GraphSynergy excel in this domain, advancing
precision medicine. SDCNet addresses challenges in capturing
patterns across cell lines, emphasizing the significance of
attention-enhanced GCNs. Models such as AttenSyn and SANEpool
enhance interpretability, contributing to a deeper understanding
of complex molecular networks. These advances, summarized
in Table 6, highlight the transformative potential of attention
mechanisms, contextual encoders and graph-based models. They
expedite the identification and optimization of synergistic drug
combinations, offering new avenues for enhanced therapeutic
strategies in complex diseases.

CHALLENGES AND FUTURE DIRECTIONS
Models based on the attention mechanism offer vast opportu-
nities for drug development, but they also present several chal-
lenges.

Data quality and availability
The success of drug development hinges on high-quality data
[187]. However, appropriate data for training these models are
often scarce and face various limitations [188]: Lack of Data for
Rare Diseases & Specific Populations: Available data for some
rare diseases or specific demographics are minimal, leading to
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Table 6: The attention-based models in synergistic drug combination research

Tool Attention-based model Jointly used model or strategy Reference

DeepDDS GAT GCN [185]
GraphSynergy Attention GCN [175]
SDCNet Attention GCN [176]
SANEpool Attention GNN [186]
AttenSyn Attention LSTM/GCN [177]
MGAE-DC Attention Graph AE [178]
CGMS Heterogeneous GAT [58]
DCE-Dforest BERT Deep forest [180]
DFFNDDS BERT/Multi-Head Attention Highway network [179]
TranSynergy Transformer [181]
DTSyn Transformer GCN [182]
DeepTraSynergy Transformer Nod2Vec [183]
EGTSyn Graph Transformer [184]

potential under-training and reduced predictive accuracy. Data
Diversity: Drug development data come from various experimen-
tal methods and conditions, introducing issues such as batch
effects and experimental errors, complicating data preprocessing.
Annotation Issues: A lot of data may lack accurate labeling, espe-
cially concerning vital biological activity or toxicity attributes.
Incorrect or incomplete labels impact model training and pre-
diction. Data Imbalance: In some studies, positive samples (e.g.
effective drugs) may be significantly outnumbered by negative
samples, leading models to be biased toward the majority class
and potentially overlooking rare but essential samples [189].

Model interpretability
Model interpretability refers to the explainability and understand-
ability of a model’s predictions. While the attention mechanism
has relatively increased the transparency of models, it is espe-
cially critical in the field of drug development, and there remain
several challenges and needs. Deep learning models, particularly
those with multiple layers and a large number of parameters,
often have internal mechanisms that can be difficult for non-
expert users to comprehend [190, 191]. This complexity might lead
researchers and pharmaceutical experts to be skeptical about
the model’s predictions. Although the attention mechanism can
highlight parts of the data the model focuses on, it is hard to grasp
the model’s decision-making logic solely based on weights. For
instance, the same weight might have different interpretations in
different contexts. Deep learning models often involve a plethora
of non-linear operations, making their decision pathways more
intricate and hard to trace and explain. Moreover, while we might
be able to interpret the model’s decisions for specific inputs,
understanding its behavior on a global scale remains a challenge.

Computational constraints
As models such as BERT and GPT grow in scale, the extensive
data they require can prolong training times, possibly becom-
ing infeasible for smaller research entities [192]. And massive
models demand vast computational and storage resources. Stor-
ing model weights, intermediate representations and training
data can exhaust significant storage capacities [193]. Meanwhile,
despite the inherent parallel computation benefits of attention-
based models, optimizing this requires deep familiarity with par-
allel computing frameworks and algorithms. Moreover, deploying
large models on mobile or embedded systems can be impractical

due to their size and computational demands, emphasizing the
importance of model compression and quantization techniques.

Future directions
Emerging algorithms and technologies suggest the development
of more streamlined and efficient models on the horizon. Tech-
niques such as network pruning or knowledge distillation might
yield smaller yet powerful models apt for constrained computa-
tional environments. Future models are anticipated to integrate
various data types, such as molecular structures, clinical trial
data and genomic information, leveraging the power of multi-
modal fusion. In drug discovery, this approach allows for the
efficient combination of insights from diverse data sources. Not
only does it maximize the unique perspectives each dataset offers,
but it also paves the way for building more comprehensive and
accurate prediction models. For instance, merging gene expres-
sion data with protein structure information could unveil previ-
ously unknown mechanisms of drug–biological interactions. The
application of multi-modal fusion effectively mitigates biases and
limitations associated with relying on a single data source. Such
holistic analysis methods significantly enhance the predictive
accuracy for new drug candidates and potential drug targets.
In summary, through multi-modal fusion techniques, the drug
discovery process is expected to become more in-depth and holis-
tic, accelerating and optimizing the discovery and development
of novel therapeutics. Embedding expert knowledge into models
could also bolster model transparency and trustworthiness. Fur-
thermore, future research could emphasize lightweight, efficient
models and algorithms suited for varying computational set-
tings while minimizing energy consumption and environmental
impact.

CONCLUSIONS
In this review, we delved into the application of the attention
mechanism and its associated models in drug development. From
drug molecule screening and property prediction to molecular
generation, attention has showcased its immense value and
potential. While challenges pertaining to data quality, model
interpretability, computational resources and complexity persist,
continuous research and technological advancements suggest
that attention-based models hold a promising future in drug
development. As technology advances, we can optimistically
anticipate that newer and more potent attention-based models
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will further accelerate the pace and efficiency of drug research,
ushering in breakthroughs for human health and pharmaceutical
science.

Although this review provides insightful perspectives on the
application of attention mechanisms in small molecule drug
discovery, it still has certain limitations. First, due to the scope and
focus of the article, it primarily concentrates on small molecule
drugs, with less discussion on large molecule drugs or biological
agents. Secondly, the article does not delve deeply into critical
issues such as data quality, data bias and data privacy. These
factors are essential in influencing the performance of models
and their application in drug development. Additionally, while the
use of AI in drug discovery holds great potential, related ethical
and legal issues are not sufficiently addressed and discussed in
this review. Addressing these issues is crucial for a comprehensive
understanding and evaluation of the impact of this technological
field.

Key Points

• Attention mechanisms selectively allocate weights to
different input data, allowing models to emphasize key
information, showcasing significant advantages in drug
discovery.

• Attention-based models have found broad application
in drug development, spanning activities from drug
molecule screening, property prediction, to the genera-
tion of molecular structures.

• However, integrating attention mechanisms in drug
development comes with challenges such as ensuring
data quality, enhancing model interpretability and man-
aging computational limits.
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