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ABSTRACT
Background: Analyses of collective cell migration and orientation phenomena are needed to 
assess the behavior of multicellular clusters. While some tools to the authors’ knowledge none is 
capable to analyze collective migration, cellular orientation and proliferation in phase contrast 
images simultaneously.
Methods: We provide a tool based to analyze phase contrast images of dense cell layers. PIV is 
used to calculatevelocity fields, while the structure tensor provides cellular orientation. An 
artificial neural network is used to identify cell division events, allowing to correlate migratory 
and organizational phenomena with cell density.
Conclusion: The presented tool allows the simultaneous analysis of collective cell behavior 
from phase contrast images in terms of migration, (self-)organization and proliferation.
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Background

Self-organization and migration are important aspects for 
understanding fundamental processes such as embryo-
genesis, wound healing or tumor migration and metasta-
sis [1]. Due to its more complex nature, including cell–cell 
interactions, cell-density and cell-alignment dependen-
cies, collective cell behavior is less well understood than 
single-cell behavior. One reinforcing factor for the knowl-
edge gap is the more complex data analysis needed to 
evaluate collective migration or cellular organization phe-
nomena. As manual approaches are often insufficient for 
analyzing collective behavior, a multitude of additional 
approaches have been applied. Notably, these include 
methods to calculate local velocity fields, cellular organi-
zation and cell density.

For calculation of (local) migration speeds inside of 
dense cell layers mainly three approaches were used: 1) 
Determination from all single cells inside the layer, 2) 
determination via cross-correlation (particle image velo-
cimetry, PIV) and 3) via optical flows. While all methods 
provide very good results, they are limited in their applic-
ability. For example, the determination of individual cells 
needs a very good and reliable segmentation to minimize 
errors [2–4]. Consequently, this approach is only feasible 
if the contrast of cell-cell-junctions is high or if nuclei or 
cell membranes are fluorescently labeled to facilitate 

segmentation [2–4]. Usage of traditional optical flow 
algorithms is challenged by large displacements and 
tends to focus the movement on high gradient structures, 
while low-contrast regions are underrepresented [5]. 
Consequently, for reliable usage fluorescence labeling of 
e.g. cell membranes is necessary [6]. Another noteworthy 
point is the phototoxicity in fluorescently labeled cells. It 
may limit the observation time or temporal resolution due 
to photobleaching or even alter the measurement results 
by changes in cytoskeleton. PIV, on the other hand, has 
a broad general applicability to phase contrast images [7– 
16] but suffers from comparably high computation times 
[17] and smooths out high local velocities with spatial 
dimensions significantly lower than the template size used 
for pattern matching [18]. Furthermore, the spatial reso-
lution of velocity fields is limited to the usage of (over-
lapping) templates. Due to its broad applicability and 
label-free usage, PIV was chosen here.

For the analysis of (local) cell orientation mainly two 
types of methods are used: segmentation-based [19–22] 
and gradient-based methods [23,24]. Segmentation- 
based approaches provide very good results if segmen-
tation works well but have the same limitations, as 
discussed before. In contrast, gradient-based methods 
are prone to noise and thus need additional pre- 
processing [23]. Due to broader applicability, here 
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a structure tensor-based approach combined with an 
additional de-noising step using the BM3D filter was 
used [23,25].

As cell migration often depends on (local) cell den-
sity [8,16,26,27] it is necessary to assess this parameter 
in parallel. Previous studies mostly relied on segmenta-
tion of labeled nuclei [4,28], cell membranes [6,29] or 
whole cells in phase contrast images [30], suffering 
from the same issues discussed above. Some more 
advanced algorithms relying on machine learning, pat-
tern recognition and topological features also exist 
[31,32]. Notably, the segmentation and identification 
of single cells in phase contrast images become increas-
ingly more complicated with rising cell density [10]. 
Nonetheless, for the presented work a cell-division 
detection algorithm based on pattern matching and an 
artificial neural network was developed to identify 
dividing cells in phase contrast images.

Taken together, here we present a tool-box allowing 
for the parallel determination of cell velocities, orienta-
tion and cell density changes in phase contrast images, 
allowing a broad applicability.

Materials and methods

Cell culture and experiments

U138 cells were purchased from the American Type 
Culture Collection (Manassas, VA, USA). The primary 
glioblastoma line #4 was isolated from a human brain 
tumor biopsy, as described previously [33]. The study 
was conducted in accordance with the Declaration of 
Helsinki and was approved by the local ethics commit-
tee of the University Halle-Wittenberg (project refer-
ence number: 2015–144). All patients provided signed 
written informed consent.

All cells were cultured in 89% (v/v) DMEM 
(Invitrogen, Carlsbad, CA, USA 41,965–062), supple-
mented with 10% (v/v) FBS (Gibco 10,500–064) and 1% 
(v/v) penicillin/streptomycin (Gibco 15,140–122).

For the analysis of collective migration 400,000 cells 
were seeded into 12-well plates and 24 h afterward 
transferred to an inverted microscope (DMi 8, Leica, 
Wetzlar, Germany) with temperature (37°C) and CO2 

(5% (v/v)) control. Images were taken every 3 min for 
up to 60 h. All experiments were performed three times 
and five fields of view imaged per experiment and cell 
line.

Image analysis

The source code and software described here are avail-
able on GitHub, using the following link: https://github. 

com/Herodot1/CollectiveCellMigration. The provided 
toolbox was written using MatLab 2021a and 
a documentation for usage and detailed dependencies 
is provided with the link above. The provided frame-
work uses the following external code or code snippets: 
PIVlab toolbox for calculating the local velocity fields 
[34], the BM3D filter for de-noising [25], the circular 
statistics toolbox [35], an external function for the dis-
play of error bars as shaded areas [36], the calculation 
of the structure tensor as implemented by Zhang et al. 
[23], and an external peak finding function [37]. The 
generation of velocity fields, orientation fields and cell 
division detection is parallelized, and computation 
times on an i7 single core for one image of resolution 
1280 × 960 pixels are summarized in Table 1.

An outline of the image analysis pipeline is depicted in 
Figure 1. Prior to the image analysis images can be 
optionally de-noised using the BM3D filter, to remove 
small intracellular noise (Figure 2), improving the results 
of the PIV, orientation and cell division analysis. Albeit 
clearly visible, the effect of de-noising is relatively small 
(<3%, Fig S1A-E), except for the orientation analysis (up 
to 6%, Fig S1F) in a representative field of view.

Analysis of local velocities
Particle image velocimetry (PIV) is used for calculating 
local velocities. The technique relies on cross- 
correlation based pattern matching in subsequent 
images. The implementation here is based on PIVlab 
and thus supports the same types of features for con-
figuring the PIV calculation [34]. Of note, an optional 
PIV-based drift correction was implemented.

For subsequent analysis of the velocity fields, 
a calculation of the average instantaneous speed is 
implemented (Figure 3a, b). Furthermore, calculation 
of the self-overlap function Q(Δt) and 4-point suscept-
ibility χ(Δt) were performed (Figure 3c, d) [14,38,39]. 
The self-overlap function is defined as follows: 

Table 1. Computation times on a single i7 core for an image of 
size 1280 × 960 pixels.

Step
Computation 

time [s]

De-noising (BM3D) 6.9
PIV (4x pass with 128x128, 64x64, 32x32, 32x32 

window width)
1.1

Cell Division Detection 1.2
Orientation Analysis 0.3
Sum 9.5
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Here, N defines the number of virtual particles and Δr the 
distance to the initial position of each cell and d the 
average cell diameter. Here, d = 80px (≈38.4 µm) was 
used, corresponding approximately to the cell diameter 
of both cell types. Q quantifies the proportion of virtual 
particles that moved away at least 20% of a cell size from 
the initial position. For the quantification of cooperativity, 
the 4-point susceptibility χ(Δt) was calculated: 

The peak height of χ(Δt) is proportional to the number 
of cells moving collectively, and the peak position cor-
responds to the average lifetime of collectively moving 
cell packs [38,39] and both parameters are given as 
additional output in the toolbox.

In addition, neighborhood changes, based on 
Euclidean distance, can be calculated [7,15]. 
Therefore, virtual particles are placed on a mesh grid 
across the image and tracked over time. If a virtual 
particle had different neighbors at the end of the 

measurement the neighborhood was considered to be 
different (Figure 3e, f). High numbers of neighborhood 
exchanges correspond to strong reorganization of the 
monolayer.

Also, the mean squared displacement (MSD) 
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2 
and its scaling coefficient α(Δt), based on 

the following equation can be calculated: 

With the generalized diffusion coefficient K. The scal-
ing coefficient reveals information of the type of 
motion observed inside the monolayer, with sub- 
diffusive behavior for α < 1, diffusive behavior for α =  
1 and super-diffuse behavior for α > 1.

Identification and tracking of cell division events
Before generation of candidates for cell division, the 
image contrast was enhanced using contrast limited 
adaptive histogram equalization (CLAHE), to adjust 
for changes in illumination relative to the used tem-
plate. For the identification of cell division events 18 
typical mitosis events per cell type were manually 
cropped out and used as template for pattern matching. 
Pattern matching was done using cross correlation of 
the input image and each of the individual templates. 
As individual cross-correlation maps were considerably 
noisy (Figure 4), the product of all individual cross- 
correlation maps was calculated and normalized to 
[0,1], leading to an improvement of the signal-to- 
noise ratio (Figure 4). Afterward, peaks were identified 
and used as candidates for an artificial neural network 
(ANN) using the GoogLeNet architecture [40], differ-
entiating between true division events and false positive 
signals. The network was trained with annotated data 
of 22,851 candidates, consisting of 7783 cell divisions 
and 15,068 false positives. Notably, the ANN was 
trained on images of the glioblastoma cell line LN229 
and #4 but not on images of U138.

Application of the ANN yielded the final positions of 
individual cell divisions in each image. As a single 
division event may be present in multiple images, 
a track matching algorithm was employed to match 
detections to tracks. For detection to track assignment, 
the Munkres global nearest neighbor algorithm was 
used. The cost of assignment for a detection d to 
a track t was determined as the product of its 
Euclidean distance Δx(d,t) to the last detection assigned 
to track t and the number of images the respective track 
was invisible n: 

Figure 1. Scheme of image analysis. At first an optional de- 
noising of the image is performed. Afterwards local velocity 
fields are calculated using particle image velocimetry, a cross- 
correlation based pattern matching approach. Using the eigen-
vectors of the structure tensor an orientation map of the cell 
layer is generated and lastly cell divisions are identified using 
a combination of pattern matching and artificial neural net-
works. The data of local velocity, orientation, cell division events 
and cell density can be used for a joint analysis of all para-
meters and their interdependencies.
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If the assignment cost for a detection to all existing 
tracks was too high, a new track was created. If a track 
was unassigned for too long (here: n > 25 images) no 
detection was assigned to the respective track. Using 
this approach allowed to reliably identify cell division 
events and track them in space and time.

The spatial and temporal information of cell divi-
sions allowed to characterize changes in cell density 
during the measurement and its impact on other mea-
surement parameters, such as the local velocity field or 
cellular organization (Figures 5, 6).

Analysis of local cellular orientation
For the analysis of local orientation, the orientation of the 
largest eigenvector of the structure tensor J of the image 
I was used. The structure tensor J was defined as [23] 

with the Gaussian window function w. As the given 
system does not necessarily have a defined favored 

direction, the angular variance for each eigenvector in 
an image with direction θ was calculated. It is defined as: 

The angular variance is bound to values of zero (no 
variance) to 

ffiffiffi
2
p

(maximal variance). A combination of 
the calculation of angular variance and change in cell 
density is also implemented.

Results

To illustrate the capabilities of the presented approach, 
measurements of two different glioblastoma cell lines 
over the time course of 60 h were performed. For the 
experiments, the well-established cell line U138 and 
a primary GBM line called #4 were used. Inside the 
monolayer GBM cells are expected to be motile, show-
ing significant amounts of layer reorganization and 
proliferation throughout the whole duration of 
experiments.

Figure 2. Effects of de-noising. a) typical unfiltered image of a dense layer of U138 glioblastoma cells. Arrows point to cell division 
events and arrowheads to regions of unclear cell-cell boundaries. The bottom image corresponds to an enlarged version of the 
marked region of the full size image. b) De-noised version of the image shown in a) and the respective magnification. Please denote 
the reduction of small intracellular structures and conservation of edges. Scale bars depict 100 µm (top row) or 20 µm (bottom row).
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Different glioblastoma cells show distinct migratory 
patterns

Analysis of the velocity fields of U138 and #4 cells 
revealed regions of high and low velocities, with some 
high-velocity regions showing anti-parallel movement 
(Figure 3a). Analysis of the instantaneous speed revealed 
that the monolayer of both cell lines had mean velocities 

of ≈ 12 or 16 µm/h initially, decreasing to ≈ 10 or 8 µm/h 
over time (Figure 3b). Next, the order parameter was 
evaluated to analyze if cells were stationary inside the 
layer (Figure 3c). Both cell lines showed significant layer- 
movements on a timescale of ≈150 min. Based on the 
order parameter the 4-point-susceptibility was calculated 
(Figure 4d) to assess characteristic reorganization times 

Figure 3. Example of migration analysis. a) velocity field of U138 cells, showing streaming motion. b) mean instantaneous layer 
speed for two glioblastoma cell lines as a function of time. c, d) mean order parameter and 4-point susceptibility as a function of 
time. Peak positions of the 4-point susceptibility correspond to the average life time of collectively moving groups of cells. Error bars 
and shaded areas depict the standard error of the mean. e, f) quantification of changes in monolayer reorganization for different 
time windows after start of the measurement for both glioblastoma cell lines. Box plots show the median (red line), 25 and 75%ile 
(box), non-outlier range (whiskers) and outliers (red dots). Line plots: mean ± SEM for n = 3 and a total of 15 fields of view.
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(peak position) and estimate the number of cells moving 
collectively (proportional to peak height). Both cell lines 
showed similar characteristic times of 153 or 204 min, 
respectively, thus showing marked reorganization during 
the measurement time. Notably, calculating the number 
of cells moving as a collective pack revealed U138 moved 
in groups of 11 cells, while #4 cells moved in packs of 28 
cells, showing more coordination. Lastly, it was analyzed 
how well the neighborhood of individual cells was pre-
served over time. Thereby, #4 cells tended to undergo less 
reorganization (Figure 3e), while the same phenomenon 
was less pronounced in U138 (Figure 3f).

Glioblastoma cell lines show different proliferative 
behavior

Next, the presented approach for detection of cell divisions 
was tested and applied. Testing was performed on an inde-
pendent candidate set obtained from LN229 and #4 cells, 
containing 928 events, of which 227 were divisions. The 
training and testing of the used model gave a validation 
accuracy of 92.2%, with most of the errors occurring due to 
false negatives. The given accuracy likely underestimated 
the capabilities of detecting divisions in the given setup, 

because division events were present for multiple successive 
images and thus were more likely to be detected. The idea 
was supported by manual inspection of the resulting detec-
tions in U138 cells showing a high recall of division events, 
with only very low numbers of false positive detections, 
albeit U138 cells were not part of the training data (Vid S1). 
Consequently, the change in cell density over time was 
analyzed for both cell lines, either averaged over all experi-
ments and fields of view (Figure 5a) or individually for each 
field of view (Figure 5b, c). In line with visual inspection of 
the images, #4 cells showed initially faster proliferation than 
U138 cells, but eventually proliferation in #4 declined 
(Figure 5a). Interestingly, there was a linear increase in 
cell density for U138 cells and no apparent slowdown in 
proliferation, implying a time dependent, decreasing dou-
bling time (Figure 5a, b). Evaluating individual fields of 
view for U138 cells yielded only little variation throughout 
individual experiments (Figure 5b), hinting toward a well- 
reproducible experimental system and analysis scheme. In 
contrast, #4 cells showed proliferative phases, followed by 
a very low occurrence of proliferative events and eventually 
ceased to proliferate (Figure 5c). Such behavior might indi-
cate synchronization of cells inside the layer and some form 
of contact inhibition of proliferation. Using the information 
on the change of cell density, a cell density dependent 

Figure 4. Identification of cell division events. a) image of an U138 cell monolayer, with marked division events (red dots) and 
associated tracks (colored lines). b) cross correlation map used for the identification of candidates for cell divisions fed into the 
neural network, when using only one template for matching. c, d) evolution of the cross correlation map when using 3 or 12 
templates for matching. Denote the improved signal-to-noise ratio and sharper localization of potential divisions. The scale bar 
depicts 100 µm.
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instantaneous speed was obtained (Figure 5d). Two regimes 
of the speed as function of cell density were observed for 
both cell types. The first was characterized by increasing 
speed with increasing cell densities and after reaching the 
peak speed a continuous decrease with cell density that was 
more pronounced in the #4 cells was found. As the litera-
ture implies cell division events to be an inducer of (local) 
fluidization inside a monolayer [27,29], we tested whether 

the local velocities around cell division events were distinct 
from the rest of the monolayer (Figure 5e, f). For both cell 
lines, the average speed immediately around division events 
was significantly higher than in the rest of the monolayer 
(Figure 5e, f). Please denote the slight decrease in the ratio 
for U138 cells over time and the increase in GBM #4 
(Figure 5e). Currently, we partially attribute the decrease 
to the detection of cell extrusions in U138 that arise for very 

Figure 5. Applications of the cell division detection a) mean number of cell divisions tracked over 60 h for U138 and GBM #4. Shaded 
areas depict the standard error of the mean. b, c) division events observed in individual fields of view for U138 and GBM #4. d) plot 
of the mean instantaneous layer speed as a function of the mean change in cell density for both GBM lines. e) mean ratio of the 
instantaneous speed of the monolayer around divisions to the rest of the layer as a function of time. Shaded areas depict the 
standard error of the mean. f) time averaged ratio of the speed of the monolayer around divisions to the rest of the layer. Box plots 
show the median (red line), 25 and 75%ile (box), non-outlier range (whiskers) and outliers (red dots). Line plots: mean ± SEM for 
n = 3 and a total of 15 fields of view.
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high cell densities. For #4 cells it appears plausible that the 
ratio increases from 1500 min onwards mostly as a result of 
the overall decrease in the monolayer speed.

Glioblastoma cell lines can show signs of 
self-organization
Lastly, changes in the morphology of the monolayer 
formed by the two cell lines were analyzed over 
time (Figure 6a, b). For both cell types, 
a transition from a largely unorganized monolayer 
to the formation of parallel strands for very high 
cell densities was observed. Quantification of cell 
orientation supported this observation (Figure 6c), 
demonstrating the self-alignment of both cell lines 
over time, with #4 cells showing stronger 

alignment. Plotting the change in cell density over 
the cellular orientation variance, a steady decrease 
in cell orientation variance (increase in alignment) 
was observed for U138 cells, while a similar 
decrease was found for #4 cells only after 
a significant increase in cell density. Thus, it is 
tempting to speculate that a critical cell density 
for U138 cells was achieved from the beginning of 
the experiment, while it was not initially reached 
for #4 cells. Yet, other explanations such as the 
time-dependent formation of aligned extra-cellular 
matrix components or others cannot be excluded. 
Nonetheless, the results show the capability of the 
presented methods to analyze questions of cell- 
density dependent self-organization.

Figure 6. Application of the orientation analysis. a, b) typical images of GBM #4 at the beginning and end of a measurement, 
together with the overlaid local cellular orientation. The scale bar depicts 100 µm. c) mean angular variation of the cell orientation as 
a function of time. The dotted line shows the expected value for a random distribution of angles from 0 to π/2. Error bars and 
shaded areas depict the standard error of the mean. d) scatter plot of the mean angular variation of cell orientation as a function the 
mean change in cell density. Line plots: mean ± SEM for n = 3 and a total of 15 fields of view.
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Discussion

The present study was performed to introduce an easy- 
to-use method for the analysis of collective behavior 
that is capable to simultaneously assess migration, orga-
nization and proliferation of cells in phase contrast 
images without additional (fluorescent) labeling.

The presented version uses a very well but optional 
de-noising step via BM3D [25] combined with state of 
the art PIV in the form of PIVlab [34], automated 
orientation analysis and an ANN designed to identify 
proliferation events. The presented results demonstrate 
the capability of the system to not only analyze migra-
tion but also identify correlations between changes in 
migratory properties, cell density and cellular organiza-
tion. It should be denoted that the accuracy for cell 
division detection is similar to other presented label- 
free methods [31,32,41,42]. To the authors knowledge, 
there is no single framework combining all of the analy-
sis parameters as presented here in one tool.

Even though the presented framework shows good 
results, some limitations have to be taken into account. 
One issue is the de-noising strategy taking a significant 
amount of calculation time (≈50%). While BM3D is 
highly effective, it is still an intense and ongoing matter 
of research on how to significantly reduce the computa-
tion time [43,44]. While the de-noising step is optional 
and has only comparable little effect on the velocity cal-
culations, it still reduces image and thus PIV noise 
through elimination of small intracellular structures. 
Usage of classical filters like Gaussian, Wiener or median 
filters would blur edges and other intracellular structures, 
affecting calculation of orientation, divisions and velocity. 
Nonetheless, the provided toolbox does not only provide 
the optional BM3D filter but also the methods provided 
by PIVlab [34] Wiener and Gaussian filter. Still, as the 
BM3D filter provides only comparably little benefit while 
taking up ≈ 50% of computation time, it is recommended 
to be turned off when analyzing large amounts of data.

As the generation of candidate divisions use cross 
correlation it is – albeit the usage of CLAHE – prone to 
unequal or changing illumination, compared to the tem-
plates. An alternative to this approach might be the usage 
of contrast independent features for candidate selection 
[45–47]. Furthermore, the cell division detection was 
trained on data of only two cell lines (LN229, #4) and 
validated on a third one (U138). Thus, it is likely that the 
detection accuracy will be lower for cells that appear 
morphologically distinct. Consequently, a broader set of 
training data will be needed to circumvent this issue. 
Another issue with the cell division detection is the 
occurrence of cell-extrusions being especially evident 
for very high cell densities. Currently, due to the nearly 

identical appearance of extrusions and mitotic cells, the 
proposed algorithm identifies these extrusions as division 
events. As extrusion events normally persist significantly 
longer than divisions they are filtered out this way, albeit 
this approach is limited in efficiency. Despite the exten-
sion of the ANN by introducing a third object class 
(extrusion), potential further strategies could take advan-
tage of the significantly increased velocities around cell 
divisions that should not be present for cell extrusions. It 
may also be feasible to check if cell extrusions are asso-
ciated with nematic defects as reported before [48], so 
they can be excluded or used for additional analysis. Yet, 
these approaches still have to be tested.

Conclusion

Here, we presented a versatile toolbox to analyze the 
collective behavior of a dense cell monolayer to study 
migration, self-organization and proliferation in phase 
contrast images. Due to the low demands to the input 
images, it is expected that the presented approach can 
have a wide variety of applications.
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