
Nature Neuroscience | Volume 27 | January 2024 | 187–195 187

nature neuroscience

https://doi.org/10.1038/s41593-023-01490-6Technical Report

Facemap: a framework for modeling neural
activity based on orofacial tracking

Atika Syeda    1  , Lin Zhong    1, Renee Tung    1, Will Long1,
Marius Pachitariu    1,2 & Carsen Stringer    1,2 

Recent studies in mice have shown that orofacial behaviors drive a large
fraction of neural activity across the brain. To understand the nature
and function of these signals, we need better computational models to
characterize the behaviors and relate them to neural activity. Here we
developed Facemap, a framework consisting of a keypoint tracker and a
deep neural network encoder for predicting neural activity. Our algorithm
for tracking mouse orofacial behaviors was more accurate than existing
pose estimation tools, while the processing speed was several times faster,
making it a powerful tool for real-time experimental interventions. The
Facemap tracker was easy to adapt to data from new labs, requiring as few as
10 annotated frames for near-optimal performance. We used the keypoints
as inputs to a deep neural network which predicts the activity of ~50,000
simultaneously-recorded neurons and, in visual cortex, we doubled the
amount of explained variance compared to previous methods. Using this
model, we found that the neuronal activity clusters that were well predicted
from behavior were more spatially spread out across cortex. We also
found that the deep behavioral features from the model had stereotypical,
sequential dynamics that were not reversible in time. In summary, Facemap
provides a stepping stone toward understanding the function of the
brain-wide neural signals and their relation to behavior.

Neurons across the brain are constantly active, even in the absence of
external sensory stimuli or a behavioral task1,2. This ongoing, spontane-
ous neural activity is driven by the spontaneous behaviors of the animal,
such as running, head movements and whisking in mice3–9, tail move-
ments in zebrafish10 and body movements in flies11–13. In mice, different
neurons were best explained by different combinations of orofacial
behaviors, such as whisking, sniffing and grooming, showing that mul-
tidimensional representations of behavior exist across the brain14–17.
These multidimensional behavioral representations persist during
presentations of sensory stimuli14 and decision-making tasks18–20.

Despite the widespread presence of behavioral signals across the
brain, their role and function remains poorly understood. To make pro-
gress in understanding these neural signals, it is important to develop
better computational models. This requires progress in the following

two areas: (1) better quantification of orofacial behavior and (2) better
models of the influence of behavior on neural activity.

To quantify behavior, previous studies took advantage of the stabil-
ity of the head-fixed experimental setup to compute low-dimensional
features of the raw behavior movies, either using principal components
(PCs) of the movies14,17,20, or using autoencoders fit to the movies21,22.
Although movie PCs are easy to compute, the resulting features are
hard to interpret. Another common approach for quantifying orofacial
movements is whisker tracking, which can provide specific and inter-
pretable information about whisker motion23–26. However, previous
approaches for whisker tracking required trimming the other whiskers
and/or whisker painting, which may alter mouse behavior, and they
also required a high-speed overhead camera, which may be unavailable
in many experimental setups. An alternative approach is markerless

Received: 6 November 2022

Accepted: 10 October 2023

Published online: 20 November 2023

 Check for updates

1HHMI Janelia Research Campus, Ashburn, VA, USA. 2These authors contributed equally: Marius Pachitariu, Carsen Stringer.
 e-mail: syedaa@janelia.hhmi.org; stringerc@janelia.hhmi.org

http://www.nature.com/natureneuroscience
https://doi.org/10.1038/s41593-023-01490-6
http://orcid.org/0000-0002-3097-4071
http://orcid.org/0000-0002-9740-628X
http://orcid.org/0000-0003-4603-8170
http://orcid.org/0000-0001-7106-814X
http://orcid.org/0000-0002-9229-4100
http://crossmark.crossref.org/dialog/?doi=10.1038/s41593-023-01490-6&domain=pdf
mailto:syedaa@janelia.hhmi.org
mailto:stringerc@janelia.hhmi.org

Nature Neuroscience | Volume 27 | January 2024 | 187–195 188

Technical Report https://doi.org/10.1038/s41593-023-01490-6

which we inferred using a hidden Markov model (HMM). Hence,
Facemap can be used to obtain insights into both the structure and
influence of orofacial behaviors on neural activity, thus providing a
stepping stone toward understanding the function of the brain-wide
behavioral signals.

Results
Fast and accurate tracker for mouse orofacial movements
We start by describing a neural network model for keypoint tracking
on the mouse face, the Facemap tracker. As a first step, we chose
several well-defined keypoints that could track various orofacial move-
ments (Fig. 1a). To capture whisking, we tracked three whiskers that
are visible from most camera views, labeling the points at the base of
the whiskers. To capture sniffing, we tracked four nose-related key-
points (bottom, top, tip and right-bottom, when in view). To capture
mouth movements, when the mouth was in view, we tracked two mouth
keypoints (mouth and lower lip). To capture eye movements, such as
blinking, we tracked the four corners of the eye (bottom, top, front
and back). We did not track the pupil, because it is completely dilated
and untrackable in darkness, and also because it is easier to track with
simpler methods14.

Our goal was to build a model that would generalize well to new
data. To achieve this goal, we collected a dataset of short mouse face
videos from many different mice with the camera setup at several

pose estimation or keypoint tracking. Several algorithms exist for
general keypoint tracking in animals27–31, but none of these tools have
specialized methods for tracking orofacial movements.

Similarly, better models are needed to account for the influence of
behavior on neural activity. Previous studies used simple approaches
like reduced-rank regression (RRR) or ridge regression14,20. These models
are linear and do not take into account temporal dynamics. Therefore,
they are unlikely to capture the full influence of time-varying, multi
dimensional behavior on neural activity.

To address these shortcomings, we developed two new algorithms
as follows: a keypoint tracker and a single neuron prediction model,
both of which we make available in Facemap. Both algorithms are
powered by deep neural networks. To track orofacial behaviors, we
developed a pose estimation tool that tracks 13 distinct keypoints
on the mouse face from variable camera views. Our pose estima-
tion tool is more accurate than the best existing method (DeepLab-
Cut), and it is also twice as fast, thus providing a viable option for
online behavioral tracking. On new data, the Facemap tracker requires
only ten new labeled frames for near-optimal performance. We also
developed a multilayer neural network that is optimized to predict
neural dynamics from orofacial behaviors. Compared to previous
methods, this approach can predict almost twice as much neural
variance for neurons in visual cortex. Furthermore, the model learns
deep behavioral features that have highly-structured state dynamics,

Eye
(back)

Eye
(bottom)

Eye (top)
Eye

(front)
Nose (top)

Nose (tip)

Nose (bottom)

Mouth
Lowerlip

Whisker (I)
Whisker (III)
Whisker (II)

Nose (R)

3
×

3
×

32
3

×
3

×
32

3
×

3
×

64

3
×

3
×

64

3
×

3
×

12
8

3
×

3
×

12
8

3
×

3
×

12
8

3
×

3
×

12
8

256

25
6 3 × 3 × 200

3
×

3
×

12
8

3
×

3
×

12
8

3
×

3
×

12
8

3
×

3
×

12
8 +

3 × 3 × 200

a b c

e
6.0

5.5

5.0

Av
er

ag
e

er
ro

r (
pi

xe
ls

)

4.5

4.0

0 200

Processing speed (FPS)
(batch size = 1)

Facemap

DeepLabCut
ResNet50

SLEAP
(default)

DeepLabCut
Mobilenet

400

f Blinking
Keypoints

Future prediction

Error percentile

20 px

x
y

x
y

x
y

x
y

x

y

x

y

x

y

x
y

x
y

x
y

x
y

Keypoint

Eye
Whisker

Nose

Eye
0.1

1

10

Whisker

Nose

Prediction

x keypoint

50th 75th 90th 0

2.0

4.0

6.0

Er
ro

r (
pi

xe
ls

)

8.0
Facemap
Human

y keypoint

Eye (bottom)
Eye (front)
Eye (back)
Eye (top)

Whisker (I)

Whisker (II)

Whisker (III)

Nose (top)

Nose (tip)

Nose (bottom)

Whisking

Sni�ing

0.5 s

0.5 s

5 s

0.5 s

g

h

i

j k

d

0
0 10

Time in future (s)
20

20

40

60

80

100

Va
ria

nc
e

ex
pl

ai
ne

d
(%

)

Ti
m

e
to

 h
al

f v
ar

ex
p

(s
)

Ey
e

M
ou

th

W
hi

sk
er

s

N
os

e

Fig. 1 | Fast and accurate mouse orofacial keypoint tracking. a, A total of
13 distinct keypoints selected for tracking the eye, mouth, whiskers and nose
on the mouse face, illustration created with BioRender.com. b, Architecture
of the Facemap network, a U-Net style convolutional neural network. c, The
error percentiles across test frames from a new mouse, where error is defined
as the Euclidean distance between the ground-truth label and the prediction.
d, Summary of Facemap performance on test data for different subgroups of
keypoints. Human error shown for a subset of the test frames labeled in two
different sessions by a human annotator. Error bars represent s.e.m., n = 400,
95, 361 and 300 keypoint labels for eye, mouth, nose and whiskers, respectively,

across 100 test frames. e, The average error, in pixels, and processing speed,
in video frames processed per second, of the Facemap tracker compared with
other pose estimation tools. Error bars represent s.e.m., n = 1,156 keypoint
labels. f–h, Traces of x and y coordinates of keypoints during different orofacial
behaviors. i, Prediction of keypoint traces into the future (test data). j, Variance
explained of future prediction at different time lags, summarized for each face
region. Error bars represent s.e.m., n = 16 recordings. k, Decay time to 50% of
variance explained at 20 ms timelag. The ‘x’ represents the average. Two-sided
Wilcoxon signed-rank test, ***P < 0.001 (eye versus whisker, P = 3.05 × 10−5; eye
versus nose, P = 3.05 × 10−5; whisker versus nose, P = 1.53 × 10−4).

http://www.nature.com/natureneuroscience

Nature Neuroscience | Volume 27 | January 2024 | 187–195 189

Technical Report https://doi.org/10.1038/s41593-023-01490-6

different angles. From this dataset of 16 mice and 53 video recordings
at different views, we manually annotated 2,500 frames (Extended Data
Fig. 1). We used 2,400 frames for training the network and set aside a
test set consisting of 100 frames from multiple views of a new mouse.

Unlike more general approaches, like DeepLabCut and SLEAP27,31,
we only require our tracker to perform well on specific keypoints
from the mouse face. Thus, we hypothesized that a minimal ‘U-Net’-style
neural network32 would be sufficient for the task while providing
faster tracking compared to the existing, bigger models (Supple-
mentary Table 1). Similar to DeepLabCut, which in turn is based on
DeeperCut33, the Facemap tracker takes as input an image and outputs
a set of downsampled probability heatmaps and location refinement
maps to predict the x and y coordinates for each keypoint (Fig. 1b). The
likelihood values of the model prediction were used to filter the traces
and remove outliers (Methods27). The Facemap tracker was imple-
mented from scratch using the neural network software PyTorch34,
which is a popular and easy-to-use alternative to the TensorFlow frame-
work35 used by DeepLabCut and SLEAP.

The keypoint error percentiles shown on an example test frame
demonstrate the accuracy of the tracking (Fig. 1c and Supplemen-
tary Video 1). To get an upper bound on the tracking performance,
we manually labeled test frames twice at different orientations and
compared the two sets of labels. We found that the tracker achieved
human-level performance (Fig. 1d). We compared our model with
current state-of-the-art tools for keypoint tracking, DeepLabCut and
SLEAP27,31,36,37. The Facemap tracker was more accurate than the other
well-performing network, DeepLabCut with the ResNet50 backbone,
both in average error (3.9 versus 4.4 pixels) and for individual keypoints
of the face (Fig. 1e and Extended Data Fig. 2a). Facemap also outper-
formed DeepLabCut with the Mobilenet backbone, SLEAP default
and SLEAP’s larger network (32 channels), which had average errors of
5.6, 5.0 and 5.7 pixels, respectively (Fig. 1e and Extended Data Fig. 2a).

To compare the speed of the networks for the purpose of online
tracking, we computed the processing speed using a batch size of 1
(Fig. 1e). All the networks can achieve higher speeds with larger batch
sizes, but only a batch size of 1 can be used for online processing of
keypoints for closed-loop experiments. The smaller size of the Facemap
tracker network provided a much faster processing speed of 327 Hz on
a V100 GPU compared to DeepLabCut’s ResNet50 network (150 Hz),
DeepLabCut’s Mobilenet network (211 Hz), SLEAP’s default network
(80 Hz) and SLEAP’s larger network (c = 32; 72 Hz). Across different

GPU types, Facemap consistently demonstrated the fastest processing
speed (Supplementary Table 2). We also benchmarked the processing
speed of the Facemap tracker at larger batch sizes and found that it
was as fast or faster than all other networks across GPUs except for the
Tesla T4 GPU, where DeepLabCut Mobilenet was the fastest (Extended
Data Fig. 2b). Therefore, Facemap is the fastest orofacial tracker with
state-of-the-art performance, which enables its use in closed-loop
experiments with high frame rates.

The keypoints tracked by Facemap captured recognizable oro-
facial behaviors, such as blinking (Fig. 1f), whisking (Fig. 1g) and sniff-
ing (Fig. 1h), in addition to other orofacial behaviors. In the neural
recordings, the camera view in Fig. 1c was used, so mouth keypoints
were not included in the analyses as they were not visible. Therefore,
for the rest of this study, we use the eye, whisker and nose keypoints to
characterize the aspects of behavior and neural activity. To start, we
investigated the timescales of the orofacial keypoints. To do this, we
built an autoregressive model to predict the position of each keypoint
in the future (prediction shown in Fig. 1i). The variance explained by
the model on test data decayed as a function of time into the future
(Fig. 1j). The predictability of the nose keypoints decayed fastest (~1 s),
followed by the whiskers (~3 s) and eye keypoints (~10 s; Fig. 1k). This
was surprising because whisking was the fastest behavior observed
in the videos (~10 Hz). However, these fast movements were pseudo-
random (Fig. 1g) and hard to predict, so they did not contribute
strongly to the predictability of the whisker keypoints.

Fine-tuning the Facemap tracker on new videos
We built the Facemap tracker to perform well on a variety of camera
angles and across different mice. While Facemap generalized well
on data from similar mice and camera configurations, the tracker
had variable performance on videos from other labs (Fig. 2a). We
investigated whether a fine-tuning strategy might improve the per-
formance of the tracker further on new data. We annotated a small
set of video frames contributed by other labs to fine-tune the neural
network individually for each lab. The fine-tuned network showed
a dramatic drop in error after training with just one frame. Training
with around ten frames led to near-optimal performance (Fig. 2b and
Supplementary Video 2). This fine-tuning procedure also worked for
face videos from freely-moving mice from another lab: with around
ten frames, successful tracking was achieved (Extended Data Fig. 3
and Supplementary Video 3)38.

a b c
Lab 1

Human
Facemap

Ba
se

 m
od

el
Re

fin
ed

 m
od

el
(n

 =
 10

)

Lab 2 Lab 3 Lab 4 Lab 5 Lab 1
Lab 2
Lab 3
Lab 4

Yes
Continue
training?

No

Save model

Train model

Refine keypoints

Set training parameters

Refinement workflow

Lab 5
Average

Number of refined frames

Av
er

ag
e

er
ro

r (
pi

xe
ls

)

0
1

2

5

10

20

10 20 30 40 50

Fig. 2 | Keypoint tracking on mice from other labs by fine-tuning the Facemap
tracker. a, Top, keypoint predictions using the Facemap tracker’s base model
(white circles) and human annotations (colored circles) on mice from new
experimental setups. Bottom, keypoint predictions from the fine-tuned model
trained with number of refined frames = 10. b, Performance of the Facemap
tracker measured by average error (pixels) on test frames, as a function of the
number of refined frames used for fine-tuning the base model (number of refined

frames = 0 is the base model), for each lab and average test error across labs
(black). There were n = 50 independent test frames per lab averaged, and error
bars represent s.e.m. Note that the test errors in this panel are slightly lower than
on the original training dataset (Fig. 1e), likely because the ground-truth labels
were refined from predictions of the model. c, A flowchart of the refinement
workflow implemented in our GUI.

http://www.nature.com/natureneuroscience

Nature Neuroscience | Volume 27 | January 2024 | 187–195 190

Technical Report https://doi.org/10.1038/s41593-023-01490-6

Given the quick improvement in the network performance after
fine-tuning, we reasoned this step is necessary for adapting Facemap’s
tracker to new data. Therefore, we implemented a ‘human-in-the-loop’
workflow to allow users to easily fine-tune Facemap for their
own datasets in our graphical user interface (GUI) for the keypoints
(Fig. 2c). In the first step, the existing Facemap network is used to
generate keypoint predictions. Next, the user refines the predicted
keypoints to generate new training labels for the network. Then, the
network is re-trained with the new labels to create a fine-tuned network.
The fine-tuned network is then applied to new frames and the user
can decide whether or not to repeat the retraining process depending
on the performance of the fine-tuned network. Once a well-performing
network is obtained, the fine-tuned network is saved in the GUI for
future use. This fine-tuning step was also used for our experiments in
the next section, where we combined keypoint tracking and large-scale
neural recordings.

A deep network model of neural activity
To determine how neural activity depends on orofacial behaviors,
we designed a neural network encoding model that can extract
deep features from the keypoint data or directly from the PCs of
the videos. Similar to deep encoding models in sensory neuroscience,
the model has a first linear step for applying spatiotemporal filters to the
time-varying keypoints (Fig. 3a,b), followed by several fully-connected
layers that process these features further into more abstract represen-
tations that can better predict the neural activity. This deep network
model was trained end-to-end to predict the activity of the top 128
PCs of neural data from either visual or sensorimotor cortices at the
temporal resolution of the imaging data (300 ms bins; Fig. 3c). The
neural activity was split into training and test data in blocks of around
10 min and 3.5 min, respectively, and the variance explained was
computed on the test data periods. We normalized the variance
explained by an approximate upper bound, estimated using peer predic-
tion, similar to ref. 14. Among multiple variations of the neural network
architecture, the model we chose (Fig. 3a) had the best performance
while using the fewest number of layers (Extended Data Fig. 4).

We found that neurons across visual and sensorimotor
cortices were well explained by behavior, with an average normal-
ized variance explained of 43.2% and 48.8%, respectively, from the
keypoint-based deep prediction model (Fig. 3d,e). This was computed
from the raw variance explained of 4.1% and 5.3% normalized by the
explainable variances of 9.4% and 11.1% for the visual and sensorimotor
areas, respectively, in bins of ~300 ms.

We compared the deep prediction model to a linear prediction
method and found improvements of 136% and 71.5% more explained
variance in visual and sensorimotor area, respectively (Fig. 3f). Next,
we tested the deep prediction model using as input the PCs of the
videos, rather than the keypoints. The deep prediction model again
outperformed the linear method with improvements of 102% and
46.2% in visual and sensorimotor area, respectively. The deep model
based on movie PCs outperformed the deep model based on keypoints
in visual areas (50.4% versus 43.2%) and in sensorimotor areas (54.8%
versus 48.8%) (Fig. 3f). This may be due to the much larger number of
inputs (500 movie PCs versus 22 keypoint coordinates). Users thus
have two options as follows: either use the more interpretable predic-
tion model based on a small number of keypoints or the slightly better
performing but less interpretable model based on movie PCs. We also
asked how the neural prediction varies with the number of neurons and
timepoints available for the model fitting (Fig. 3g,h). We found that
explained variance saturated at around 10,000 neurons, but did not
saturate with the number of timepoints even for our longest record-
ings of ~2 h. Thus, large-scale and longer recordings are necessary to
fit good encoding models.

Next, we investigated how the model explained variance changed
as a function of neural PC number (Fig. 3i). The largest neural PC

generally accounts for the overall arousal state of the mouse, while
the higher neural PCs may account for finer and more specific
behaviors such as whisking, sniffing and eye movements14. In senso-
rimotor areas, we found that the improvement in variance explained
by the neural network model was exclusive to the higher PCs, while
the first PC was explained nearly as well (15.1% versus 13.5% for non-
linear versus linear keypoint-based models). In contrast, the first PC
of the visual areas benefited substantially from nonlinear prediction
(8.1% versus 4.1%). Furthermore, the top PC corresponded to a smaller
fraction of the total explained variance in visual compared to senso-
rimotor areas (ratio = 0.22 and 0.37 of explained variance at 1 versus
64 neural PCs in Fig. 3i). Overall, these differences suggest that the
behavior-related neural activity in visual areas is higher-dimensional
and more nonlinear as a function of behavior compared to sensorimo-
tor areas. The differences cannot be explained by visual inputs, because
the recordings were performed in complete darkness with measured
lux values of 0.00 in the visible spectrum (for comparison, we obtained
7.8 lux with monitors on and 84.4 lux with the microscope doors open;
see also Extended Data Fig. 5).

The nonlinear, deep network model predicted the fine structure of
neural activity, capturing small events across small groups of neurons
better than the linear model (Fig. 4a and Extended Data Fig. 6). We
investigated the spatial distribution of these subgroups of neurons
by clustering the neurons with k-means into 100 clusters, a number
that was sufficient to achieve a high correlation of each neuron with
its cluster center (Extended Data Fig. 7a and Fig. 4b,c). Some clusters
were spatially spread throughout the recording area, while others
were more localized (Fig. 4c and Extended Data Fig. 7b,c). We defined
a spatial locality index for each cluster (Methods). In general, the
clusters best predicted by the behavior had the lowest locality index
(Fig. 4d,e). Thus, behaviorally-correlated clusters are more spatially
distributed across cortex, consistent with the hypothesis that many
of these behavioral signals are broadcast across the brain.

State dynamics extracted from deep behavioral features
The last hidden layer in the deep network model, the ‘deep behavioral
features’, contains a representation of behavior that is not directly
available in the raw keypoints. To understand the nature of these repre-
sentations, we characterized their dynamical properties using HMMs.
Various types of HMMs have been previously fit to raw behavioral data,
often from freely-moving animals21,39–42. Here we chose to use discrete
HMMs, which can model the data as a succession of discrete states43,44.
Transitions between states are probabilistic with probabilities defined
by the transition matrix. In addition, each state is assigned a fixed
‘emission’ pattern of activations across all features. The transition
matrix and emission patterns are parameters that are fit to each
session individually.

We start by visualizing the HMMs that were fit to an individual ses-
sion using 50 states, which were sufficient to reach a high log-likelihood
on test trials (Extended Data Fig. 8a). The 256 deep behavioral fea-
tures from one session were first sorted using one-dimensional t-SNE,
such that features with similar activation patterns are near each other
in the plot (Fig. 5a)45. The most probable states can then be inferred
(Fig. 5b), and their emission patterns can be used to reconstruct the orig-
inal data matrix (Fig. 5c). The reconstruction assures us that the HMM
captures a majority of the data variance. We also visualized instances
of the same state and observed they were consistent and in some cases
human-interpretable (Supplementary Videos 4). The HMM states
were also separately sorted using Rastermap46, so that forward transi-
tions—from a lower to a higher state in the sorting—are maximized in
the sorting (Fig. 5d). Due to this sorting, state dynamics appear to be
arranged in ordered, increasing sequences (Fig. 5b). This asymmetry
in state transitions was not apparent at the level of the keypoints them-
selves (Fig. 5e and Extended Data Fig. 8b–d); despite being sorted with
the same Rastermap algorithm, states inferred directly from keypoints

http://www.nature.com/natureneuroscience

Nature Neuroscience | Volume 27 | January 2024 | 187–195 191

Technical Report https://doi.org/10.1038/s41593-023-01490-6

had relatively symmetric transition probabilities. To further validate
the quality of the HMM, we used it to generate new synthetic data
(Fig. 5f,g). Samples from the model had the same overall appearance as
the original data. Thus, transition probabilities captured in the HMM
can generate the same kind of behavioral sequences as are present in
the data itself.

Next, we quantified some of the HMM properties directly. The
duration of a state in the model is given by the self-transition probability
(which was left out from the visualizations in Fig. 5d,e). Self-transitions
p near 1, imply a long-lasting state, with an exponential distribution
of state durations. The mean of this distribution is defined as the ‘state
lifetime’, and can be easily computed as −log(1 − p). The distribution
of state lifetimes was broad (Fig. 5h), with lifetimes ranging from
0.2 to 10 s. The model fit to behavioral states had longer lifetimes than
the model fit directly to the keypoints, and both had much longer
lifetimes than a control model fit to temporally-shuffled data. For the
rest of our analyses, we will ignore self-transition probabilities and will
focus on the transition probabilities between states. Operationally, we
set self-transitions to 0 in the transition matrix and normalize the
outgoing transitions to a sum of 1 (like in Fig. 5d,e).

Another property of the HMM is the sparsity of transitions between
states. It is apparent in Fig. 5d that the transition matrix is quite sparse,
with most values near-zero and a few large values. In other words, HMM
states tend to transition to only a few other potential states. To quantify
this property, we computed for each state the probability to transi-
tion to its n-nearest states, where near states are defined as the ones
with the highest probability of transition. As n increases, the summed
transition probability approaches its maximum of 1 quickly for small
n and much more slowly after. This shows that the HMM has a sparse
structure, dominated by a few large transitions. In contrast, models
inferred from the keypoints had more dense transitions (approached
1 more slowly). Both types of models had sparser transitions than the
control model that was fit to appropriately-shuffled data (Methods).

To quantify the asymmetry of the HMM transitions, we performed
a series of analyses directly on the transition matrix (Fig. 5j). For each
pair of states with high transition probability, we asked how likely
other transitions are. We analyzed reverse transitions (Fig. 5k), two-
step forward transitions (Fig. 5l) and two-step backward transitions
(Fig. 5m). We found that these types of transitions were generally
more likely than chance. However, reverse transitions were less likely in

Keypoints

= ReLU

Sensorimotor

Visual

5 s5 s

Conv filters Deep behavioral
features

Neural PCs
Prediction r = 0.95

r = 0.89

r = 0.90

r = 0.87

r = 0.83

r = 0.82

r = 0.84

r = 0.74

r = 0.09

1

2

3
4
5

6

7

8

128

a g

h

i

b

d

c f

e

Linear
0

10

20

25

0

1 s

Convolution filters
t = 0

50

75

30

40

50

60

70
*** ***

Net Linear
Keypoints

N
or

m
al

iz
ed

 v
ar

ia
nc

e
ex

pl
ai

ne
d

(%
; t

es
t d

at
a)

C
um

ul
at

iv
e

va
ria

nc
e

ex
pl

ai
ne

d
(%

; t
es

t d
at

a)
N

or
m

al
iz

ed
 v

ar
ia

nc
e

ex
pl

ai
ne

d
(%

; t
es

t d
at

a)
N

or
m

al
iz

ed
 v

ar
ia

nc
e

ex
pl

ai
ne

d
(%

; t
es

t d
at

a)

N
orm

alized variance
explained (%

; test data)

Movie PCs
Neural PCs Neural PCsNet

1
0

20

40

0

20

40

4 16 64 1 4 16 64

Timepoints (min) Timepoints (min)

Visual Sensorimotor

Visual
Sensorimotor

Visual Sensorimotor

Visual Sensorimotor

50

Neurons Neurons
102

20

30

40

50

30

40

50
Movie PCs
Keypoints

Network
Linear

60

103 104 102 103 104

–20

0

20

40

0

20

40

100 50 100

A

P
M L

Fig. 3 | High-accuracy prediction of neural activity using keypoints.
a, Architecture of five-layer neural network for predicting neural activity.
b, The resulting temporal convolution filters in layer 2 of the model for an
example recording. c, Neural recording locations overlaid on the atlas from the
Allen Institute for Brain Science (http://atlas.brain-map.org/). d, Neurons from
an example recording in visual cortex colored by the percentage of normalized
variance explained by the deep keypoint model on test data. e, Same as d for
a recording in sensorimotor cortex. f, Percentage of normalized variance
explained by movie PCs and keypoints, averaged across neurons for each

recording. Thick lines denote average across recordings, error bars represent
s.e.m., n = 16 recordings. Two-sided Wilcoxon signed-rank test, ***P < 0.001
for visual areas (P = 3.05 × 10−5) and for sensorimotor areas (P = 3.05 × 10−5).
g, Same as f as a function of the number of neurons, averaged across recordings
from visual (left) and sensorimotor (right) areas. h, Same as g, for the number
of timepoints in the training data. i, Cumulative variance explained across
neural PCs from the keypoints and movie PC predictions. Mean computed across
n = 16 recordings in 12 mice, error bars represent s.e.m.

http://www.nature.com/natureneuroscience
http://atlas.brain-map.org/

Nature Neuroscience | Volume 27 | January 2024 | 187–195 192

Technical Report https://doi.org/10.1038/s41593-023-01490-6

the deep feature HMM compared to the keypoint HMM, corresponding
to the more asymmetrical nature of the former model (Fig. 5d versus
Fig. 5e). While two-step forward transitions were matched between
the two models, the two-step backward transitions were at baseline
levels for the deep feature HMM, but not for the keypoint HMM. The net
effect of the asymmetry in state transitions was that the deep feature
HMM produced longer, uninterrupted forward sequences of states.
We quantified this property from the inferred states, measuring the
length of all increasing state sequences (Fig. 5n). The distribution of
forward sequence lengths was much more long-tailed for the deep
feature HMM, compared to controls and to the keypoint HMM (Fig. 5n).
Combined with the already longer state durations (Fig. 5h), this shows
that the deep behavioral features have longer, uninterrupted runs of
stereotypical dynamics. This may imply that the HMM states inferred
from deep behavioral features correspond to more abstract aspects of
behavior, which may be ignoring some specific low-level properties of
the keypoints such as the phases of the whisking, sniffing or running
cycles. Furthermore, the asymmetrical transitions may correspond
to a much longer cycle of behavior dictated by transitions between
passive to active states and back. More work will be needed to fully
make this link, perhaps using more sophisticated HMMs such as
switching linear dynamical systems21.

Relation between deep behavioral dynamics and neural
dynamics
To directly compare the behavioral HMM to the neural data, we
visualized the activity of the neural populations tuned to different
HMM states. We define a ‘trial’ as uninterrupted timepoints of the
same state, and the response of a neuron on that trial as its average
activity over those timepoints. Across states, we observed a range of
approximately 50–300 trials per state (Extended Data Fig. 9j). We then
used training trials to select the neurons with the highest activity on
each state. For many of the states, we obtained neural populations
highly selective to that state (see Fig. 5o for a subset of states and
Extended Data Fig. 9i for all 50 states). We observed populations with
either brief or long-lasting activity, which mirrored the diversity of
behavioral state durations. We note that the existence of these neu-
ral populations does not follow directly from the fitting procedure
of the deep features; while the deep features were indeed trained
to predict neural activity, we allowed arbitrary weight combinations
of these features to predict single neurons as opposed to relat-
ing single neurons to discretized behavioral states as we do in this
section. Other aspects of these neural populations could be investi-
gated further, for example, by engaging these neural populations in a
behavioral task and comparing their activity with the deep behavioral

0.25

0
0 2

Locality index

r = –0.68

r = –0.64

4

0 2

Locality index

Visual clusters

Sensorimotor clusters

Example clustersActivity in visual neurons (test data)a

b

c

d

e

Network prediction

Linear prediction

Example neural activity clusters
r = 0.84
r = 0.88
r = 0.89
r = 0.86
r = 0.91
r = 0.85
r = 0.86

Network prediction

C
or

re
la

tio
n

(te
st

 d
at

a)
C

or
re

la
tio

n
(te

st
 d

at
a)

4

0.50

0.75

1.00

0.25

0

0.50

0.75

1.00

5 s

5,
00

0
ne

ur
on

s

Fig. 4 | The deep network model predicts fine features of neural activity.
a, Top, neurons from a visual (posterior, dorsal cortex) recording during
spontaneous behavior. Each row represents averaged activity of 25 neurons,
sorted using Rastermap46. The time period is during a held-out test period.
Middle, predicted neural activity from the deep network model fit using
keypoints in Fig. 3a. Bottom, predicted neural activity using linear prediction
from the keypoints. b, Example neural activity clusters, same time period as a.

c, Spatial locations of neurons from five example clusters from a recording in
sensorimotor cortex. d, The locality index of each sensorimotor cluster across
recordings, defined by the KL divergence between its spatial distribution and
the distribution of all the neurons, plotted against the correlation of the cluster
activity with its prediction from the deep network model. The colored circles
correspond to the clusters in d. e, Same as d, for visual clusters.

http://www.nature.com/natureneuroscience

Nature Neuroscience | Volume 27 | January 2024 | 187–195 193

Technical Report https://doi.org/10.1038/s41593-023-01490-6

features they represent. However, that is beyond the scope of the
present study.

We have so far used HMMs to study changes in dynamical proper
ties which are a consequence of the deterministic transformation
from keypoints to deep behavioral features. We can also compare

the dynamical properties of deep behavioral features to those of the
neural data itself. To do this, we first clustered the recordings
of ~50,000 neurons into 256 clusters (chosen to match the number
of deep behavioral features) using k-means and fit the HMMs to the
mean cluster activities. The neural HMM had relatively shorter state

High probability

Panel k

Panel m

Panel I

a
0

100

200

0

100

200

Fe
at

ur
es

0

100

200
Fe

at
ur

es

Fe
at

ur
es

St
at

es

50

25

b

c

j

d eTransitions
(deep features)Deep keypoint features

Inferred states

St
at

es

Tr
an

s.
 p

ro
b.

 (c
um

ul
at

iv
e)

50

25

Simulated states

States (to)5 s

States (sorted)

Transition sparsity

0

0.1

1

10

50

Nearest states
1

0.25

0.50

0.75

1.00

10

40

30

20

10

0

40

30

20
0.2

0.1

0

10

0

St
at

es
 (f

ro
m

)

Li
fe

tim
e

(s
)

Simulated featuresReconstructed features

Transition structure

Pr
ob

ab
ili

ty

0.15

0.10

0.05

0
Data

0

–1.5 0 1.5

2 4 6

Time from
state onset

(s)

Z score
(avg)

Tr
ia

ls
 (t

es
t)

Control Data Control Data Control
Length of sequence

Forward sequencesTwo-state back trans.Two-state forward trans.Reverse transitions

5 10 15

Baseline
Baseline Baseline

Pr
ob

ab
ili

ty

0.04

0.06

0.02

0

Pr
ob

ab
ili

ty

Fr
eq

ue
nc

y

0.04

0.06

0.02

0

10–3

10–1

Neural populations tuned to states

Transitions
(keypoints) State lifetime

Deep feat.
Keypoints
Control

Deep feat.
Keypoints
Control

f

g

l

h

i

nmk

o

Fig. 5 | The deep behavioral features have highly-structured dynamics.
a, Example dynamics of deep behavioral features computed by the neural network
in Fig. 3a. The features have been sorted along the y axis using a one-dimensional
t-SNE embedding45. b, Inferred states using an HMM. c, Reconstructed features
using the inferred states on a test trial. d, State transition matrix of the HMM.
Self-transitions were set to 0 and the rows were renormalized to 1. States have
been sorted to maximize the sum of transition probabilities above the diagonal,
using the Rastermap algorithm46. e, Same as d for HMMs fit directly to the
keypoint data. f, Simulated states using the HMM fit to the deep behavioral
features. g, Simulated features from the HMM. h, Distribution of inferred state
lifetimes using the self-transition probabilities of the HMM, averaged across
n = 5 recordings from five mice, and error bars represent s.e.m. See Methods for
description of controls for all panels. i, Probability of transitions to n-nearest
states as a function of n. The average is taken over all initial states, and the line

represents the average across n = 5 recordings from five mice. j, Schematic
for k–m. For each pair of states with a high transition probability, certain
other transition probabilities are reported. Each dot represents transitions
from a different animal, averaged across all high-probability pairs. k, Average
probability of reverse transitions. Baseline is computed as the average transition
probability across all state transitions. l, Probability of two-state transitions.
m, Probability of two-state backward transitions. n, Distribution of ‘forward’
sequence lengths, where the forward direction is defined as higher indices in the
Rastermap sorting of states from d, averaged across n = 5 recordings from five
mice, and error bars represent s.e.m. o, Neural populations tuned to 19 selected
states (of 50 total). The top 300 most selective neurons were chosen on train
trials, and their average on test trials is shown. Vertical lines indicate trial onsets,
while the second jagged line indicates trial offsets.

http://www.nature.com/natureneuroscience

Nature Neuroscience | Volume 27 | January 2024 | 187–195 194

Technical Report https://doi.org/10.1038/s41593-023-01490-6

durations and more dense state transitions (Extended Data Fig. 9a–d),
but similarly asymmetric transition probabilities to the deep behav-
ioral HMM (Extended Data Fig. 9e–h). Visualizing the neural data and
the inferred neural HMM states (Extended Data Fig. 8e–g), we can see
that neural activity contains some shorter states with faster transitions
compared to the deep behavioral features (Fig. 5a,b). We conclude
that the deep behavioral features especially capture longer-duration
states in the neural data and may be missing information about the
shorter-duration states.

Discussion
Here we described Facemap, a framework that relates orofacial track-
ing to neural activity using new modeling tools. The framework is
composed of two parts as follows: (1) an orofacial keypoint tracker
for extracting eye, whisker, nose and mouth movements, and (2) a
neural network encoding model that extracts spatiotemporal fea-
tures of behavior that are most related to the neural activity. We have
shown that the orofacial tracker is highly accurate while being sub-
stantially faster than other keypoint tracking approaches, and we
showed that it can be easily trained on new orofacial videos from other
experimental setups than our own. These keypoints capture the impor-
tant aspects of the behavior with many fewer variables (22) than the
number of pixels in a frame (~100,000). Despite this dramatic dimen-
sionality reduction, the keypoints contain substantial information
about the behavior to predict neural activity very accurately.

We used the new Facemap framework to make a few initial obser-
vations. We found that the eye keypoints had predictable dynamics
on much longer timescales (10 s) compared to the dynamics of the
nose keypoints (1 s), while the whisker dynamics were somewhere
in-between. Across both visual and sensorimotor areas, clusters that
were spread out over the brain were the ones best predicted from
behavior. We also found that visual cortex has higher-dimensional and
more nonlinear representations of behavior compared to sensorimotor
cortex, a surprising result that merits further investigation.

We also found that the deep behavioral features extracted by
the network model contained a much more orderly representation
of behavior compared to the raw keypoints. Using an HMM, we found
that the deep behavioral features were organized into relatively
longer-lasting states, from less than a second to several seconds,
which transitioned into other states in a predictable manner, form-
ing sequences of states that repeated many times over the course
of a session. These asymmetric state sequences were not found in
the raw keypoints and had substantially longer durations in the deep
behavioral features compared to the neural activity. The differences
arise because the deep features represent specifically those aspects
of the behavior that best predict the neural data. There are important
aspects of behavior that may not be relevant for this prediction, such
as the phases of the whisking, sniffing or running cycles, and there are
aspects of the neural activity that may not be predictable at all. When
those are factored out, an orderly representation emerges in the deep
behavioral features.

These initial analyses are just the start of using Facemap to extract
insights about neural activity patterns and the structure of behav-
ior itself. We developed the method alongside a user-friendly GUI so
that others can easily adapt it to their own data, and use it flexibly
in their own studies. To track fast orofacial movements such as whisker
movements, we note that reasonable resolution of the face will likely
be required (at least 200 pixels) and a frame rate of at least 50 Hz.
Many labs already have video cameras capturing the face of the mouse
with sufficient resolution and frame rate and could, therefore, per-
form orofacial tracking during such experiments47,48. Furthermore,
with head-mounted cameras38, orofacial tracking can be incorpo-
rated into freely-moving behavioral contexts, to enable observation of
the fine movements that rodents make as they explore their environ-
ment or engage in social interactions39,49–53. We believe Facemap is

one of the important steps toward unlocking the fundamental mystery
of brain-wide neural activity—what is its function and where is it com-
ing from—and we look forward to seeing it used to make progress on
these questions.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41593-023-01490-6.

References
1.	 Ringach, D. L. Spontaneous and driven cortical activity: implica

tions for computation. Curr. Opin. Neurobiol. 19, 439–444
(2009).

2.	 Avitan, L. & Stringer, C. Not so spontaneous: multi-dimensional
representations of behaviors and context in sensory areas.
Neuron 110, 3064–3075 (2022).

3.	 Niell, C. M. & Stryker, M. P. Modulation of visual responses by
behavioral state in mouse visual cortex. Neuron 65, 472–479
(2010).

4.	 Erisken, S. et al. Effects of locomotion extend throughout the
mouse early visual system. Curr. Biol. 24, 2899–2907 (2014).

5.	 Williamson, R. S., Hancock, K. E., Shinn-Cunningham, B. G. &
Polley, D. B. Locomotion and task demands differentially
modulate thalamic audiovisual processing during active search.
Curr. Biol. 25, 1885–1891 (2015).

6.	 Vinck, M., Batista-Brito, R., Knoblich, U. & Cardin, J. A. Arousal
and locomotion make distinct contributions to cortical activity
patterns and visual encoding. Neuron 86, 740–754 (2015).

7.	 Clancy, K. B., Orsolic, I. & Mrsic-Flogel, T. D.
Locomotion-dependent remapping of distributed cortical
networks. Nat. Neurosci. 22, 778–786 (2019).

8.	 Guitchounts, G., Masís, J., Wolff, S. B. E. & Cox, D. Encoding of 3D
head orienting movements in the primary visual cortex. Neuron
108, 512–525 (2020).

9.	 Bouvier, G., Senzai, Y. & Scanziani, M. Head movements control
the activity of primary visual cortex in a luminance-dependent
manner. Neuron 108, 500–511 (2020).

10.	 Pietri, T. et al. The emergence of the spatial structure of tectal
spontaneous activity is independent of visual inputs. Cell Rep. 19,
939–948 (2017).

11.	 Fujiwara, T., Cruz, T., Bohnslav, J. P. & Chiappe, M. E. A faithful
internal representation of walking movements in the Drosophila
visual system. Nat. Neurosci. 20, 72–81 (2017).

12.	 Strother, J. A. et al. Behavioral state modulates the on visual
motion pathway of drosophila. Proc. Natl Acad. Sci. USA 115,
E102–E111 (2018).

13.	 Zolin, A. et al. Context-dependent representations of movement
in Drosophila dopaminergic reinforcement pathways.
Nat. Neurosci. 24, 1555–1566 (2021).

14.	 Stringer, C. et al. Spontaneous behaviors drive multidimensional,
brainwide activity. Science 364, eaav7893 (2019).

15.	 Gründemann, J. et al. Amygdala ensembles encode behavioral
states. Science 364, eaav8736 (2019).

16.	 Lanore, F., Cayco-Gajic, N. A., Gurnani, H., Coyle, D. & Silver, R. A.
Cerebellar granule cell axons support high-dimensional
representations. Nat. Neurosci. 24, 1142–1150 (2021).

17.	 Benisty, H., et al. Rapid fluctuations in functional connectivity
of cortical networks encode spontaneous behavior. Preprint at
bioRxiv https://doi.org/10.1101/2021.08.15.456390 (2021).

18.	 Salkoff, D. B., Zagha, E., McCarthy, E. & McCormick, D. A.
Movement and performance explain widespread cortical activity
in a visual detection task. Cereb. Cortex 30, 421–437 (2019).

http://www.nature.com/natureneuroscience
https://doi.org/10.1038/s41593-023-01490-6
https://doi.org/10.1101/2021.08.15.456390

Nature Neuroscience | Volume 27 | January 2024 | 187–195 195

Technical Report https://doi.org/10.1038/s41593-023-01490-6

19.	 Engelhard, B. et al. Specialized coding of sensory, motor and
cognitive variables in VTA dopamine neurons. Nature 570,
509–513 (2019).

20.	 Musall, S., Kaufman, M. T., Juavinett, A. L., Gluf, S. &
Churchland, A. K. Single-trial neural dynamics are dominated by
richly varied movements. Nat. Neurosci. 22, 1677–1686 (2019).

21.	 Batty, E. et al. BehaveNet: nonlinear embedding and Bayesian
neural decoding of behavioral videos. In Advances in Neural
Information Processing Systems 32 (2019).

22.	 Whiteway, M. R. et al. Partitioning variability in animal behavioral
videos using semi-supervised variational autoencoders.
PLoS Comput. Biol. 17, e1009439 (2021).

23.	 Voigts, J., Sakmann, B. & Celikel, T. Unsupervised whisker tracking
in unrestrained behaving animals. J. Neurophysiol. 100, 504–515
(2008).

24.	 Clack, N. G. et al. Automated tracking of whiskers in videos of
head fixed rodents. PLoS Comput. Biol. 8, e1002591 (2012).

25.	 Petersen, R. S., Colins Rodriguez, A., Evans, M. H., Campagner,
D. & Loft, M. S. E. A system for tracking whisker kinematics and
whisker shape in three dimensions. PLoS Comput. Biol. 16,
e1007402 (2020).

26.	 Staab, M. et al. What moves when mice move a single whisker to
touch? Individuality and stereotypy in behavior. Preprint at bioRxiv
https://doi.org/10.1101/2022.10.03.510596 (2022).

27.	 Mathis, A. et al. DeepLabCut: markerless pose estimation of
user-defined body parts with deep learning. Nat. Neurosci. 21,
1281–1289 (2018).

28.	 Graving, J. M. et al. Deepposekit, a software toolkit for fast and robust
animal pose estimation using deep learning. eLife 8, e47994 (2019).

29.	 Kane, G. A., Lopes, Gonçalo, Saunders, J. L., Mathis, A. &
Mathis, M. W. Real-time, low-latency closed-loop feedback
using markerless posture tracking. eLife 9, e61909 (2020).

30.	 Bala, P. C. et al. Automated markerless pose estimation in freely
moving macaques with OpenMonkeyStudio. Nat. Commun. 11,
4560 (2020).

31.	 Pereira, T. D. et al. Sleap: a deep learning system for multi-animal
pose tracking. Nat. Methods 19, 486–495 (2022).

32.	 Ronneberger, O., Fischer, P. & Brox, T. U-Net: convolutional
networks for biomedical image segmentation. Preprint at arXiv
https://doi.org/10.48550/arXiv.1505.04597 (2015).

33.	 Leibe, B., Matas, J., Sebe, N. & Welling, M. (eds.). Deepercut: a
deeper, stronger, and faster multi-person pose estimation model.
Proceedings of European Conference on Computer Vision
pp. 34–50 (Springer, Cham, 2016).

34.	 Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L. & Desmaison, A. "Pytorch:
An imperative style, high-performance deep learning library."
Advances in neural information processing systems 32 (2019).

35.	 Abadi, M. et. al. Tensorflow: large-scale machine learning on
heterogeneous distributed systems. Preprint at arXiv https://doi.
org/10.48550/arXiv.1603.04467 (2016).

36.	 Nath, T., Mathis, A., Chen, A.C., Patel, A., Bethge, M. & Mathis,
M.W. Using DeepLabCut for 3D markerless pose estimation across
species and behaviors. Nat. Protoc. 14, 2152–2176 (2019).

37.	 Mathis, A., Biasi, T., Schneider, S., Yuksekgonul, M., Rogers, B.,
Bethge, M. & Mathis, M.W. Pretraining boosts out-of-domain
robustness for pose estimation. Proceedings of 2021 IEEE Winter
Conference on Applications of Computer Vision (WACV) pp.
1859–1868 (IEEE, 2021).

38.	 Meyer, A. F., Poort, J., O’Keefe, J., Sahani, M. & Linden, J. F.
A head-mounted camera system integrates detailed behavioral
monitoring with multichannel electrophysiology in freely moving
mice. Neuron 100, 46–60 (2018).

39.	 Wiltschko, A. B. et al. Mapping sub-second structure in mouse
behavior. Neuron 88, 1121–1135 (2015).

40.	 Buchanan, E. K. et al. Quantifying the behavioral dynamics of
C. elegans with autoregressive hidden Markov models. Workshop
on Worm’s Neural Information Processing at the 31st Conference
on Neural Information Processing Systems (NIPS, 2017).

41.	 Calhoun, A. J., Pillow, J. W. & Murthy, M. Unsupervised
identification of the internal states that shape natural behavior.
Nat. Neurosci. 22, 2040–2049 (2019).

42.	 Zhang, L., Dunn, T., Marshall, J., Olveczky, B. & Linderman, S.
Animal pose estimation from video data with a hierarchical von
Mises-Fisher-Gaussian model. Proceedings of 24th International
Conference on Artificial Intelligence and Statistics Vol. 130,
pp. 2800–2808 (PMLR, 2021).

43.	 Baum, L. E. & Petrie, T. Statistical inference for probabilistic
functions of finite state Markov chains. Ann. Math. Stat. 37,
1554–1563 (1966).

44.	 Bishop, C. M. Pattern Recognition and Machine Learning Vol. 4
(Springer, 2006).

45.	 Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE.
J. Mach. Learn. Res. 9, 2579–2605 (2008).

46.	 Stringer, C. et al. Rastermap: a discovery method for neural
population recordings. Preprint at bioRxiv https://doi.org/
10.1101/2023.07.25.550571 (2023).

47.	 Dolensek, N., Gehrlach, D. A., Klein, A. S. & Gogolla, N. Facial
expressions of emotion states and their neuronal correlates in
mice. Science 368, 89–94 (2020).

48.	 Aguillon-Rodriguez, V. et al. Standardized and reproducible
measurement of decision-making in mice. eLife 10, e63711
(2021).

49.	 Robie, A. A., Seagraves, K. M., Egnor, S. E. R. & Branson, K.
Machine vision methods for analyzing social interactions. J. Exp.
Biol. 220, 25–34 (2017).

50.	 Segalin, C. et al. The mouse action recognition system (MARS)
software pipeline for automated analysis of social behaviors in
mice. eLife 10, e63720 (2021).

51.	 Lauer, J. et al. Multi-animal pose estimation, identification and
tracking with DeepLabCut. Nat. Methods 19, 496–504 (2022).

52.	 Hsu, A. I. & Yttri, E. A. B-SOiD, an open-source unsupervised
algorithm for identification and fast prediction of behaviors.
Nat. Commun. 12, 5188 (2021).

53.	 Marshall, J. D. et al. Continuous whole-body 3D kinematic
recordings across the rodent behavioral repertoire. Neuron 109,
420–437 (2021).

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2023

http://www.nature.com/natureneuroscience
https://doi.org/10.1101/2022.10.03.510596
https://doi.org/10.48550/arXiv.1505.04597
https://doi.org/10.48550/arXiv.1603.04467
https://doi.org/10.48550/arXiv.1603.04467
https://doi.org/10.1101/2023.07.25.550571
https://doi.org/10.1101/2023.07.25.550571
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-023-01490-6

Methods
All experimental procedures were conducted according to IACUC
and received ethical approval from the IACUC board at HHMI
Janelia Research Campus. The Facemap code library is implemented in
Python 3 (ref. 54), using pytorch, numpy, scipy, numba, tqdm, opencv
and pandas34,55–59. The GUI additionally uses PyQt and pyqtgraph60,61.
The figures were made using matplotlib and jupyter-notebook62,63.

Data acquisition
Animals. We performed 16 recordings in 12 mice bred to express
GCaMP6s in excitatory neurons: TetO-GCaMP6s x Emx1-IRES-Cre mice
(available as RRID:IMSR_JAX:024742 and RRID:IMSR_JAX:005628).
These mice were male and female and ranged from 2 to 12 months
of age. Mice were housed in reverse light cycle and were pair-housed
with their siblings before and after surgery. Due to the stability
of the cranial window surgery, we often use the same mice for multiple
experiments in the lab; five of the seven visual area mice were
used in a previous study64, and the other two visual mice and all
of the sensorimotor mice were trained on behavioral tasks after
the recordings.

Surgical procedures. Surgeries were performed in adult mice
(P35–P125) following procedures outlined in ref. 64. In brief, mice
were anesthetized with isoflurane, while a craniotomy was performed.
Marcaine (no more than 8 mg kg−1) was injected subcutaneously
beneath the incision area, and warmed fluids + 5% dextrose and
buprenorphine 0.1 mg kg−1 (systemic analgesic) were administered
subcutaneously along with dexamethasone 2 mg kg−1 via intramuscular
route. For the visual cortical windows, measurements were taken to
determine bregma–lambda distance and location of a 4 mm circular
window over V1 cortex, as far lateral and caudal as possible without
compromising the stability of the implant. A 4 + 5 mm double window
was placed into the craniotomy so that the 4 mm window replaced the
previously removed bone piece and the 5 mm window lay over the edge
of the bone. The sensorimotor window was also a double window and
it was placed as medial and frontal as possible. The outer window was
7 mm × 4.5 mm and the inner window was around 1 mm smaller in all
dimensions. After surgery, Ketoprofen 5 mg kg−1 was administered
subcutaneously and the animal was allowed to recover on heat. The
mice were monitored for pain or distress, and ketoprofen 5 mg kg−1
was administered for 2 days following surgery.

Videography. The camera setup was similar to the setup in ref. 14. A
Thorlabs M850L3 (850 nm) infrared LED was pointed at the face of the
mouse to enable infrared video acquisition in darkness. The videos were
acquired at 50 Hz using FLIR cameras with a zoom lens and an infrared
filter (850 nm and 50 nm cutoff). The camera acquisition software was
BIAS (https://github.com/janelia-idf/bias). The wavelength of 850 nm
was chosen to avoid the 970 nm wavelength of the two-photon laser
while remaining outside the visual detection range of the mice65,66.

The entire setup was enclosed in a large black box to prevent light
from the room from entering the microscope light path and from
entering the mouse’s eye. We turned off the infrared LEDs and then
estimated the amount of visible non-infrared light entering the mouse’s
eye during recording by using an FLIR Extech LT300 Light Meter. We
positioned the Light Meter where the mouse’s head is during recording.
We found that when the enclosure was closed, as in our experimental
conditions, the illuminance measurement was 0.00 lux. When we
kept the enclosure closed but turned on the monitors to show visual
stimuli (as in ref. 64), the illuminance measurement was 7.80 lux. We
captured the face of the mouse with our camera in these two settings,
with the infrared filter removed from the camera (Extended Data
Fig. 5). For comparison, the illuminance of the enclosure area when
it was open, coming from overhead lighting in the room, was much
greater at 84.4 lux.

Imaging acquisition. We used a custom-built two-photon mesoscope67
to record neural activity, and ScanImage68 for data acquisition. We used
a custom online Z-correction module (now in ScanImage) to correct for
z and x-y drift online during the recording. As described in ref. 64, we
used an upgrade of the mesoscope that allowed us to approximately
double the number of recorded neurons using temporal multiplexing69.

The mice were free to run on an air-floating ball. Mice were accli-
matized to running on the ball for several sessions before imaging.
On the first day of recording, the field of view was selected such that
large numbers of neurons could be observed, with clear calcium
transients.

Processing of calcium imaging data. Calcium imaging data were
processed using the Suite2p toolbox70 (available at www.github.com/
MouseLand/suite2p), which relies on the packages numpy, scipy,
numba, scanimage-tiff-reader, paramiko and scikit-learn57,71–74. Suite2p
performs motion correction, ROI detection, cell classification, neuro-
pil correction and spike deconvolution as described elsewhere14. For
non-negative deconvolution, we used a timescale of decay of 1.25 s
(refs. 75,76). We obtained 50,614 ± 13,919 (s.d., n = 10 recordings)
neurons in the visual area recordings, and 33,686 ± 4,465 neurons
(n = 6 recordings) in the sensorimotor area recordings.

Facemap tracker network
Model architecture. The Facemap tracker network is a U-Net-style con-
volutional neural network consisting of downsampling and upsampling
blocks with skip connections implemented in pytorch34. The model’s
input is a grayscale 256 × 256 pixels image, which is passed through a
set of convolutional filters of different sizes, as shown in Fig. 1b. The
network has two sets of outputs as follows: (1) heatmaps represent the
probability of a keypoint in the pixel region and (2) location refinement
maps represent the x and y offsets between the keypoint position in
full-sized image and the downsampled map, similar to refs. 27,33. The
downsampled (64 × 64 pixels) heatmaps and location refinement maps
are used to obtain the x and y coordinates of keypoints, and example
traces are shown in Fig. 1f.

The tracker predicted 15 distinct keypoints in total for tracking
mouse orofacial movements from different views (Fig. 1a and Extended
Data Fig. 1). The keypoints were used to track various movements of
the eye (4), nose (5), whiskers (3), mouth (2) and an additional keypoint
for the paw. The forepaw occasionally entered the view, such as during
grooming, but we found this keypoint difficult to track and use in fur-
ther analyses, so we did not consider it further. We also labeled a fifth
nose keypoint (nose bridge, not shown in Fig. 1a and Extended Data
Fig. 1), but found that it was difficult to identify across different camera
angles and, therefore, excluded it from the analyses in the article. The
videos taken during neural recordings were from the view in Fig. 1c.
In this view, the mouth keypoints were not visible, so those keypoints
were not used in the model for neural prediction. Thus, we used four
eye keypoints, four nose keypoints and three whisker keypoints for
neural prediction.

Training. The Facemap tracker was trained on 2,400 images recorded
from multiple mice and different camera views (Extended Data Fig. 1).
Training images of size 256 × 256 pixels were labeled with all the key-
points, except when a bodypart was not visible in the frame, then no
label was added. The model was trained for 36 epochs with the Adam
optimizer using a batch size of 8 and weight decay of zero77. We used a
custom learning rate (LR) scheduler that used a fixed LR of 0.0004 for
30 epochs followed by 1

10
LR for the next three epochs and finally 1

25
LR

for the final three epochs. Each image was normalized such that 0.0
represented the first percentile and 1.0 represented the 99th percentile.
Image augmentations performed during training were random crop,
resize after padding to maintain aspect ratio, horizontal flip and con-
trast augmentation.

http://www.nature.com/natureneuroscience
https://github.com/janelia-idf/bias
http://www.github.com/MouseLand/suite2p
http://www.github.com/MouseLand/suite2p

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-023-01490-6

Performance evaluation. The accuracy of the tracker was evaluated
using the average pixel error for 100 test frames of size 256 × 256 pixels
from a new mouse and different camera views. First, the Euclidean
distance in pixels between the ground-truth labels and the
predicted keypoints was computed. Next, the average error was
computed as the average of the Euclidean distances across all frames
(Extended Data Fig. 2a) and all keypoints (Fig. 1e).

The processing speed of the tracker was calculated to evaluate
its utility for offline and online analyses. Therefore, the processing
speed calculation accounted for the timing of various steps as fol-
lows: (1) image preprocessing, (2) forward pass through the model and
(3) postprocessing steps. All processing speeds are reported for a
sample image of size 256 × 256 pixels passed through the network for
1,024 repetitions and a total of ten runs using various batch sizes on
different GPUs (Supplementary Table 2).

Filtering keypoint traces for neural prediction. Occasionally, key-
points are occluded, such as during grooming. Therefore, like Deep-
LabCut, we found the timepoints when the tracker network confidence
was low, and replaced those timepoints in the keypoint traces by a
median-filtered value. The network confidence, or likelihood, is defined
as the value of the peak of the heatmap output. The likelihood traces
for each keypoint were baseline filtered in time with a Gaussian filter of
s.d. of 4 s, then the threshold of the likelihood was defined as negative
eight times the s.d. of the baselined likelihood, and any values below
this threshold were considered outliers. This identified on average
0.19% of timepoints across all keypoint traces as outliers.

After excluding outliers based on likelihood, we also directly
identified outlier timepoints using the keypoint traces, by detecting
large movements or deviations from baseline. If a keypoint moved
more than 25 pixels from the previous timepoint to the current time-
point, then the current timepoint was considered an outlier. Also if the
keypoint trace on the current timepoint exceeded its median-filtered
(window = 1 s) value by more than 25 pixels, then the current timepoint
was considered an outlier. This identified on average an additional
0.066% timepoints across all keypoint traces as outliers.

To obtain values for the outlier timepoints, we median-filtered
the keypoint traces with a window of 300 ms, excluding the outlier
timepoints. Linear interpolation from the median-filtered traces was
then used to fill in the values at the outlier timepoints.

Pose estimation model comparisons
We compared the performance of the Facemap tracker to other
state-of-the-art tools used for pose estimation, including SLEAP31
and DeepLabCut27,36. The models were trained on the same train-
ing set used for Facemap. In addition, the same protocol for speed
benchmarking was used to obtain the processing speed of the other
models.

DeepLabCut models training. DeepLabCut’s models used for com-
parison included two different architectures as follows: ResNet50
(default model) and Mobilenet_v2_0.35 (fastest model). Augmentations
used during training were scaling, rotation and contrast augmentation,
similar to training of the Facemap tracker. A hyperparameter search was
performed to find optimal training parameters for each model using
different batch sizes (1, 2, 4 and 8) and LRs (0.0001, 0.001 and 0.01).
Models with the lowest average test error for each architecture were
compared to Facemap in Fig. 1e and Extended Data Fig. 2.

Processing speeds for DeepLabCut’s models were obtained
using a similar approach as Facemap tracker. We timed DeepLabCut’s
getposeNP function for 1,024 repetitions for a total of ten runs for
different batch sizes and GPUs. The getposeNP function timing
included a forward pass through the network and postprocessing
steps to obtain keypoints locations from the heatmaps and location
refinement maps.

SLEAP models training. The default U-Net backbone was used for
SLEAP’s models, which included the following two different values
of initial number of filters: (1) c = 16 (default) and (2) c = 32 to vary the
network size and potentially improve accuracy. A hyperparameter
search over different LRs (0.0001, 0.001 and 0.01), batch sizes (1, 2, 4
and 8) and number of epochs (100 and 150) was performed to find the
best model for each U-Net configuration. Furthermore, early stopping
by stopping training on plateau was used for half of the models to
prevent overfitting. Default augmentation settings were used for most
models and mirroring (horizontal flip) was added to some models to
match the training of the other networks used for comparison. Similar
to DeepLabCut, the best models were selected based on the lowest
average test error for the default and c = 32 models and used in Fig. 1e
and Extended Data Fig. 2.

The processing speed for SLEAP’s models was calculated by timing
their predict_on_batch function. The U-Net models with different
numbers of initial filters were run for 1,024 repetitions for a total of ten
runs using different batch sizes of our sample image input.

Facemap tracker refinement
We developed a method for fine-tuning the Facemap tracker for new
data that differed from our training data. Facemap tracker’s base model
is defined as the network trained on our dataset (Fig. 1). We extracted
frames from videos contributed by five other labs to use as training
data for fine-tuning the base model specifically to each lab’s video. We
executed the following steps for each lab’s video. First, the base model
was used to generate predictions for 50 random frames. Keypoints
on the 50 training frames were refined to correct keypoints with large
deviations from their defined bodyparts or remove keypoints not in
view. The percentage of keypoints refined across 50 frames were 99.51%
for lab 1, 100% for lab 2, 99.79% for lab 3, 100% for lab 4 and 98.32% for
lab 5. Therefore, most of the keypoints across all frames were refined
for fine-tuning the model and benchmarking the fine-tuned model.

Next, the base model was fine-tuned with varying numbers of
training frames ranging from 1 to 50. The network was trained for 36
epochs with an initial LR of 0.0001 with annealing as described earlier
and a weight decay of 0.001. Additionally, we trained a model from
scratch, that is a network initialized with random weights, using ten
training frames for comparison. To compute the errors for the base
model, the fine-tuned model and the scratch model, we used 50 test
frames and labeled them from scratch to use as a test set. We then
computed the average error in pixels from the test set labels to the
model predictions (Fig. 2b). The models trained from scratch with ten
frames had an average error of 3.76 ± 0.39 pixels across labs, compared
to 2.43 ± 0.24 pixels for the base model fine-tuned with ten frames.
Predictions from the base, scratch and fine-tuned models for a random
section of the video are shown in Supplementary Video 2 for each lab.
The workflow used for the analysis was integrated into the GUI so users
can easily fine-tune the Facemap tracker with video recordings that
differ from our training data (Fig. 2c).

Autoregressive model for prediction of keypoints
We built an autoregressive model to determine how far into the future
we could predict each keypoint, as a measure of its timescale. The key-
point traces were split into ten segments in time. The first 75% of each
segment was assigned to the training set, and then after 2.6 s which
were excluded, the remaining part of the segment was assigned to
the test set. Linear regression was performed with exponential decay
basis functions, with decay timescales from 40 ms to 5 s. All keypoint
traces were input to the basis functions, then combined linearly to
predict each future timepoint predicted. We fit the regression model
on training timepoints separately for each future timepoint, for time-
points 20 ms to 10 s in intervals of 20 ms and for 10 s to 40 s in intervals
of 500 ms. Then we estimated performance on test timepoints at each
future timepoint delay using variance explained. We estimated the

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-023-01490-6

timescale of the keypoint trace as the future timepoint at which the vari-
ance explained was half the variance explained at a time delay of 20 ms.

Behavior to neural prediction
The activity of each neuron was z-scored: the activity was subtracted
by the mean and divided by the s.d. To predict the neural activity from
behavior, we reduced the dimensionality of the z-scored activity using
singular value decomposition (SVD) and keeping 128 components,
obtaining U, S and V matrices of size (neurons by 128; 128; timepoints
by 128, respectively). We then predicted the neural PCs, which we
defined here as the product of V and S, calling this Y = VS. After obtain-
ing a prediction of the neural PCs ̂Y , we projected the prediction into
the neural activity space using U, so that the predicted neural activity
was defined as U ̂Y

⊤
. If fewer than 200 neurons were predicted, then

we directly predicted the neurons rather than using the PCs. When
predicting more neurons, we found that predicting the neural
PCs performed and/or outperformed direct neural prediction.

The neural activity was split into ten segments in time. The first
75% of each segment was assigned to the training set, and then after 3 s
which were excluded, the remaining part of the segment was assigned
to the test set. The training and test sets were made to consist of con-
tinuous segments to avoid contamination of the test set with the train
set due to the autocorrelation timescale of behavior, with lengths on
average of 10 and 3.5 min, respectively.

We quantified the performance of a neural prediction model using
the variance explained. The single neuron variance explained for a
neural trace for neuron i (⃗s i) is defined as

VEi = 1 −
(⃗s

test
i − ⃗s predi)

⊤
(⃗s

test
i − ⃗s predi)

var (⃗s
test
i)

, (1)

which is the s.d. for variance explained.

Peer prediction analysis. Neurons have independent noise that
models cannot explain. Therefore, an upper bound for the variance
that a model can explain is lower than the total variance of neural
activity. To estimate the amount of this explainable variance in the neural
recordings, we used the ‘peer prediction’ method14,78,79. Peer prediction
analysis predicts each neuron from the other simultaneously-recorded
cells (the neuron’s ‘peers’). The amount of variance that the peer predic-
tion model explains is an estimate of the repeatable shared variance
across neurons, we term this variance the explainable variance.

To compute peer prediction, we split the population into two
spatially segregated populations, dividing the field of view into
nonoverlapping strips of width 200 μm and assigning the neurons in
the even strips to one group, and the neurons in the odd strips to the
other group, regardless of the neuron’s depth. Next, we computed
the top 128 PCs of each population and predicted one population’s
PCs from the other population’s PCs using RRR fit to training data
with λ = 1 × 10−1 and rank = 127. The variance explained by this model
on test data (Eq. (1)) is termed the explainable variance for each
neuron. The average explainable variance was 9.4% in the visual record-
ings and 11.1% in the sensorimotor recordings at the recording frame
rate of 3 Hz.

Prediction performance quantification. We computed the variance
explained for a given behavioral prediction model for each neuron on
test data (Eq. (1)). The average single neuron variance explained, in
300 ms bins, by the deep network model using keypoints was 4.1% in
the visual areas and 5.3% in the sensorimotor areas, and using movie
PCs was 4.8% and 5.3%, respectively. We then normalized the variance
explained by the upper bound on its variance explained, the explainable
variance, as computed from peer prediction. We quantified the normal-
ized variance explained on a per-neuron basis in Fig. 3d,e, taking the

variance explained for each neuron and dividing it by its explainable
variance, and visualizing only the neurons with an explainable variance
greater than 1 × 10−3. For population-level variance explained quanti-
fication, the normalized variance explained was defined as the mean
variance explained across all neurons divided by the mean explainable
variance across all neurons (Fig. 3f–i and Extended Data Fig. 4).

We also computed the cumulative variance explained across
neural PCs (⃗y i), defined as

VEi,cumulative =

∑i
k=0 var(y⃗

test
k)−(y⃗

test
k −y⃗

pred
k)

⊤
(y⃗

test
k −y⃗

pred
k)

∑128
k=0 var(y⃗

test
k)

in Fig. 3i. This quantity allows the estimation of the dimensionality of
the behavioral prediction.

Linear neural prediction using PCs of videos or keypoints. The
mouse videos were reduced in dimensionality using SVD in blocks as
described in ref. 14. The movie PCs were computed from the raw movie
frames, and the top 500 PCs were used. Because the neural activity
was recorded at a lower frame rate, the behavioral PCs were smoothed
with a Gaussian filter of width 100 ms and then resampled at the neural
timescale. We subtracted each behavioral PC by its mean and divided
all PCs by the s.d. of the top behavioral PC.

A linear model called reduced rank regression (RRR) was used to
predict neural PCs (Y) from the behavioral PCs or the corrected key-
point traces (X). RRR is a form of regularized linear regression, with
the prediction weights matrix restricted to a specific rank80, reducing
the number of parameters and making it more robust to overfitting.
The RRR model is defined as

Y = XBA⊤

Like in ridge regression, the identity matrix times a λ constant can be
added to the input covariance X for regularization. We set λ = 1 × 10−6.
Training data were then used to fit the A and B coefficients in closed
form; a rank of 128 was used for predicting from the movie PCs and a
rank of 21 was used for predicting from the keypoints.

Neural prediction using a deep network. A multilayer network model
was fit to predict neural activity from the movie PCs or the corrected
keypoint traces using pytorch34 (Fig. 3a). The deep network model
consisted of a core module and a readout module. The core module
consisted of a fully-connected layer with the same dimensionality as the
number of keypoints, a one-dimensional convolutional layer with ten
filters (temporal convolution), a ReLU nonlinearity, two fully-connected
layers with ReLU nonlinearities, the first with dimensionality of 50 and
the second with dimensionality of 256. The 256-dimensional output of
the core module is termed the ‘deep behavioral features’ of the model.
The readout module of the network was one fully-connected layer,
with a dimensionality of size 128 when predicting the neural PCs, or
size equal to the number of neurons when predicting single neuron
activity (when the number of neurons predicted was less than 200).
The deep behavioral features, before entering the readout module,
were subsampled at the timepoints coincident with the neural activity
frames, because the videos were recorded at 50 Hz, while the neural
activity was recorded at 3 Hz.

The deep network model was fit on the training data using the
optimizer AdamW with LR of 1 × 10−1, weight decay of 1 × 10−4 and 300
epochs81, and the LR was annealed by a factor of 10 at both epochs 200
and 250. When fewer than 2,000 neurons were fit, the LR and weight
decay were reduced by a factor of 10 to reduce overfitting. When fewer
than 1 h of training timepoints were used, the LR and weight decay were
reduced by a factor of 2, and the number of epochs was reduced by 100

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-023-01490-6

to reduce overfitting. Each training batch consisted of a single training
segment, with an average of length 10 min, and there were ten batches
per recording. The model was then applied to the test segments to
compute variance explained.

We varied various parameters of the network to approximately
determine the best network architecture for neural prediction
(Extended Data Fig. 4). We varied the number of units in the last
layer of the core module, the ‘deep behavioral features’, from 1 to
1,024 (Extended Data Fig. 4a), and the number of convolution filters
(Extended Data Fig. 4e). We varied the number of fully-connected layers
with ReLU nonlinearities in the core module, each with dimensional-
ity of 50 other than the last layer which was fixed at 256 dimensions
(Extended Data Fig. 4b). We also varied the number of fully-connected
layers in the readout module, with each layer having 128 dimensions
and a ReLU nonlinearity, other than the last layer which had no output
nonlinearity (Extended Data Fig. 4c). Next, from the original archi-
tecture described above, we removed components, such as the first
fully-connected layer and some of the ReLU nonlinearities (Extended
Data Fig. 4d).

Scaling of performance with neurons and timepoints. In Fig. 3g–i,
we quantified the prediction performance as a function of the number
of neurons and timepoints. For this analysis, we predicted using either
a fraction of the neurons or a fraction of the training timepoints, while
always keeping the test timepoints fixed. The variance explained was
computed for each neuron, averaged across all neurons in the subset
and then normalized by the explainable variance averaged over the
neurons in the subset.

Neural activity clustering and sorting
We identified groups of coactive neurons using scaled k-means cluster-
ing70. Compared to regular k-means, scaled k-means fits an additional
variable λi for each neuron i such that

⃗x i = λiμσi + noise

where ⃗x i is the activity vector of neuron i, σi is the cluster assigned to
neuron i and μj is the activity of cluster j. Like regular k-means, this
model is optimized by iteratively assigning each neuron to the cluster
that best explains its activity, and then re-estimating cluster means.
We ran scaled k-means clustering with 100 clusters on z-scored neural
activity. Example clusters are shown in Fig. 4c and Extended Data
Fig. 6. The activity of the neurons in each cluster was averaged to
obtain a cluster activity trace (Fig. 4b). To obtain the cluster prediction
from the deep behavioral model, we averaged the prediction of
each neuron in the cluster (shown in gray in Fig. 4b), and then correlated
this prediction with the cluster activity trace to obtain an r value for
each cluster.

To quantify how spread out each cluster is in the recording field
of view, we computed a locality index for each cluster. We defined the
locality index as the Kullback–Leibler (KL) divergence between the clus-
ter’s discretized spatial distribution in the recording field of view and
the discretized spatial distribution of all neurons, using a discretization
of 200 μm. We then correlated the locality index with the correlation
of each cluster with its prediction (Fig. 4d,e).

Fitting a discrete HMM
We fit a hidden Markov model (HMM) to the deep behavioral features
{zt}t, where t is a time-step for temporal features that were downsam-
pled ten times from 50 Hz to 5 Hz43. We also fit the same models to the
keypoint data. All fitting procedures were the same, except for the
choice of the variance term, which depends on the number of features
(30 for the 11 keypoints from the Facemap tracker and 256 for the deep
behavioral features) in the way described below. The HMM state dynam-
ics are given by

Prob(h0 = i) = bi

Prob(ht+1 = i|ht = j) = Aji

∑
i
bi = 1

∑
i
Aji = 1

where bi represents the probability of starting the Markov chain in state i,
while Aji represents the probability of transition from state j to state i.
In all experiments, we chose the number of states to be 50, and we
saw similar results with fewer (10) or more (200) states. Because our
goal is to understand the pattern of dynamics of the deep behavioral
features, we did not attempt to infer the ‘optimal’ number of states
and do not believe the data lends itself easily to such an estimation.

In addition to state dynamics, an HMM has an ‘observation’ or
‘emission’ model, which declares the probability of observing some
data sample zt for each possible state ht:

Prob(zt|ht = i) = 𝒩𝒩𝒩zt|Ci,σ)

where Ci and σ are the mean and s.d. of the Gaussian observation
model, respectively. This completes the model specification. We
optimized this model in Pytorch using an improved, nonstandard
optimization scheme, which routinely optimized the model better
compared to alternative optimization methods such as expectation
maximization.

Our optimization scheme consists of (1) optimizing the
model log-likelihood directly as a function of its parameters using
the automated differentiation from pytorch and (2) using initializa-
tions and reparametrizations of the HMM parameters that improve
stability.

The log-likelihood of the HMM can be computed based on the
forward pass of the ‘forward-backward’ algorithm. Following the con-
vention of ref. 44, we define α(ht) = Prob(z1, z2, …, zt, ht). We can then
define recursion equations for computing

α(ht) = Prob(zt|ht)∑
zt−1

α(zt−1)Prob(zt|zt−1) (2)

The full log-likelihood of the data can then be computed based on
α(hT), where T is the last timepoint, by observing that

∑
i
α(hT = i) = ∑

i
Prob(z1,… , zT,hT = i)

= Prob(z1,… , zT)

Because the dependence of αt+1 on αt can be written in closed form,
we can see that it is differentiable. After taking the logarithm and replac-
ing the probabilities with the model equations, Eq. (2) becomes

αi(t) = − ∥ zt − Ci∥
2/σ2 − 0.5nσ + C + log(∑

j
exp(αj(t − 1))Aji) (3)

where αi(t) = log(α(ht = i)) , C is a constant and n is the number of
dimensions of the data. This formulation allows us to use the automatic
differentiation from pytorch to optimize the HMM model directly,
without inferring states first like in the expectation maximization
method. Additionally, we note that we used the ‘logsumexp’ function
from pytorch to compute the second half of Eq. (3), which has the
advantage of being stable to exponentiation.

We re-parametrized the transition matrix A with a ‘log-transition’
matrix Q by

Aji = exp(Qji)/∑
i′
exp(Qji′).

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-023-01490-6

This has the advantage of removing the constraint of positiv-
ity of Aji and the constraint of summing to 1 of the rows of A. We
initialized the log-transition matrix with Qii = 3 and Qij = 0 when i ≠ j,
and we initialized the parameters Ci of the observation model with
random samples from the data. For setting σ, we made the choice
of freezing it to a fixed value for each dataset. This was because of
the dependence of the log-likelihood on the number of observation
dimensions n in Eq. (3). Because n is quite different between the key-
points and the deep behavioral features, the relative contribution of
the observation term to the likelihood would be different if we set or
learned σ to be the same in the two cases, potentially biasing the model
to rely more or less on the internal hidden states ht. Instead, we fix σ2 to
be proportional to the summed variance of zt, and we set it to 1 for the
deep behavioral features, and 30/256 for the keypoints model. This
ensures an approximately equal weighting of the observation term into
the likelihood model. We note that the properties of the fitted HMM
were not substantially different when σ2 was set to the same value for the
keypoints and deep behavioral features, but the quality of the samples
simulated from the HMM degraded if σ2 was too low.

Properties of the discrete HMM
The inferred states were determined with the Viterbi algorithm,
which finds the most likely hidden states. We simulated states by
drawing initial states from the categorical distribution with para
meters bi, and then running the forward dynamics and drawing states
from the conditional distributions Prob(ht+1 = i∣ht = j) = Aji.

State lifetimes were defined as − log(1 − Aii), and they correspond
to the mean durations of staying in state i. To compute transition
sparsity and other metrics, we set self-transitions Aii = 0 and renormali
zed the rows. Formally, we defined a transition matrix Bji = Aji/∑i′≠jAji′
when j ≠ i and Bii = 0. This is the matrix shown in Fig. 5d,e used for
the analyses in Fig. 5i–n. The states were sorted using the Rastermap
algorithm on the matrix B46. Specifically, this involves maximizing
the similarity of the reordered transition matrix to the matrix given by
Fji = −log((i − j)2) when j < i and 0 otherwise. Thus, the model attempts
to put the highest probabilities close to the diagonal, and specifically
above the diagonal, because they do not count if they are below
the diagonal. For more details, see the rastermap repository at
github.com/MouseLand/rastermap.

The transition sparsity was computed by sorting the rows of
the matrix B in descending order, and computing a cumulative sum
over each row. ‘Near’ states were defined as the five states i with the
highest probability Aji for a given j. Reverse transitions were computed
for each state based on its near states. Similarly, we computed the
two-state forward and backward transitions. Forward sequences were
computed based on the most likely inferred states, by counting the
number of increasing sequences of each length. Note this depends on
the initial Rastermap sorting of states to define a meaningful order.

Statistics and reproducibility
No statistical method was used to predetermine sample size, but our
sample sizes are similar to those reported in previous publications14,16,17.
We performed Wilcoxon signed-rank tests, which do not require the
data to be normal. No data were excluded from the analyses. There were
no experimental groups so there was no randomization necessary. Data
collection and analysis were not performed blind to the conditions of
the experiments.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data generated in this study is available on figshare: https://doi.
org/10.25378/janelia.23712957.

Code availability
Facemap was used to perform all analyses in the paper, the code and
GUI are available at https://www.github.com/mouseland/facemap,
including video and code-based guides for using the software.
Scripts for running the analyses in the paper are available at
https://github.com/MouseLand/facemap/tree/main/paper.

References
54.	 Van Rossum, G. Python Reference Manual (CWI, 1995).
55.	 Harris, C. R. et al. Array programming with NumPy. Nature 585,

357–362 (2020).
56.	 Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific

computing in Python. Nat. Methods 17, 261–272 (2020).
57.	 Lam, S. K., Pitrou, A. & Seibert, S. Numba: a LLVM-based Python

JIT compiler. Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC pp. 1–6 (ACM, 2015).

58.	 Da Costa-Luis, C. et al. tqdm: a fast, extensible progress meter
for Python and CLI. Zenodo. zenodo.org/records/6412640
(2022).

59.	 Bradski, G. The OpenCV library. DDJ 120, 122–125 (2000).
60.	 PyQT. Pyqt reference guide. www.bibsonomy.org/bibtex/2803cea

968d0f5243a205d35520563074/maxirichter (2012).
61.	 Campagnola, L. et al. pyqtgraph/pyqtgraph. GitHub. github.com/

pyqtgraph/pyqtgraph (2023).
62.	 Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci.

Eng. 9, 90–95 (2007).
63.	 Kluyver, T. et al. Jupyter Notebooks-a publishing format for

reproducible computational workflows. Elpub https://doi.org/
10.3233/978-1-61499-649-1-87 (2016).

64.	 Stringer, C., Michaelos, M., Tsyboulski, D., Lindo, S. E. &
Pachitariu, M. High-precision coding in visual cortex. Cell 184,
2767–2778 (2021).

65.	 Joesch, M. & Meister, M. A neuronal circuit for colour vision based
on rod–cone opponency. Nature 532, 236–239 (2016).

66.	 Nikbakht, N. & Diamond, M. E. Conserved visual capacity of rats
under red light. eLife 10, e66429 (2021).

67.	 Sofroniew, N. J., Flickinger, D., King, J. & Svoboda, K. A large field
of view two-photon mesoscope with subcellular resolution for
in vivo imaging. eLife 5, e14472 (2016).

68.	 Pologruto, T. A., Sabatini, B. L. & Svoboda, K. Scanimage: flexible
software for operating laser scanning microscopes. Biomed. Eng.
Online 2, 13 (2003).

69.	 Tsyboulski, D. et al. Remote focusing system for simultaneous
dual-plane mesoscopic multiphoton imaging. Preprint at bioRxiv
https://doi.org/10.1101/503052 (2018).

70.	 Pachitariu, M. et al. Suite2p: beyond 10,000 neurons with
standard two-photon microscopy. Preprint at bioRxiv https://doi.
org/10.1101/061507 (2017).

71.	 Van der Walt, S., Colbert, S. C. & Varoquaux, G. The NumPy array:
a structure for efficient numerical computation. Comput. Sci. Eng.
13, 22–30 (2011).

72.	 Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific
computing in Python. Nat. Methods 17, 261–272 (2020).

73.	 Clack, N. ScanImageTiffReaderPython. GitLab. gitlab.com/
vidriotech/scanimagetiffreader-python (2023).

74.	 Pedregosa, F. et al. Scikit-learn: machine learning in Python.
J. Mach. Learn. Res.12, 2825–2830 (2011).

75.	 Friedrich, J., Zhou, P. & Paninski, L. Fast online deconvolution of
calcium imaging data. PLoS Comput. Biol. 13, e1005423 (2017).

76.	 Pachitariu, M., Stringer, C. & Harris, K. D. Robustness of spike
deconvolution for neuronal calcium imaging. J. Neurosci. 38,
7976–7985 (2018).

77.	 Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization.
Preprint at arXiv https://doi.org/10.48550/arXiv.1412.6980
(2014).

http://www.nature.com/natureneuroscience
http://github.com/MouseLand/rastermap
https://doi.org/10.25378/janelia.23712957
https://doi.org/10.25378/janelia.23712957
https://www.github.com/mouseland/facemap
https://github.com/MouseLand/facemap/tree/main/paper
https://zenodo.org/records/6412640
https://www.bibsonomy.org/bibtex/2803cea968d0f5243a205d35520563074/maxirichter
https://www.bibsonomy.org/bibtex/2803cea968d0f5243a205d35520563074/maxirichter
http://github.com/pyqtgraph/pyqtgraph
http://github.com/pyqtgraph/pyqtgraph
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1101/503052
https://doi.org/10.1101/061507
https://doi.org/10.1101/061507
http://gitlab.com/vidriotech/scanimagetiffreader-python
http://gitlab.com/vidriotech/scanimagetiffreader-python
https://doi.org/10.48550/arXiv.1412.6980

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-023-01490-6

78.	 Harris, K. D., Csicsvari, J., Hirase, H., Dragoi, G. & Buzsáki, G. Organiza
tion of cell assemblies in the hippocampus. Nature 424, 552 (2003).

79.	 Pillow, J. W. et al. Spatio-temporal correlations and visual
signalling in a complete neuronal population. Nature 454,
995–999 (2008).

80.	 Izenman, A. J. Reduced-rank regression for the multivariate linear
model. J. Multivar. Anal. 5, 248–264 (1975).

81.	 Loshchilov, I. & Hutter, F. Decoupled weight decay regularization.
Preprint at arXiv https://doi.org/10.48550/arXiv.1711.05101 (2017).

Acknowledgements
This research and all authors were funded by the Howard Hughes
Medical Institute at the Janelia Research Campus. The funders had
no role in study design, data collection and analysis, decision to
publish or preparation of the manuscript. We thank the Vivarium staff
at Janelia for animal husbandry support, and we thank several others
at Janelia: S. Lindo and S. DiLisio for surgery support, M. Michaelos for
help with recordings, J. Arnold for designing head bars and coverslips,
D. Flickinger for microscopy support and T. Goulet for engineering
support. We thank A. Robie, M. Mayank Kabra and K. Branson at Janelia
for advice on keypoint tracking. We also thank the contributors of the
mouse face videos from other labs: A. Hoffmann in the Helmchen lab
at UZH, F. Cazettes in the Mainen lab at the Champalimaud, B. Price
in the Gavornik lab at BU, A. Laffere in the Lak lab at Oxford and
M. Campbell in the Uchida lab at Harvard, and J. Poort at Cambridge.

Author contributions
A.S., C.S. and M.P. designed the study and wrote the manuscript, with
input from all authors. A.S., C.S., M.P. and R.T. performed data analysis.
L.Z., M.P. and W.L. performed data collection.

Competing interests
The authors have no competing interests.

Additional information
Extended data is available for this paper at
https://doi.org/10.1038/s41593-023-01490-6.

Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s41593-023-01490-6.

Correspondence and requests for materials should be addressed to
Atika Syeda or Carsen Stringer.

Peer review information Nature Neuroscience thanks Eric Yttri and the
other, anonymous, reviewer(s) for their contribution to the peer review
of this work.

Reprints and permissions information is available at
www.nature.com/reprints.

http://www.nature.com/natureneuroscience
https://doi.org/10.48550/arXiv.1711.05101
https://doi.org/10.1038/s41593-023-01490-6
https://doi.org/10.1038/s41593-023-01490-6
http://www.nature.com/reprints

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-023-01490-6

Extended Data Fig. 1 | Mouse face keypoints from different camera views.
Keypoints labels and sample images shown from training and test set. a, Side view
recording of a mouse face showing eye, whiskers, nose and mouth keypoints.
b, Top view recording of mouse face in a showing eye, whiskers and nose

keypoints from a different view. c, Mouse face recordings from different camera
views for training samples and test samples (last column). A total of 2,400
training frames were used from mice shown in c and other mice (not shown), and
100 frames from different views of a new mouse used as the test set.

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-023-01490-6

Extended Data Fig. 2 | Per keypoint error and processing speed of networks
using various batch sizes. a, Error for each keypoint, averaged across 100 test
frames for each network plotted against the Facemap tracker errors. Points
above the diagonal indicate keypoints for which Facemap outperformed the
other networks. b, Processing speed of Facemap, DeepLabCut (ResNet50),

DeepLabCut (Mobilenet), SLEAP (default) and SLEAP (c = 32) models for a sample
image of size 256 × 256 pixels on A100 (48 slots, 40GB/slot), V100 (48 slots, 30GB/
slot), RTX 2080 Ti (40 slots, 18GB/slot), Tesla T4 (48, 15GB/slot) and Quadro RTX
8000 (40 slots, 18GB/slot). Processing speed averages shown for a total of 1,024
frames across n = 10 runs, and error bars represent SEM.

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-023-01490-6

Extended Data Fig. 3 | Performance of fine-tuned model on freely-moving
mice test frames and performance across subgroups of keypoints on
head-fixed mice data. a, Top: keypoint predictions using Facemap tracker’s
base model (white circles) and human annotations (colored circles) on freely-
moving mice face recorded from a head-mounted camera38. Bottom: keypoint
predictions from the fine-tuned model trained with 10 refined frames. Keypoints
labels shown for visible bodyparts only. b, Curve shows performance of the
Facemap tracker measured by average error (px) (mean ± s.e.m. across n = 50

test frames) as a function of the number of refined frames used for fine-tuning
the base model (number of refined frames = 0 is the base model), for each
video in a and average test error across videos (black). c, Average test error
across subgroups of keypoints after fine-tuning the base model with n = 10 and
n = 50 refined frames used for fine-tuning. Mean across n = 50 test frames, and
error bars represent s.e.m. The lab 5 tracking achieved the lowest overall error
primarily due to the lack of mouth keypoints in the camera view and the high
fidelity tracking of the nose.

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-023-01490-6

Extended Data Fig. 4 | Investigating the network prediction model
performance from keypoints. a–e, We varied different components of the
deep network model from keypoints and computed the normalized variance
explained across neurons, choosing the architecture denoted with the star. Pink
represents the average across visual recordings (n = 10 recordings, 7 mice), and
purple represents the average across sensorimotor recordings (n = 6 recordings,
5 mice). a, Varying the number of units in the deep behavioral features layer—
the last fully-connected layer before the output layer. Star denotes 256 units.
b, Varying the number of core layers—the layers before and including the

deep behavioral features layer, star denotes 2 layers. c, Varying the number of
readout layers—the layers after the deep behavioral features layer, star denotes
1 layer. d, The performance when removing the first linear layer in the network,
removing the ReLU non-linearity in the convolution layer, or removing the ReLU
non-linearity in the deep behavioral feature layer. e, Varying the number of one-
dimensional convolution filters, star denotes 10. f, Prediction from all keypoints
using network, or from all keypoints excluding each face region: eye, whisker and
nose. Error bars represent s.e.m.: in visual areas, n = 10 recordings in 7 mice; and
in sensorimotor areas, n = 6 recordings in 5 mice.

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-023-01490-6

Extended Data Fig. 5 | Frame from face videos in various light conditions. We
captured videos of the mouse face at various light levels while the infrared LED
was turned off and the infrared filter was removed from the camera. Left: the

enclosure was closed, but the visual stimulus monitors were on, illuminance of
7.80 lux (experimental setup as in ref. 64). Right: the enclosure was closed, and
the monitors were off, illuminance of 0.00 lux (experimental setup in this study).

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-023-01490-6

Extended Data Fig. 6 | Activity in an example sensorimotor recording.
a, Activity of the sensorimotor recording during a test period shown in Fig. 3e
and Fig. 4c, sorted by Rastermap, along with neural predictions from the deep

network model and the linear model from the keypoints. b, Example neural
activity clusters from the recording (purple), plotted with the prediction from
keypoints in gray.

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-023-01490-6

Extended Data Fig. 7 | Neural activity clusters from a visual and a
sensorimotor recording. a, Correlation of each neuron with its assigned cluster
center across time, averaged across all neurons per recording, as a function of
the number of cluster centers used in the clustering algorithm (n = 16 recordings
from 12 mice). b, The spatial locations of neurons from each neural activity

cluster from the recording shown in Fig. 3d and Fig. 4a,b. Blue indicates
neurons in the cluster, and gray indicates all other neurons. LI = locality index,
r = correlation with behavior prediction on test data. c, Same as b, for the neural
activity clusters from the sensorimotor recording shown in Fig. 3d, Fig. 4c and
Extended Data Fig. 6.

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-023-01490-6

Extended Data Fig. 8 | HMM modeling of deep features, keypoints and neural
activity. a–c, Test log-likelihood for HMM models trained on deep features
(a), keypoints (b) and neural activity clusters (c), as a function of the number of
hidden states in the HMM. Curves represent different mice. b, Top: visualization
of keypoint data (after z scoring). Bottom: inferred states by the HMM model.

c, Reconstructed keypoint data from the inferred HMM states. d, Top: simulated
keypoint data from the HMM. Bottom: simulated state dynamics. e–g, Same as
b–d but for modeling neural activity clusters. Each cluster represents the average
activity of 100–300 neurons.

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-023-01490-6

Extended Data Fig. 9 | Comparison of HMM models of deep features and
neural activity. a,b, Example transition matrices for HMM models with 50
states trained on the deep features (a) or the neural activity (b). c, Distribution
of state lifetimes, and error bars represent SEM. d, Transition matrix sparsity
quantified as cumulative transition probability from one state to all other states,

and error bars represent SEM. e–g, Reverse, 2-state forward and 2-state backward
transitions. h, Distribution of forward sequence lengths, and error bars represent
SEM. i, Neural population responses to all 50 states for the recording illustrated
in Fig. 5o. j, Number of trials per state for the recording illustrated in Fig. 5o.

http://www.nature.com/natureneuroscience

1

n
atu

re p
o

rtfo
lio

 | rep
o

rtin
g

 su
m

m
ary

A
p

ril 2
0

2
3

Corresponding author(s): Carsen Stringer

Last updated by author(s): 2023/09/11

Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Scanimage software v2022.1.0 (open source) was used to collect calcium imaging data from awake mice using a two-photon mesoscope

(Thorlabs 2PRAM microscope). BIAS software (open source, github version: https://github.com/janelia-idf/bias) and custom code were used

to collect mouse face videos.

Data analysis We processed all of the raw calcium imaging data using our suite2p package https://github.com/mouseland/suite2p (version 0.9.4). We

processed the mouse face videos using our Facemap software package, available at https://github.com/mouseland/facemap. The code for

running several of the analyses in the paper is available at https://github.com/MouseLand/facemap/tree/dev/paper/code.

We ran the code with python=3.8.13, pytorch=1.11.0, numpy=1.23.3, scipy=1.9.1, pyqt5=5.15.7, pyqtgraph=0.12.0, opencv-

pythonheadless=4.6.0.66, numba=0.56.2, tqdm=4.64.1 , pandas=1.5.0, and matplotlib=3.6.0.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

2

n
atu

re p
o

rtfo
lio

 | rep
o

rtin
g

 su
m

m
ary

A
p

ril 2
0

2
3

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets

- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All data generated by the current study is available on figshare, DOI: 10.25378/janelia.23712957

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender N/A

Reporting on race, ethnicity, or

other socially relevant

groupings

N/A

Population characteristics N/A

Recruitment N/A

Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We did not perform a sample-size calculation. We performed 16 neural recordings in 12 mice: 6 in sensorimotor cortical areas and 10 in visual

cortical areas. This is sufficiently many mice, comparable to other studies of spontaneous neural activity (see citations 14, 16, 17).

Data exclusions We did not exclude any data from the analyses.

Replication We have used standard mouse-lines available from JAX and processed the data with an automated algorithm to avoid any personal biases. We

used a standard commercial microscope (Thorlabs 2P-RAM microscope). We have also made all of the code available for analysis by others,

and will make the data available to the public upon publication.

Randomization Not relevant, there are no experimental groups.

Blinding Not relevant, there are no experimental groups.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

3

n
atu

re p
o

rtfo
lio

 | rep
o

rtin
g

 su
m

m
ary

A
p

ril 2
0

2
3

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in

Research

Laboratory animals TetO-GCaMP6s x Emx1-IRESCre mice (available as RRID:IMSR JAX:024742 and RRID:IMSR JAX:005628). These mice were male and

female, and ranged from 2 to 12 months of age.

Wild animals The study did not involve wild animals.

Reporting on sex All data was aggregated across sex. We did not perform sex-based analyses because our questions were not related to sex-based

differences in behavior or neural activity.

Field-collected samples The study did not involve field samples.

Ethics oversight All experimental procedures were conducted according to IACUC, ethics approval received from the IACUC board at HHMI Janelia

Research Campus.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

	Facemap: a framework for modeling neural activity based on orofacial tracking

	Results

	Fast and accurate tracker for mouse orofacial movements

	Fine-tuning the Facemap tracker on new videos

	A deep network model of neural activity

	State dynamics extracted from deep behavioral features

	Relation between deep behavioral dynamics and neural dynamics

	Discussion

	Online content

	Fig. 1 Fast and accurate mouse orofacial keypoint tracking.
	Fig. 2 Keypoint tracking on mice from other labs by fine-tuning the Facemap tracker.
	Fig. 3 High-accuracy prediction of neural activity using keypoints.
	Fig. 4 The deep network model predicts fine features of neural activity.
	Fig. 5 The deep behavioral features have highly-structured dynamics.
	Extended Data Fig. 1 Mouse face keypoints from different camera views.
	Extended Data Fig. 2 Per keypoint error and processing speed of networks using various batch sizes.
	Extended Data Fig. 3 Performance of fine-tuned model on freely-moving mice test frames and performance across subgroups of keypoints on head-fixed mice data.
	Extended Data Fig. 4 Investigating the network prediction model performance from keypoints.
	Extended Data Fig. 5 Frame from face videos in various light conditions.
	Extended Data Fig. 6 Activity in an example sensorimotor recording.
	Extended Data Fig. 7 Neural activity clusters from a visual and a sensorimotor recording.
	Extended Data Fig. 8 HMM modeling of deep features, keypoints and neural activity.
	Extended Data Fig. 9 Comparison of HMM models of deep features and neural activity.

