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Abstract

The postnatal mammalian heart undergoes remarkable developmental changes, which are 

stimulated by the transition from the intrauterine to extrauterine environment. With 

birth, increased oxygen levels promote metabolic, structural and biophysical maturation of 

cardiomyocytes, resulting in mature muscle with increased efficiency, contractility and electrical 

conduction. In this Topical Review article, we highlight key studies that inform our current 

understanding of human cardiomyocyte maturation. Collectively, these studies suggest that human 

atrial and ventricular myocytes evolve quickly within the first year but might not reach a fully 

mature adult phenotype until nearly the first decade of life. However, it is important to note that 

fetal, neonatal and paediatric cardiac physiology studies are hindered by a number of limitations, 

including the scarcity of human tissue, small sample size and a heavy reliance on diseased 

tissue samples, often without age-matched healthy controls. Future developmental studies are 

warranted to expand our understanding of normal cardiac physiology/pathophysiology and inform 

age-appropriate treatment strategies for cardiac disease.
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Abstract figure legend Conceptual image of postnatal cardiomyocyte maturation. Human heart 

development is associated with changes in ionic currents that mediate the cardiac action potential 

shape (red traces depict atrial and ventricular action potentials) and cardiomyocyte morphological 

characteristics that collectively influence cell-cell coupling, electrophysiology, metabolism, and 

contraction. Abbreviations: Adherens, adherens junction; Desmo, desmosome; GJ, gap junction; 

LTCC, L-type calcium channel; Myo, myofilament; NCX, sodium–calcium exchanger; RYR, 

ryanodine receptor; SR, sarcoplasmic reticulum. Action potentials are adapted with permission 

(Cohen & Lederer, 1993). Image created with Biorender.com
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Introduction

During postnatal life, the human heart contracts >2 billion times during the average lifespan. 

Through coordinated activity, the four distinct chambers of the heart work together to deliver 

oxygenated blood to the body and return deoxygenated blood to the lungs. The cellular 

composition of the human heart is both heterogeneous and dynamic, and this cellular 

landscape can change in response to normal development, ageing or disease (Grandi et al., 

2023; Litviňuková et al., 2020; Suryawanshi et al., 2020; Tucker et al., 2020). A variety 

of specialized cell types support heart function, including cardiomyocytes, which compose 

~20–40% of the total numberofcells and ~70–85%oftotaltissuevolumeowing to their large 

size (Bergmann et al., 2015; Litviňuková et al., 2020; Zhou & Pu, 2016). These excitable 

muscle cells conduct electrical signals and generate contractile force, which pumps blood 

into the circulatory system in a coordinated rhythmic fashion. Throughout fetal and postnatal 
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development, cardiomyocytes adjust to haemodynamic demands by changing their size, 

structural organization, metabolism and gene/protein expression profile. These adaptations 

coincide with a shift in the electrophysiology and contractile properties of the cells.

Despite their critical role in sustaining perinatal life, our current knowledge of human 

cardiomyocyte physiology and maturation is hindered by the scarcity of healthy heart 

tissue for biomedical research. Donated biospecimens have provided some insight into 

cardiomyocyte proliferation, growth and cell structure, but with modest temporal and spatial 

resolution. Moreover, atrial and ventricular cardiomyocytes are likely to have different 

maturation trajectories owing to the distinct electrophysiological and mechanical properties 

of the individual cardiac chambers (Rumyantsev, 1991). Furthermore, fixed tissue specimens 

provide minimal information on the physiology of living cells. As such, insight into the 

cardiomyocyte maturation process has largely been extrapolated from either mammalian 

models (Swift et al., 2020; Velayutham et al., 2020) or human pluripotent stem cell-derived 

cardiomyocytes (hPSC-CM; Lundy et al., 2013). Although facets of myocyte maturation 

remain conserved between species, there are significant differences in electrophysiology, 

calcium handling, contraction and relaxation that can hinder the translational applicability of 

these findings to humans (Kannan & Kwon, 2020; Milani-Nejad & Janssen, 2014; Noujaim 

et al., 2004). This is to be expected, because cardiovascular systems have evolved differently 

across species to adapt to unique physiological demands (West et al., 1997). For example, 

smaller animals have faster heart rates (e.g. mice ~600 beats min−1 at rest), which require 

rapid rates of contraction and relaxation to maintain cardiac output, in comparison to larger 

mammals ((e.g. 75 beats min−1) humans Bratincsák et al., 2020; Jann Hau, 2010; Janssen 

& Periasamy, 2007; Rudolph, 2009). These physiological differences are supported by both 

anatomical adaptations and underlying molecular mechanisms (Edwards & Louch, 2017; 

Milani-Nejad & Janssen, 2014; Odening et al., 2021; Ripplinger et al., 2022).

To bridge this gap, hPSC-CM have gained prominence because these cells have 

structural features and a gene/protein expression profile that is similar to primary human 

cardiomyocytes (Casini et al., 2017; Denning et al., 2016; Liang et al., 2013). Moreover, 

hPSC-CM can be used in the laboratory in large quantity, which is not possible with limited 

biospecimens that are collected from donated tissues or from patients undergoing corrective 

surgery. Nevertheless, hPSC-CM lack structural and phenotypical maturity and more closely 

resemble fetal than adult cardiomyocytes (Bedada et al., 2014; DeLaughter et al., 2016; 

Kannan & Kwon, 2020; Kannan et al., 2021; Lewandowski et al., 2018; van den Berg 

et al., 2015). Accordingly, tremendous efforts have been made to increase the maturity of 

hPSC-CM using biophysical and biochemical cues and to identify regulatory pathways that 

drive the maturation process (Murphy et al., 2021; Parikh et al., 2017; Ribeiro et al., 2015; 

Yang et al., 2019; Yoshida et al., 2018). Although animal models and hPSC-CM cannot 

serve as a replacement for human studies, they are an important resource for expanding our 

knowledge on postnatal cardiomyocyte maturation. In this article, we aim to highlight key 

studies that inform our current understanding of human cardiomyocyte maturation, which 

can help us to use animal or hPSC-CM models better, at appropriate developmental stages 

and with clear insight into their underlying developmental differences.
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Transition from hyperplasia to hypertrophy

At birth, the neonatal heart is roughly 1/10th its adult size, and continued heart growth 

(e.g. heart weight, ventricular wall thickness and ventricular cavity size) is correlated with 

advancing age and increasing body size (Scholz et al., 1988; St. John Sutton et al., 1982). 

At first, fetal cardiac growth is accomplished through hyperplasia (cells proliferate and 

divide into two daughter cells), then later in development, growth occurs by cardiomyocyte 

hypertrophy (cell size increases without a change in the total number of cells; Günthel 

et al., 2018; Tan & Lewandowski, 2020). The fetal myocardium experiences a 6.7-fold 

increase in the total number of cardiomyocyte nuclei between 16 and 42 weeks of gestation 

(Mayhew et al., 1997; Table 1). A hallmark of cardiomyocyte maturation is the transition 

from hyperplasia to hypertrophy. A few studies have found indications that this process 

begins in utero, supported by the presence of binucleated cardiomyocytes (Kim et al., 1992) 

and a reduction in proliferative activity (Huttenbach et al., 2001), although it appears that 

this transition occurs in earnest with the first few months after birth. To date, the exact 

timing of this event is unknown and differs slightly between experimental studies, probably 

owing to differences in sample size, species and the experimental technique adopted (Ang 

et al., 2010; Austin et al., 1995; Botting et al., 2012; Burrell et al., 2003; Jonker et al., 

2015; Mandarim-de-Lacerda et al., 1997; Soonpaa & Field, 1998). For example, Mayhew 

et al. (1997) measured an equivalent number of human cardiomyocyte nuclei at birth 

(42 gestational weeks) compared with 40 postnatal weeks old. Furthermore, Mollova et 

al. (2013) reported that the percentage of human cardiomyocytes in mitosis (0.1%) and 

cytokinesis (0.016%) was highest in infants <1 year old, which then decreased ~11-fold in 

older heart tissue samples (0.009% mitosis and 0.005% cytokinesis, 10–20 years old). Ye 

et al. (2016) also found that the window of postnatal proliferation is narrow in humans, 

because prominent cell cycle activity (0.47%) was observed in atrial myocytes isolated from 

the youngest congenital heart disease patients, <3 months old, which decreased 27-fold in 

older infants (0.02% at 7–12 months old).

However, it is important to consider that cell cycle activity is not only indicative of 

cell proliferation; cells can replicate DNA with or without karyokinesis, resulting in the 

formation of multinucleated cardiomyocytes or multiple chromosomes within a single 

nucleus. In the aforementioned studies, the time line of cell cycle withdrawal is in agreement 

with work by Bergmann et al. (2015), who used a specific marker for cardiomyocyte 

nuclei to calculate that the final number of cardiomyocytes in the heart (~3.2 × 109) was 

established within 1 month of birth (the youngest age assessed). Although the total number 

of myocytes remained relatively constant between 1 month and 73 years old, the number 

of endothelial cells and mesenchymal cells continued to increase, by 6.5- and 8.2-fold, 

respectively.

The mechanisms driving cardiomyocyte cell-cycle arrest are still poorly understood in 

humans but remain an active area of investigation (Ball & Levine, 2005; Lock et al., 2018), 

because identifying strategies to ‘restart’ myocyte proliferation could lead to new therapeutic 

interventions to regenerate and repair heart tissue after injury, as recently demonstrated 

in several animal models (Abouleisa et al., 2022; Porrello et al., 2011, 2013; Soonpaa & 

Field, 1997; Zgheib et al., 2014). Further, a newborn child with severe myocardial infarction 
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rapidly recovered left ventricular function within weeks after injury (Haubner et al., 2016). 

Additional studies are needed to understand the timing and mechanistic regulators of cell-

cycle arrest in humans, in order to evaluate potential heterogeneities within different regions 

of the heart and to assess the functional outcomes of this process.

As cardiomyocytes develop and acquire structural maturity [e.g. sarcomere assembly 

and expansion, intercellular coupling via intercalated discs and invaginations of the 

sarcolemma to form transverse tubules (T-tubules)], it can become disadvantageous 

to undergo cell proliferation as a means of continued growth, because proliferation 

requires dedifferentiation, a process by which sarcomeres disassemble and neighbouring 

cardiomyocytes become uncoupled (Jopling et al., 2010; O’Meara et al., 2015; Zhu et al., 

2021). Accordingly, in the perinatal period, human cardiomyocytes undergo hypertrophy to 

increase their overall size and expand the number of connected sarcomeres (the contractile 

unit of the cardiomyocyte). Mayhew et al. (1998) reported that the total cell volume 

per cardiomyocyte nucleus remained constant during fetal development (16–35 weeks 

gestation). Thereafter, Mollova et al. (2013) demonstrated that cardiomyocyte size begins 

to increase after birth, with an average cardiomyocyte volume increasing 8.6-fold from 

infants (0–1 year) to older individuals (10–20 years). Cardiomyocyte hypertrophy was also 

demonstrated by a 6.6-fold decrease in the density of nuclei within myocardial tissue, from 

2.4 × 108 nuclei cm−3 in infants to 0.36 × 108 nuclei cm−3 in older individuals. This is 

in agreement with the study by Bergmann et al. (2015), who reported an even greater 

(15-fold) decrease in myocyte nuclei density per volume of ventricular tissue, from birth to 

adulthood. Cardiomyocyte hypertrophy occurs in tandem with increased myofibrillar density 

and alignment, allowing the heart to adapt and respond to the increasing workload that 

accompanies rapid postnatal growth.

With increased age, a substantial number of human cardiomyocytes also undergo 

polyploidization (Adler, 1975; Adler et al., 1996; Eisenstein & Wied, 1970), a process 

in which DNA content increases without subsequent karyokinesis and cytokinesis. Given 

the large size of adult cardiomyocytes, increasing the DNA content might help to support 

transcriptional needs for protein biosynthesis. Takamatsu et al. (1983) estimated that 94.3% 

of infant cardiomyocytes are diploid (2n), with an increased incidence of hyperploidy (>2n) 

at later stages of development (13.6% at 1–9 years, 26.7% at 9–22 years and 31.4% at 22–75 

years). A comparable trend was reported by Mollova et al. (2013), whereby the percentage 

of hyperploid cardiomyocytes increased steadily during development, from 16.3% in the 

first year of life to 54.2% in individuals >40 years old. Likewise, Bergmann et al. (2015) 

reported that almost all cardiomyocyte nuclei were diploid within the first few years of 

life, with polyploidization occurring much later in development, during the second and 

third decade of life, although other studies suggest that polyploidization occurs even earlier 

in life, particularly in cases of congenital or acquired heart diseases (Adler, 1975; Adler 

& Costabel, 1975; Brodsky et al., 1994). Overall, the majority of human cardiomyocytes 

remain mononucleated (~63–80%) throughout development, with a smaller proportion (20–

37%) becoming multinucleated (karyokinesis without cytokinesis), although there is no 

discernible difference between age groups (Bergmann et al., 2015; Takamatsu et al., 1983). 

Similar to human cardiomyocytes, hPSC-CM are primarily mononucleated, with a smaller 

percentage of cells becoming multinucleated (Kong et al., 2017; Laflamme & Murry, 2011). 
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This is in stark contrast to many experimental mammalian models, thus highlighting the 

risk of inaccuracy when extrapolating animal data to humans. For example, ~50% of sheep 

cardiomyocytes become binucleated inutero (Jonker et al., 2015; Jonker, Zhang et al., 2007), 

~90% of rodent cardiomyocytes become binucleated within the first 2 weeks after birth 

(Bensley et al., 2016; Clubb & Bishop, 1984; Li et al., 1996, 1997; Soonpaa et al., 1996), 

and swine cardiomyocytes become multinucleated within 6 months and often present with 

8–16 nuclei per cell (Velayutham et al., 2020). The mechanisms triggering these adaptations 

are understudied, but are likely to be influenced by changes in haemodynamics, hormones 

and oxygen levels (Jonker & Louey, 2016; Jonker, Faber et al., 2007; Jonker, Louey et al., 

2018; Naqvi et al., 2014; Puente et al., 2014). Of interest, differences in cell nucleation have 

been shown to alter cardiomyocyte physiology, with mononucleated rabbit cardiomyocytes 

exhibiting a faster beating rate, larger calcium transients and increased ryanodine receptor 

(RYR) density, compared with binucleated cells (Huang et al., 2012). The functional 

outcomes of multinucleation and polyploidization are still incompletely understood, as is 

the impact of congenital heart defects, preterm delivery and intrauterine growth restriction 

on these maturation patterns (Adler & Costabel, 1980; Botting et al., 2014; Brodsky et al., 

1994; Jonker, Kamna et al., 2018). Furthermore, the mechanisms underlying species-specific 

differences remain understudied, which can limit the human applicability of experimental 

animal models in developmental research (Kannan & Kwon, 2020).

Structural maturation of the human cardiomyocyte

Given the rapid rate of body growth, postnatal development is accompanied by an increase 

in metabolic demand, cardiac workload and cardiac output, culminating in a 6- to 12-

fold increase in stroke volume from birth until adulthood (De Simone et al., 1998). To 

adapt, cardiomyocytes undergo developmental hypertrophy (discussed above), resulting in 

a significant increase in left ventricular mass. Concurrent with this increase in cell size, 

myocytes acquire structural adaptations to improve the efficiency and capacity of muscle 

contraction. Key components of the cardiomyocyte architecture have been reviewed in detail 

previously (Ehler, 2016; Gautel & Djinovic-Carugo, 2016;´ Henderson et al., 2017). Briefly, 

human adult cardiomyocytes are large in size, rod shaped and contain densely packed 

myofibrils, the contractile machinery of cardiac muscle (Gerdes et al., 1992). Myofibrils 

are composed of actin and myosin filaments that are intricately arranged to facilitate cross-

bridge formation, sarcomere shortening (contraction) and subsequent relaxation (Ehler, 

2016) and are composed of multiple sarcomeres in series, defined at the ends by Z-lines or 

lateral boundaries. In adult cardiomyocytes, the sarcolemma is invaginated to form T-tubules 

near these Z-lines (Richards et al., 2011). The T-tubules are a key structural component of 

excitation–contraction coupling, localizing L-type calcium channels in close proximity to 

ryanodine receptors (RYR) on the junctional sarcoplasmic reticulum (SR), which supports 

synchronized activation of the myocyte (Jayasinghe et al., 2012). In turn, the SR is an 

intracellular membrane network that serves as a source for Ca2+ release during excitation–

contraction coupling.

Progressive changes to the cardiomyocyte architecture have been documented during 

human fetal growth, although less information is available on the dynamic changes that 

occur postnatally. Early in fetal development (17–24 weeks), Kim et al. (1992) described 
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cardiomyocytes that were smaller, more rounded and contained scattered myofibrils near 

the periphery of the cell (Fig. 1 and Table 2). Sarcomeres were identifiable but lacked 

some distinguishing features, and myofibrils were loosely packed, with limited alignment. 

Racca et al. (2016) reported similar observations in early fetal development (52 days of 

gestation), including wavy Z-bands, narrow myofibrils (0.36 μM) and low myofibril density. 

With continued fetal development (127 days of gestation), Racca et al. visualized Z-band 

alignment with adjacent myofibrils, which were noticeably wider (0.97 μM). Kim et al. also 

found more densely packed myofibrils with greater alignment at 32–40 weeks gestation, 

although some prominent features were still largely absent in sarcomeres (e.g. H zone, 

M line, crosslinking of thick filaments). In late gestation, T-tubules and the SR began to 

develop near sarcomere Z-lines, although these structures were immature in comparison 

to the adult myocardium (Crossman et al., 2011; Kim et al., 1992; Lyon et al., 2009). 

Wiegerinck et al. (2009) reported that T-tubules were still sparse in newborn hearts (<3 

weeks old), but continued to develop throughout the first postnatal year (3–14 months).

The proteomic composition of the sarcomere also changes during development, as 

myofilament proteins, regulatory proteins and cytoskeletal proteins shift from fetal to adult 

isoforms, which change the inherent contractile properties of the cardiomyocyte. Muscle 

contraction occurs as myosin and actin myofilaments rachet or slide over one another, 

which results in sarcomere shortening. Myosin is comprised of light chains (MLCs) and 

heavy chains (MHCs); human cardiomyocytes express α-MHC and β-MHC, with the latter 

being associated with slower contractile kinetics (Bouvagnet et al., 1989; Mercadier et 

al., 1983). Reiser et al. (2001) found that fetal atrial samples (47–110 days) primarily 

express α-MHC (96–97%), whereas fetal ventricular samples express β-MHC (90–93%). In 

ventricular samples, the small amount of α-MHC expression declined even further between 

~12 weeks of gestation and adulthood. In atrial samples, Cummins & Lambert (1986) 

reported an increase in β-MHC expression during gestation, reaching adult levels soon after 

birth. Other groups have detected only the β-MHC isoform in ventricular samples collected 

from fetal, paediatric and adult tissues, suggesting that any slight change in MHC isoform 

expression is likely to occur either before or near birth (Auckland et al., 1986; Elhamine et 

al., 2016; Racca et al., 2016; Schier & Adelstein, 1982). This is remarkably different from 

rodent models, wherein the fetal ventricle predominately expresses β-MHC, with α-MHC 

expression beginning to increase after birth, with nearly complete turnover to this isoform in 

young adult animals (Lompre et al., 1981; Lompré et al., 1984). This is one example of key 

species-specific differences, wherein larger animals with slower heart rates are more similar 

to humans and follow a similar pattern of MHC isoform switching (Hodges et al., 2021; 

Jann Hau, 2010; Janssen & Periasamy, 2007).

Although human cardiomyocytes have limited age-dependent MHC isoform switching, 

there is a significant developmental difference in the expression of MLCs in the human 

myocardium. Cummins et al. (1980) and Price et al. (1980) identified a unique MLC 

(ALC-1, atrial essential myosin light chain) expressed in fetal, but not adult ventricular 

tissue samples. Moreover, Schier and Adelstein (1982) reported that expression of this fetal 

isoform in infant tissue coincided with 50% less myosin enzymatic activity, in comparison 

to adults. Further study by Auckland et al. (1986) revealed a steady decline in ALC-1 

expression, representing 46.5% of total MLC expression at 18–21 weeks of gestation and 
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rapidly decreasing thereafter to 18.3% at birth, 5.5% in infants <2 years old, and negligible 

expression at older ages (only expressing VLC-1 and VLC-2, ventricular essential light 

chains). It is estimated that ALC-1 represents ~42% of total MLC expression in neonates 

after birth, declining monoexponentially with a half-time of 5.8 months that coincides 

with replacement by VLC-1 and VLC-2 (Elhamine et al., 2016). This isoform switch 

was associated with an age-dependent change in myofibrillar biomechanics, including 

contraction kinetics and maximal force. Conversely, infants and children with tetralogy 

of Fallot have persistently higher levels of ALC-1, probably owing to haemodynamic 

influences, which further highlights the effect of cardiac disease in postnatal maturation 

(Auckland et al., 1986).

Troponin I (TnI) is a regulatory protein that inhibits actin–myosin interactions at basal Ca2+ 

levels, and its isoforms are expressed in an age-dependent manner. Specifically, the slow 

isoform (ssTnI) is abundantly expressed in fetal and infant cardiomyocytes, with negligible 

amounts in adult tissue, which predominately expresses the cardiac isoform (cTnI) (Bhavsar 

et al., 1991; Elhamine et al., 2016; Hunkeler et al., 1991; Racca et al., 2016; Sasse et 

al., 1993). Bhavsar et al. (1991) reported that 8-week-old fetal atrial tissue expressed only 

ssTnI, whereas both ssTnI and the cTnI isoforms were readily detected later in gestation 

(33 weeks) and in the early postnatal period (15 days). Only cTnI was detected in atrial 

tissue from a 9-month-old specimen, suggesting that this switch occurs within the first year 

of life. Sasse et al. (1993) reported a similar temporal pattern in ventricular tissue, wherein 

ssTnI was the predominant isoform during fetal development (90% of total expression), 

with slightly reduced levels at birth (80%) and early postnatal development (60%), but 

undetectable levels by 9 months of age. As ssTnI declined, cTnI expression increased in 

an age-dependent manner, with a similar expression profile observed between 9 months 

of age and adulthood. In agreement, Elhamine et al. (2016) found that ssTnI declined 

monoexponentially within the first 10 months after birth and was replaced by the cTnI 

isoform with a half-time of 4.3 months, although there was variability between patients in 

this developmental decline, which might be attributed to the type of congenital heart disease. 

Racca et al. (2016) confirmed that ssTnI is expressed early in fetal development, which is 

associated with slower rates of force development and relaxation. A progressive increase 

in cTnI was seen with gestational age (up to 134 days), which coincided with increased 

force and faster activation/inactivation kinetics, probably owing to reduced Ca2+ sensitivity. 

Although maximal force increased 6-fold with increasing gestational age (7.8 mN mm−2 at 

58 days vs. 49.9 mN mm−2 at 130 days of gestation), this was still considerably less than 

values reported for adult ventricular samples (90–110 mN mm−2; Piroddi et al., 2007). This 

is likely to be influenced by inefficient strain transmission caused by underdeveloped and 

unaligned myofibrils.

Developmental changes in cardiac troponin T (cTnT; a regulatory protein that binds the 

troponin complex to tropomyosin and modulates Ca2+ concentration-dependent ATPase 

activity) are largely limited to fetal development. Anderson et al. (1991, 1995) detected 

four cTnT isoforms in fetal ventricular tissue (14–15 weeks of gestation), but only two 

isoforms in adult ventricular tissue. Furthermore, myofibrillar ATPase activity was related to 

the ratio of cTnT isoform expression in adult tissue (healthy vs. heart failure), highlighting 

disease-associated changes. Similar to observations in adult heart failure tissue, Saba et al. 
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(1996) reported an increase in cTnT4 expression in congenital heart disease patients with 

increased haemodynamic loading. In all atrial samples, cTnT3 was the predominant isoform 

(6 days to 35 years), but there was an age-dependent increase in cTnT3 expression as 

cTnT1 expression decreased. Racca et al. (2016) also found that cTnT3 was the predominant 

isoform in ventricular tissue samples, with increased protein density observed later in 

gestation (59–134 days). However, in samples collected postnatally (4 days to 11 years), 

Elhamine et al. (2016) did not find a significant difference in cTnT isoforms, suggesting 

that this age-dependent switch might occur around the time of birth. Additional work is 

needed to understand fully the dynamic shifts in myofilament, cytoskeletal and regulatory 

protein expression during postnatal development and the impact on myocardial stiffness 

and contractility. For example, Narolska et al. (2005) demonstrated that MHC isoform 

expression alters myocardial energetics and performance in adults with atrial fibrillation, 

whereas Bond et al. (2018) highlighted significant changes in the proteomic profile of 

the right ventricle in infants with cyanotic versus acyanotic heart disease. Specifically, 

acyanotic patients with a ventricular septal defect had increased ventricular stiffness and 

reduced expression of key sarcomeric proteins (e.g. tropomyosin, myomesin and obsecurin). 

Future studies are warranted to investigate differences in cardiomyocyte development and 

contractile function between healthy and diseased tissue.

Establishment of intercellular connections

The heart is composed of billions of individual cardiomyocytes, yet it functions as a 

syncytium, with synchronized contraction and relaxation. This coordination of electrical 

and mechanical activity is facilitated by specialized structures, called intercalated discs, 

which develop between neighbouring cardiomyocytes. Classically, the intercalated disc has 

been described to contain three main complexes: adherens junctions, desmosomes and gap 

junctions (Vermij et al., 2017). Desmosomes and adherens junctions are adhesion structures 

that tightly couple neighbouring cardiomyocytes. Desmosomes provide structural support 

through connections with intermediate filaments, whereas adherens junctions connect to 

the actin cytoskeleton and serve to anchor myofibrils. Gap junctions provide electrical 

continuity through intercellular connexon channels (composed of connexin proteins), which 

allow small molecules to flow freely between neighbouring myocytes. Nearly 200 different 

proteins have been found to localize to the intercalated disc (Estigoy et al., 2009), including 

the cardiac voltage-gated sodium channel (Nav1.5), which is responsible for the action 

potential upstroke and fast electrical propagation in atrial and ventricular cardiomyocytes.

Fully developed intercalated discs are absent at birth, but these specialized structures 

develop postnatally to maintain electromechanical function while cardiomyocytes undergo 

hypertrophy and remodelling. Across multiple species, mechanical junctions are established 

earlier in life than electrical junctions, although the timing varies by species (Hirschy et 

al., 2006; Vreeker et al., 2014). In a foundational study, Peters et al. (1994) monitored 

the postnatal development of intercalated discs in ventricular tissue specimens from 

paediatric patients (4 months to 15 years) (Table 3). In neonatal hearts, gap junction- (e.g. 

connexin-43) and adherens junction-specific proteins (e.g. N-cadherin) were punctuated 

indiscriminately throughout the myocyte surface until ~6 years of age, when these 

proteins co-localized and became confined to intercalated discs. This developmental time 
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frame is in line with other age-related adaptations, including the maturation of heart 

rate and ventricular mechanics (Bratincsák et al., 2020; Colan et al., 1992). Likewise, 

Vreeker et al. (2014) reported age-dependent changes in the spatiotemporal localization of 

intercalated disc proteins in ventricular specimens (15 weeks to 11 years). Proteins found 

in adherens junctions (e.g. N-cadherin and Zonula occludens-1 (ZO-1)) and desmosomes 

(e.g. plakoglobin, desmoplakin and plakophilin-2) were diffuse with lateral labelling in 

fetal samples, but with postnatal development, these proteins moved progressively to the 

myocyte termini, displaying a mature, adult phenotype by ~1–2.5 years after birth. Notably, 

adherens junction and desmosome proteins were co-localized throughout all stages of fetal 

and postnatal development. Sodium channels (Nav1.5) followed a similar spatiotemporal 

pattern, with prominent detection at the intercalated disc at ~2.5 years old. In the study 

by Vreeker et al. (2014), connexins were scarce during fetal development, then diffuse 

with lateral localization ~5 months after birth. Connexin proteins did not co-localize 

with adherens junctions at the intercalated disc until much later in life (~7–11 years). 

In agreement, Salameh et al. (2014) reported an age-dependent change in connexin-43 

distribution, whereby the ratio of polar/lateral localization to intercalated discs increased in 

children from 2.9 (0–2 years) to 8.5 (>12 years). Immunostaining revealed that connexins 

were largely confined to the intercalated disc ~8.5 years old, which is consistent with the 

described time line produced by Vreeker et al. (2014). However, it is important to note 

that these developmental time lines are only an approximation, because many of these 

human studies have a relatively small sample size. Further study is warranted, because 

developmental differences and interactions between cardiomyocyte size, cell–cell coupling 

and ion channel expression can contribute to arrhythmias with age-dependent penetrance 

(Nowak, Poelzing et al., 2021).

It is important to note that human cardiomyocytes express multiple gap junction proteins 

(e.g. connexin-40, -43 and -45), each with distinct channel properties (e.g. voltage and 

chemical gating and permeability) that support cardiac electrophysiology in a chamber-

related and age-dependent manner (Verheule & Kaese, 2013). In the adult heart, the faster-

conducting bundle branches and Purkinje fibres have large gap junction plaques that contain 

a large quantity of connexin-43, -40 and -45, whereas slower-conducting nodal regions 

(sinus and atrioventricular) predominately express connexin-45 and -40 in lesser amounts 

(Chandler et al., 2009; Davis et al., 1995; Greener et al., 2011). All three major connexin 

isoforms are found in atrial and ventricular myocytes, although atria have a higher density 

of connexin-40, in comparison to connexin-43 in the ventricles (Davis et al., 1995; Greener 

et al., 2011; Vozzi et al., 1999). In the fetal heart (9 weeks of gestation), Coppen et al. 

(2003) detected connexin-40 and -43 most prominently in trabeculated ventricular tissue, 

with reduced expression in the compact myocardium. The authors also detected connexin-45 

in developing conduction tissues, although this differs from a study by Chen et al. (1994), 

who reported that connexin-45 was inconspicuous in fetal hearts (74–122 days of gestation) 

but readily detected in cardiac tissue from older children (0.5 months to 3 years of age) 

and adults. In a study of patients with tetralogy of Fallot, Salameh et al. (2014) noted an 

age-dependent decline in connexin-43 protein expression between infants (0–2 years), older 

children (2–12 years) and those nearing adulthood (>12 years). This progressive decline in 

expression might be offset by dense connexin-43 localization to the intercalated discs in 
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older children, wherein gap junctions facilitate fast electrical conduction along the fibre axis 

in the longitudinal direction. Collectively, the expression and spatial distribution of connexin 

proteins modulates electrical coupling within different regions of the heart, which changes 

dynamically during postnatal heart development (Nowak, Veeraraghavan et al., 2021; Spach 

et al., 2000).

Adaptations in myocardial metabolism

The heart has a high rate of energy production and utilization, with ~70% of ATP used 

for contraction and ~30% for specialized ion pumps (Gibbs, 1978; Suga, 1990). Given the 

hypoxic intrauterine environment, fetal cardiomyocytes rely heavily on glycolysis for energy 

production. Animal studies have shown that the transition to the extrauterine environment 

brings about sudden changes in circulating nutrients, oxygen levels and haemodynamics, 

which reshape cardiomyocyte bioenergetics (Girard et al., 1992; Makinde et al., 1998). 

At the cellular level, metabolic maturation includes alterations in mitochondrial content, 

membrane transporters and enzymatic activity to support the postnatal transition of the 

myocytes from glycolytic to oxidative metabolism (Bartelds et al., 1998; Lopaschuk & 

Jaswal, 2010; Lopaschuk et al., 1991; Mdaki et al., 2016). Metabolic remodelling becomes 

necessary to support the increased demand on the developing heart, as fatty acid oxidation 

yields more ATP (per unit substrate) compared with glycolysis. The time frame and 

mechanisms underlying this metabolic switch are underexplored in humans, but in rodent 

models, studies suggest that this process is influenced by the increase in ambient oxygen at 

birth and the subsequent reduction in hypoxia signalling via oxygen-sensitive transcription 

factors [e.g. hypoxia-inducible factor-1α (HIF1α) and HAND1; Liu et al., 2021; Neary 

et al., 2014]. Chronic hypoxic conditions have been shown to dysregulate metabolic 

remodelling in rodents and impair heart development in sheep by reducing the total number 

of cardiomyocytes (Botting et al., 2014; Smith et al., 2022; Song et al., 2021). In humans, 

cyanotic congenital heart disease can disrupt postnatal maturation, because chronic hypoxia 

results in elevated HIF1α and persistent glucose-dominated cardiac metabolism in paediatric 

patients (Horikoshi et al., 2019; Liu et al., 2021; Piccoli et al., 2017; Porter et al., 2011; 

Quing et al., 2007). Collectively, cardiomyocyte maturation and metabolic remodelling are 

likely to be influenced by a number of factors, including changes in oxygen levels, hormone 

levels and metabolic stress associated with intermittent feeding (Lock et al., 2018). Species-

specific differences should also be considered, because larger mammals can use alternative 

energy sources (e.g. fatty acids and lactate) in utero (Bartelds et al., 1999, 2000).

Dramatic changes in mitochondrial morphology are observed throughout cardiomyocyte 

maturation, as these small, fragmented organelles expand and grow into larger networks 

with an increased density of cristae (Feric & Radisic, 2016; Horikoshi et al., 2019; Porter 

et al., 2011) and myofibril alignment (Kim et al., 1994; García-Pérez et al., 2008; Piquereau 

et al., 2010; Table 4). Kim et al. (1992) reported that human cardiomyocyte mitochondria 

are circular, scarce and scattered throughout the sarcoplasm during early fetal development 

(17–24 weeks of gestation). With further maturation (≥30 weeks gestation), mitochondria 

become more elongated, increase in number and begin to aggregate between myofibrils. 

Fetal cardiomyocytes also contain large pools of glycogen (stored carbohydrates), which 

are used for glycolytic metabolism. This is in agreement with mammalian studies, wherein 
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glycogen occupies ~30% of the fetal myocyte cell volume and only ~2% of the adult 

cell volume (Shelley, 1961). As glycogen reserves become depleted, mitochondrial density 

increases to occupy ~22–25% of the human adult cardiomyocyte volume (Barth et al., 1992; 

Schaper et al., 1985). In an age comparison study, Marin-Garcia et al. (2000) reported a 

~4-fold increase in mitochondrial DNA levels in human heart tissue between early gestation 

(45–65 days) and neonates (1–30 days). Furthermore, Pohjoismäki et al. (2013) reported a 

~5-fold increase in mitochondrial DNA and ~2-fold increase in mitochondrial mass between 

fetal and adult cardiomyocytes. The impact of cyanotic heart conditions was highlighted in 

a study by Ye et al. (2020), wherein mitochondrial DNA was significantly less in tetralogy 

of Fallot patients with moderate versus mild hypoxia (75–85% vs. >85% arterial oxygen 

saturation).

Metabolic maturation is supported further by human developmental studies, which 

demonstrate age-dependent changes in membrane transporters, mitochondrial protein 

expression and enzymatic activity. With increased gestational age, human fetal 

cardiomyocytes gradually upregulate the expression of genes involved in fatty acid 

metabolism (Dai et al., 2017; Iruretagoyena et al., 2014). For example, Dai et al. (2017) 

reported a surge in mitochondrial activity between early (50–60 days) and late (100–115 

days) gestation, with heightened respiratory complex activity (6.4-fold complex I, 3.6-fold 

complex II, 2.1-fold complex III and 3.1-fold complex IV). Respiratory complex activity 

was increased even further in adult tissue (3.4–11.3-fold) compared with early gestation. 

Marin-Garcia and colleagues also noted an age-dependent increase in key enzymes involved 

in the Krebs cycle and electron transport chain (Marin-Garcia & Baskin, 1989; Marin-Garcia 

et al., 2000). Between early gestation (45–65 days) and the neonatal period (1–30 days), a 

~4-fold increase in citrate synthase, ~3-fold increase in complex IV and ~2-fold increase in 

ATP synthase was measured in ventricular tissue samples. ATP synthase was undetectable in 

cardiac tissue during early gestation, but increased ~3-fold between late gestation (85–110 

days) and the neonatal period. Furthermore, cytochrome c oxidase content increased ~10-

fold and oxidase activity ~8-fold across age groups (15–21 weeks of gestation vs. adults). 

Yatscoff et al. (2008) also reported an age-dependent (0.2–10 months) increase in proteins 

associated with fatty acid oxidation (e.g. malonyl CoA decarboxylase) and a decrease in 

inhibitory regulators of fatty acid oxidation (e.g. acetyl CoA carboxylase, 5′-AMP-activated 

protein kinase).

Collectively, these studies demonstrate an age-dependent shift in cardiac metabolism from 

glycolysis to fatty acid oxidation in humans, but the regulatory mechanisms and time line of 

this transition are unclear. Moreover, the impact of persistent hypoxia on this developmental 

process is understudied in humans. For example, metabolic maturation was impaired 

in patients with cyanotic heart conditions, because cardiac tissue samples had different 

metabolomic profiles (e.g. increased lactate and pyruvic acid, accumulation of Krebs cycle 

intermediates) compared with acyanotic myocardial samples (Dong et al., 2021). In a 

separate study, cyanotic patients also had higher myocardial lactate concentrations, and 

younger patients had a lower ATP/ADP ratio (Modi et al., 2004). Patient age and cyanosis 

are important factors affecting basal myocardial metabolism, which could also influence 

ischaemia–reperfusion injury and postoperative outcomes (Imura et al., 2001).
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Age-dependent changes in electrophysiology

Transition from the intrauterine to extrauterine environment results in changes to blood 

circulation and myocardial maturation. These developmental adaptations are detected in the 

ECG, including changes in heart rate, the electrical axis, waveform morphology and ECG 

interval durations (Chan et al., 2008). During fetal development, blood is shunted away from 

the lungs, and the systemic circulation is driven by the right side of the heart. Accordingly, 

the electrical heart axis of the fetus is oriented to the right, owing to right ventricular 

dominance that is responsible for ~60% of cardiac output (Lempersz et al., 2021; Mielke 

& Benda, 2001). With birth, the placental circulation is halted, the ductus arteriosus closes, 

and venous return to the left atrium increases, culminating in an increase in left ventricular 

output (Agata et al., 1991). During infancy, the right ventricle remodels over 2–3 months, 

and the left ventricle increases in muscle mass, shifting the heart axis to the left (Jurko 

Jr, 2004). Normative data for paediatric ECG values are readily available, although ECG 

variables are heavily influenced by gestational age, sex and race (Bratincsák et al., 2020; 

Rijnbeek et al., 2001; Saarel et al., 2018; Schwartz et al., 2002; Sharieff & Rao, 2006). 

Broadly, postnatal age is associated with heart rate slowing from infancy (~150 beats min−1) 

to adulthood (~75 beats min−1), which is driven by changes in sinus node automaticity and 

increased vagal tone. Atrioventricular conduction is shorter in infants and children (~100 ms 

PR interval), probably owing to a smaller muscle mass, which lengthens during adolescence 

and adulthood (~150 ms). Likewise, ventricular depolarization (QRS complex) is also faster 

in infants and young children (~60 ms) compared with adults (~90 ms) (Bratincsák et al., 

2020). The corrected QT interval, representing ventricular depolarization and repolarization, 

is longer in infants <6 months of age (upper limit of 490 ms) compared with other older age 

groups (upper limit 440 ms) (O’Connor et al., 2008).

Developmental changes in ECG variables are well documented (Bratincsák et al., 2020; 

O’Connor et al., 2008; Rijnbeek et al., 2001; Saarel et al., 2018; Schwartz et al., 2002; 

Sharieff & Rao, 2006), but the associated changes in action potential morphology and 

adaptations in cardiac ionic currents are vastly understudied in young (human) cells. 

Given that normal healthy myocardial tissue is unavailable, electrophysiological studies are 

performed using isolated cells from small pieces of atrial or ventricular tissue collected from 

patients undergoing palliative or corrective heart surgery. As such, patient age, disease and 

course of treatment are important confounding factors that can influence data interpretation. 

Although action potential recordings in neonatal paediatric human cardiomyocytes are 

limited (Escande et al., 1985; Cohen & Lederer, 1993; Schaffer et al., 1999; Wang et 

al., 2003; Table 5), a few distinguishing features have been noted; namely, young atrial or 

ventricular cardiomyocytes tend to have a more pronounced overshoot (peak amplitude at 

higher positive membrane potential), a less pronounced notch (early repolarization), and a 

plateau phase that persists at more positive membrane potentials, resulting in a longer action 

potential duration at 20–30% repolarization (Fig. 2).

Atrial and ventricular action potentials are characterized by a resting membrane potential 

that is stabilized by potassium currents, including IK1, which helps to suppress automaticity 

(phase 4 of the action potential; for a review, see Bartos et al., 2015). Across different 

species (e.g. rodents, hPSC-CM), neonatal and immature cardiomyocytes frequently display 
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spontaneous activity that coincides with reduced IK1, increased If (pacemaker current) and/or 

increased (reverse-mode) Na+–Ca2+ exchanger (NCX) activity (Carmeliet, 2019; Cerbai et 

al., 1999; Giannetti et al., 2021; Goversen et al., 2018; Hoekstra et al., 2012; Kim et al., 

2015; Masuda & Sperelakis, 1993; Vaidyanathan et al., 2016; Wahler, 1992; Wang et al., 

2013). Experimental studies have reported similar resting membrane potentials, ranging 

from −71 to −85 mV in both paediatric and adult cardiomyocytes, isolated from either 

atrial or ventricular tissue (Cohen & Lederer, 1993; Escande et al., 1985; Schaffer et al., 

1999; Wang et al., 2003). However, Schaffer et al. (1999) identified a barium-sensitive IK1 

inward current in paediatric ventricular myocytes (16–91 months old), with a peak current 

density that was ~50% less (−22.8 pA pF−1) than the reported value for adult ventricular 

myocytes (−45 pA pF−1). This suggests an age-dependent difference in IK1 repolarizing 

current, which could alter the resting membrane potential and increase automaticity, akin 

to observations in immature hPSC-CM (Goversen et al., 2018; Hoekstra et al., 2012). In 

contrast, Crumb et al. (1995) found a comparable IK1 density in paediatric (−3.19 pA pF−1, 

1 day to 2.5 years) and adult atrial cardiomyocytes (−2.5 pA pF−1, 11–68 years), with the 

caveat that these recordings at room temperature were significantly smaller in magnitude 

compared with the values reported by Schaffer et al. (1999) at physiological temperatures. 

Schaffer et al. (1999) also detected a slowly activating inward current in young ventricular 

myocytes that resembled the pacemaker current (If). In follow-up studies by the same 

group, Zorn-Pauly et al. (2003) detected this pacemaker current in 88% of paediatric right 

ventricular myocytes (mean age 15.4 months) but did not find an age-dependent difference 

in the current–voltage relationship or half-maximal activation, in comparison to adult left 

ventricular myocytes. Admittedly, the sample size for this study was small, and the If density 

in paediatric myocytes (−2.0 pA pF−1) was slightly larger than previously reported for adult 

myocytes (−1.18 pA pF−1; Hoppe et al., 1998). In experimental models, cardiomyocyte 

immaturity can alter If activation threshold, peak density and/or the expression of associated 

genes (Giannetti et al., 2021; Qu et al., 2001; Robinson et al., 1997), but additional studies 

are necessary to characterize postnatal developmental changes in human cardiomyocytes. 

Finally, spontaneous activity can be enhanced in immature cells through increased NCX 

expression and/or reverse-mode activity (Kim et al., 2015). NCX is localized to the cell 

periphery in neonatal human ventricular myocytes (preceding T-tubule formation), and NCX 

gene and/or protein expression is highest during the fetal–neonatal period (<2 weeks), 

declining thereafter with increasing postnatal age (Qu et al., 2000; Wiegerinck et al., 2009). 

In immature hPSC-CM, increased NCX activity enhances spontaneous activity (Kim et 

al., 2015), but the functional outcomes of NCX overexpression in human neonatal–infant 

cardiomyocytes have not been evaluated thoroughly.

Atrial and ventricular cardiomyocyte depolarization is driven by fast sodium current, INa 

(phase 0 of the action potential). Using isolated human atrial cardiomyocytes, Cai et al. 

(2011) measured a significantly smaller peak INa amplitude in paediatric cells (−31.8 

pA pF−1; mean age 3.4 years old) compared with adult cells (−46.7 pA pF−1; mean 

age 42.5 years old). Furthermore, paediatric atrial myocytes had slower time-dependent 

properties (activation and inactivation time) and a shift in voltage-dependent inactivation 

towards a negative potential. A similar age-dependent shift in the voltage-dependence of INa 

inactivation was observed by Sakakibara et al. (1993) using paediatric and adult ventricular 
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myocytes. Counterintuitive to the reduced INa peak amplitude observation by Cai et al. 

(2011), Wang et al. (2003) reported a significantly faster maximal rate of depolarization 

in paediatric (462 V s−1) versus adult (203 V s−1) atrial myocytes. A faster rate of 

depolarization is generally an indicator of cardiomyocyte maturation, because slower rates 

are commonly observed in neonatal myocytes or immature hPSC-CM (Agata et al., 1993; 

Hoekstra et al., 2012; Pacioretty & Gilmour, 1995).

Following rapid depolarization, early repolarization (or ‘notch’) is driven primarily by the 

transient outward current, Ito (phase 1 of the action potential). In an influential study, 

Escande et al. (1985) documented developmental changes in the atrial action potential of 

paediatric cells (2–22 months of age), with an immature repolarization pattern that suggested 

a lack of Ito. Paediatric atrial cells were less responsive to an Ito blocker (4-aminopyridine), 

and the shape of the paediatric action potential changed to become more comparable to an 

adult action potential after prolonged periods of rest, suggesting that Ito might be present 

but non-functional at physiological stimulation rates. Furthermore, paediatric atrial action 

potentials were more triangular, never displayed a prominent ‘notch’, and had a shorter 

(sometimes unidentifiable) plateau phase that hovered near a positive potential.

Follow-up studies strongly suggest a developmental change in Ito in the human atria, but 

details are inconsistent. Mansourati & le Grand (1993) reported that Ito was completely 

absent in atrial cells isolated from children (2 months to 5 years of age), but tissue samples 

were described as ‘clearly dilated and diseased’, which was found to reduce Ito markedly 

in adult cells. Using young atrial cells from haemodynamically normal children (1 day 

to 2.5 years of age), Crumb et al. (1995) detected Ito in only 67% of paediatric samples 

(compared with 100% of adult cells). Moreover, in younger atrial cells, Ito recovery was 

twice as slow (recovery time constant: 294 ms paediatric vs. 138 ms adult), with significant 

frequency-dependent inhibition and a significantly smaller peak current density (8 pA pF−1 

young vs. 12.4 pA pF−1 adult). Notably, the greatest age-related change in peak current 

density occurred between the ages of 10 months and 2 years, suggesting that developmental 

adaptations occur early in life, within a narrow time frame. Wang et al. (2003) noted a 

similar action potential morphology in infant atrial cells (2.5–10.5 months of age), including 

a less prominent notch, more positive plateau phase, and a longer action potential duration 

at 30% repolarization (28.6 ms infant vs. 4 ms adult). However, in disagreement with earlier 

reports, Wang et al. (2003) found an increase in Ito peak density in infant atrial cells, but also 

noted faster inactivation, a slower recovery from inactivation (32 ms infant vs. 17 ms adult) 

and a more significant frequency-dependent inhibition of Ito peak current at physiological 

rates (23.7% infant vs. 8.9% adult inhibition at 3 Hz). Slower Ito inactivation in adult atrial 

cells would lead to more current during the early phase of depolarization, which shortens 

repolarization time at APD30. However, many of these findings were not observed in a 

study by Gross et al. (1994), in which the authors reported no discernible age-dependent 

differences in Ito density or recovery and only a slightly slower inactivation in younger 

atrial cells (59.3 ms, vs. 43.3 ms in older children). Measurements in paediatric ventricular 

cardiomyocytes are more limited. Cohen and Lederer (1993) reported that paediatric 

ventricular cardiomyocytes had a less prominent notch and a more positive plateau phase, 

consistent with many of the atrial myocyte findings described above. Paediatric action 

potentials also appeared significantly longer, at 30% or 50% repolarization, although average 
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values were not reported in the study. Schaffer et al. (1999) detected Ito in paediatric 

ventricular myocytes (16–91 months of age), but peak density measurements were variable 

even within the same patient, ranging from 0.3 to 8.6 pA pF−1. Furthermore, the authors 

noted a rate-dependent reduction in Ito amplitude (11–65%) when ventricular myocytes were 

stimulated at 4 Hz, but with notable variations between individual cells.

As noted above, paediatric atrial and ventricular myocytes display a more positive plateau 

phase (phase 2 of the cardiac action potential), suggesting sustained Ca2+ influx and/or 

reduced K+ efflux (Cohen & Lederer, 1993; Escande et al., 1985; Wang et al., 2003). Cohen 

and Lederer (1993) reported a significant reduction in ICa density in paediatric (5.3 mA 

cm−2, 3–18 months of age) versus adult ventricular myocytes (10.1 mA cm−2), but did not 

find a comparable developmental difference in atrial cells. However, both paediatric atrial 

and ventricular myocytes displayed a shift in steady-state activation and inactivation to more 

positive potentials(+5to+17mVshift),resulting in a prominent ICa window current. This is 

consistent with the adult action potential plateau phase occurring at more negative potentials, 

in comparison to paediatric cells. Pelzmann et al. (1998) also observed a large Ca2+ 

window current between −45 and +40 mV in paediatric ventricular myocytes, which can 

prolong Ca2+ influx and increase the incidence of early after-depolarizations. Notably, two 

studies that used tissue samples from patients with tetralogy of Fallot recorded significantly 

longer action potential duration (APD) at 90% repolarization with a high incidence of 

afterdepolarizations [Pelzmann et al. (1998): 853 ± 167 ms; Schaffer et al. (1999): 794 ± 

99 ms] compared with a mixed population of congenital heart disease patients [Cohen and 

Lederer (1993): 292 ± 84 ms]. Accordingly, it is difficult to discern whether developmental 

changes in ICa might be exaggerated further with specific pathologies. Minimal experimental 

data are available on the presence and kinetics of repolarizing K+ currents in phase 2 or 3 

of the cardiac action potential. Schaffer et al. (1999) measured IK in ventricular myocytes 

from children with tetralogy of Fallot, but detected this current in only 2 of 34 myocytes. 

The time course of activation was fast (within 250 ms), suggesting that the current was 

probably attributable to the rapid component of the delayed rectifier (IKr) (Koumi et al., 

1995). Developmental changes in cardiac delayed rectifier K+ current have been observed 

in other species (Obreztchikova et al., 2003; Wang et al., 1996), but postnatal adaptations 

remain underexplored in humans.

Maturation of excitation–contraction coupling

Excitation–contraction coupling is the process by which an action potential triggers 

contraction and subsequent relaxation. In adult ventricular cardiomyocytes, sarcolemmal L-

type calcium channels (LTCCs) are localized to T-tubules in close proximity to RYRs on the 

junctional SR. These LTCCs open during phase 2 of the cardiac action potential, allowing 

Ca2+ ions to flow into the cardiomyocyte and increase local [Ca2+], which triggers Ca2+ 

release from the SR in a process known as calcium-induced calcium release (CICR). This 

increase in intracellular [Ca2+] saturates the troponin complex, resulting in a conformational 

change that permits actin–myosin interaction and contraction. Following contraction, cardiac 

relaxation requires a decline in intracellular [Ca2+], largely through the SR calcium-ATPase 

(SERCA) and NCX. This process is tightly regulated, both temporally and spatially, 

permitting fast, coordinated cycling of Ca2+ across the large-sized adult cardiomyocyte.
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Developing cardiomyocytes have contractile activity, but anatomical immaturity limits 

excitation–contraction coupling efficiency in these cells. This is attributable, in part, to 

structural adaptations that are still missing during early postnatal life, because T-tubules 

are underdeveloped in the newborn human heart (<3 weeks) but are well developed later 

in infancy (3–14 months) (Crossman et al., 2011; Kim et al., 1992; Lyon et al., 2009; 

Wiegerinck et al., 2009). The T-tubules are extensions of the sarcolemma that penetrate into 

the cardiomyocyte; these structures are protein rich (e.g. LTCC and NCX), and subsections 

of the T-tubule network participate in dyadic coupling with the SR, which facilitates the 

CICR process. In rodents, T-tubules and dyads are also absent at birth, but begin to form and 

mature early in life between postnatal days 10 and 20 (Chen et al., 2013; Ziman et al., 2010). 

Consequently, fetal–neonatal rodent cardiomyocytes have fewer calcium sparks and less 

SR Ca2+ content and exhibit smaller calcium transients, with a slower upstroke and decay 

time (Seki et al., 2003; Ziman et al., 2010). As the cellular organization matures, excitation–

contraction coupling becomes more efficient, with less dependence on trans-sarcolemmal 

Ca2+ influx (via NCX and T-type calcium channels), increased SR Ca2+ content and greater 

reliance on SERCA reuptake, resulting in prominent calcium transients (Bassani & Bassani, 

2002; Cohen & Lederer, 1988; Escobar et al., 2004; Reppel et al., 2007; Swift et al., 2020).

Measurements of calcium require the use of live cardiomyocytes, and as a result, these 

studies are extremely limited in fetal, neonatal or infant human cardiomyocytes. Using 

single cells isolated from myocardial specimens obtained intraoperatively, Cohen and 

Lederer (1993) reported that paediatric ventricular myocytes (3–18 months of age) had 

reduced ICa density and a prominent Ca2+ window, in comparison to adults (Table 

6). Likewise, Pelzmann et al. (1998) reported a large window current in paediatric 

ventricular myocytes (16–91 months of age), which favoured the occurrence of delayed 

after-depolarizations. A comparable shift in ICa steady-state inactivation and a prominent 

window current have also been observed in infant versus adult atrial myocytes (Cohen & 

Lederer, 1993). However, ICa density might be similar (Cohen & Lederer, 1993; Roca et 

al., 1996) or only slightly reduced in infant versus adult atrial cells (Hatem et al., 1995; 

Tipparaju et al., 2004). Tipparaju et al. (2004) reported that infant atrial myocytes had 

lower basal L-type calcium current amplitude (1.2 pA pF−1 at room temperature; 3–10 

months of age) compared with adults (2.6 pA pF−1; >50 years of age). Additional work 

by Wagner et al. (2005) found that infant atrial myocytes (3–8 months old) had a shorter 

calcium transient amplitude when adult action potentials were applied as voltage-clamp 

waveforms, but the amplitude increased when infant action potentials were applied (with 

a longer early repolarization phase). This finding suggests that infant atrial cells are more 

dependent on trans-sarcolemmal Ca2+ influx for contraction, whereby a prolonged early 

repolarization phase helps to increase Ca2+ entry and intracellular Ca2+ levels (with perhaps, 

less dependence on CICR and SR Ca2+ release). Hatem et al. (1995) also reported age-

dependent effects, whereby infant atrial cells (<1 month old) had a slower Ca2+ upstroke 

velocity compared with infant and adolescent cells (>1 month old), which is probably 

attributable to structural immaturity and inefficient coupling between LTCCs and RYRs. 

However, the authors did find evidence of CICR and SR Ca2+ release beginning at a young 

age (3 days to 4 years of age), because Ca2+ transient amplitudes in atrial myocytes were 

smaller when the SR Ca2+ load was depleted by caffeine or ryanodine.
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Age-dependent differences in excitation–contraction coupling are influenced by the variable 

expression of key calcium-handling proteins during development. Given that ICa density 

is reduced and CICR is inefficient in immature mammalian myocytes, these cells have 

a greater reliance on NCX for modulating intracellular [Ca2+] (Artman, 1992; Chin et 

al., 1997; Escobar et al., 2004). Age-dependent changes in NCX expression are also 

observed in the heart, wherein peak NCX expression is observed in the fetal heart, with 

reduced expression at birth or later in adulthood (Qu et al., 2000; Wiegerinck et al., 

2009). The human heart also displays an age-dependent increase in LTCCs, SERCA and 

phospholamban expression and a decrease in T-type calcium channel expression at birth and 

later in adulthood, in comparison to early gestation (Qu & Boutjdir, 2001; Wiegerinck et 

al., 2009). It is unclear whether these developmental differences occur continuously after 

birth, because human tissue samples are scarce, and results are almost always compared 

with adult tissue. Accordingly, our knowledge of perinatal cardiomyocyte development (e.g. 

fetal, infant and adolescent) is extremely limited. One exception is a study by Wiegerinck 

et al. (2009), which found that newborn ventricular muscle strips (<2 weeks of age) had 

reduced phospholamban expression, reduced phospholamban:SERCA ratio and increased 

NCX expression compared with slightly older infants (3–14 months of age). In tandem, 

newborn muscle strips displayed a blunted force–frequency response, suggesting that the SR 

Ca2+ load was decreased, possibly through increased Ca2+ extrusion (via NCX) or reduced 

Ca2+ reuptake (via SERCA). However, a blunted force–frequency response might also be 

attributed to differences in troponin isoform expression and sensitivity (Bhavsar et al., 1991). 

Finally, the newborn myocardium was less responsive to adrenergic stimulation; immature 

atrial cells responded to isoprenaline application with increased ICa peak and Ca2+ transient 

amplitude, but relaxation was unchanged, which can be attributed to reduced troponin 

sensitivity, phospholamban activity and/or SERCA reuptake (Bhavsar et al., 1991; Hatem 

et al., 1995). Decreased sensitivity to isoprenaline stimulation has also been attributed to 

increased expression of inhibitory G proteins in infant atrial cells (Tipparaju et al., 2004), 

which is in agreement with age-dependent studies performed using rabbit neonatal and 

adult myocytes (Kumar et al., 1996). As noted in the electrophysiology section, slight 

discrepancies between studies might be attributable to differences in recording temperature, 

small sample size, variable age groups and/or underlying pathology. All the described 

studies were conducted using cells obtained intraoperatively from neonates or children with 

congenital heart defects. Similar studies using ‘normal’ cardiac tissue are not feasible.

Conclusion

Here, we have highlighted key foundation studies that have informed our understanding 

of human cardiomyocyte maturation during postnatal development. Based on existing 

knowledge, it is evident that human atrial and ventricular myocytes undergo significant 

age-dependent changes in size, structure, electrophysiology and contractile phenotype as 

they transition from the intrauterine to extrauterine environment. Collectively, these studies 

suggest that human myocytes evolve rapidly within the first few months to 1 year, but 

do not reach a fully mature adult phenotype until the first decade of life (e.g. polyploidy 

and intracellular coupling). However, several limitations should be considered. Notably, 

human developmental studies rely on the availability of tissue biospecimens that are 
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collected either post-mortem or as medical waste from patients undergoing palliative or 

corrective heart surgery. Biospecimens collected during surgery are dependent on clinical 

diagnosis; neonatal patients (<1 month of age) are likely to have more severe cyanotic 

heart conditions that require early intervention, whereas older infants or children are more 

likely to have acyanotic conditions. Furthermore, the type of tissue available will depend 

on the corrective surgery performed; atrial appendage tissue might be procured during 

cannulation for cardiopulmonary bypass, whereas ventricular tissue might be resected in 

select patient groups (e.g. tetralogy of Fallot, truncus arteriosus or patients receiving a 

ventricular assist device). As such, patient age, disease, course of treatment, medication use 

and the anatomical location of tissue samples are all confounding factors that can influence 

data interpretation. It is also important to note that most of the studies described in this 

review article estimate the timing of cardiomyocyte maturation based on a relatively small 

sample size, with a limited age distribution; therefore, temporal patterns are only a rough 

approximation. Experimental animal models and/or hPSC-CM can help to fill in knowledge 

gaps regarding postnatal maturation into adulthood, but this should be pursued with caution, 

because species-specific differences and/or the lack of maturity beyond a fetal/neonatal 

phenotype have been well documented.

Human cardiomyocyte maturation is a dynamic process that warrants further investigation 

for a variety of reasons. First, defining the normal developmental process can help us to 

understand better the cardiac diseases that develop during gestation or shortly after birth. 

Second, a number of cardiac medications have been designed for adults, with off-label 

use in neonates, infants and paediatric patients (Bates et al., 2012; Pasquali et al., 2008). 

A more thorough understanding of paediatric cardiomyocyte physiology can better inform 

clinical care decisions and the use of age-appropriate drug therapies for young patients. 

Third, human adult cardiomyocytes are considered non-proliferative, because cell-cycle 

arrest is observed within the first year of life. Identifying key regulators of cell-cycle 

arrest can identify new strategies to ‘restart’ cell proliferation, with a focus on regenerating 

and repairing injured muscle tissue (Patterson et al., 2017; Porrello et al., 2011; Puente 

et al., 2014; Velayutham et al., 2019). Finally, experimental animal or hPSC-CM models 

will continue to play a prominent role in cardiac research. By characterizing the temporal 

patterns of human cardiomyocyte maturation, we can optimize the use of these experimental 

models at developmentally appropriate stages and improve the applicability of our findings.
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Figure 1. Electron microscopy of fetal hearts
A, fetal hearts at 20 weeks of gestation, with some desmosomes forming at intercalated 

disc (arrows). Note scattered myofibrils. B, fetal heart at 30 weeks of gestation, with more 

abundant desmosomes at the intercalated disc and more densely packed myofibrils. Arrows 

indicate sarcoplasmic reticulum tubules at the Z-line, which were not present in the earlier 

period. Abbreviations: d, desmosomes; fa, fascia adherens; gj, gap junctions; mf, myofibrils. 

Scale bars: 0.53 μM. Adapted with permission from Kim et al. (1992).
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Figure 2. Action potential morphology differs between neonatal and adult human atrial 
cardiomyocytes
Action potential waveforms recorded at stimulation cycle lengths (CL) of 1000 and 400 ms. 

Adapted with permission from Wang et al. (2003).
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