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ABSTRACT 

Therapeutic approaches targeting proteins on the surface of cancer cells have emerged as an 

important strategy for precision oncology. To fully capitalize on the potential impact of drugs 

targeting surface proteins, detailed knowledge about the expression patterns of the target proteins 

in tumor tissues is required. In castration-resistant prostate cancer (CRPC), agents targeting 

prostate-specific membrane antigen (PSMA) have demonstrated clinical activity. However, PSMA 

expression is lost in a significant number of CRPC tumors, and the identification of additional cell 

surface targets is necessary in order to develop new therapeutic approaches. Here, we performed 

a comprehensive analysis of the expression and co-expression patterns of trophoblast cell-surface 

antigen 2 (TROP2), delta-like ligand 3 (DLL3), and carcinoembryonic antigen-related cell adhesion 

molecule 5 (CEACAM5) in CRPC samples from a rapid autopsy cohort. We show that DLL3 and 

CEACAM5 exhibit the highest expression in neuroendocrine prostate cancer (NEPC), while TROP2 

is expressed across different CRPC molecular subtypes, except for NEPC. We observed variable 

intra-tumoral and inter-tumoral heterogeneity and no dominant metastatic site predilections for 

TROP2, DLL3, and CEACAM5. We further show that AR amplifications were associated with higher 

expression of PSMA and TROP2 but lower DLL3 and CEACAM5 levels. Conversely, PSMA and 

TROP2 expression was lower in RB1-altered tumors. In addition to genomic alterations, we 

demonstrate a tight correlation between epigenetic states, particularly histone H3 lysine 27 

methylation (H3K27me3) at the transcriptional start site and gene body of TACSTD2 (encoding 

TROP2), DLL3, and CEACAM5, and their respective protein expression in CRPC patient-derived 

xenografts. Collectively, these findings provide novel insights into the patterns and determinants of 

expression of TROP2, DLL3, and CEACAM5 with important implications for the clinical development 

of cell surface targeting agents in CRPC. 
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INTRODUCTION 

Prostate cancer (PC) ranks as the second leading cause of cancer-related deaths among 

American men, claiming over 34,700 lives annually 1. While androgen deprivation therapy (ADT) is 

initially effective in most men with advanced PC, the emergence of castration-resistant prostate 

cancer (CRPC) and resistance to androgen receptor (AR) signaling inhibitors (ARSIs) develops in 

almost all patients 2,3. 

It is increasingly recognized that resistance to contemporary AR targeting therapies is associated 

with a diverse spectrum of disease phenotypes characterized by morphologic and molecular 

changes, which are often associated with a loss of prostate lineage features (such as the expression 

of AR) and the gain of more stem-like and neuronal features 4–7. Therefore, disease 

subclassifications were proposed that are based on the assessment of AR and neuroendocrine 

marker expression 5,8,9. Among these molecular subtypes, neuroendocrine prostate cancer (NEPC), 

characterized by the absence of AR signaling and gain of neuroendocrine features, represents the 

most aggressive disease subtype, with chemotherapy as the only available treatment option 4,10,11. 

There is, therefore, a critical clinical need for novel therapeutics in this difficult-to-treat and 

prognostically poor subset of patients.  

Targeting cell-surface antigens through the delivery of cytotoxic agents directly to cancer sites or 

by generating anti-tumor immune responses are promising therapeutic approaches for advanced 

cancers 12–17. Prostate-specific membrane antigen (PSMA) is currently the most extensively 

validated theranostic cell surface target in PC 18,19. Although PSMA shows a favorable and relatively 

prostate lineage-restricted expression, up to 40% of CRPC patients show loss or heterogeneous 

PSMA expression 18,20–22. In particular, the absence of PSMA expression is nearly universal in NEPC 

20,21. To maximize the therapeutic benefit, there is a great need to understand the expression 

patterns of other cell surface proteins. 

Of the constantly expanding spectrum of cell-surface targets in oncology, delta-like ligand 3 

(DLL3), carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5), and trophoblast 

cell-surface antigen 2 (TROP2) have been a focus for pre-clinical and clinical drug development 

efforts for advanced PC 23–28. 

DLL3 is a ligand that inhibits the Notch signaling pathway and is expressed in the spinal cord and 

nervous system during embryonic development 24. Importantly, DLL3 is expressed at high levels in 

the majority of tumors that exhibit high-grade neuroendocrine/small cell carcinoma features, making 

it a potentially valuable target for NEPC 23–25,29. Similarly, CEACAM5, a member of the 

carcinoembryonic antigen family, is overexpressed in a larger fraction of solid tumors, with high 

expression observed in NEPC 26,30. Notably, several antibody-drug conjugates (ADCs) targeting 

CEACAM5 have been developed and explored in the context of different solid tumors 26,31,32. TROP2 

is a transmembrane protein that is expressed in multiple malignancies27,33–36. Clinical trials using 
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TROP2-targeting agents have shown efficacy and a TROP2 ADC sacituzumab govitecan has been 

approved for triple-negative breast cancer and urothelial carcinoma, and phase 2 studies in CRPC 

are currently ongoing 35,36. 

 Since the efficacy of DLL3-, CEACAM5-, and TROP2-targeting strategies will in part depend on 

the expression of these antigens, it is informative to examine their expression in clinically relevant 

and well-annotated metastatic CRPC (mCRPC) cohorts. From a clinical perspective, it is particularly 

relevant to understand antigen expression across different molecular subtypes of PC and to 

establish the inter- and intra-patient expression variability. While prior studies have established the 

expression of these proteins in smaller PC cohorts, their patterns of expression and intra- and inter-

tumoral heterogeneity have not been rigorously studied in metastatic CRPC. This is largely due to 

the difficulties of accessing biospecimen cohorts across diverse metastatic sites that provide a 

comprehensive representation of the metastatic tumor burden within and across different patients 7.  

In this study, we determined the expression of DLL3, CEACAM5 and TROP2 in 753 tissue 

samples from 52 mCRPC patients. Leveraging the unique biospecimens from the University of 

Washington rapid autopsy cohort, we show that DLL3 and CEACAM5 expression is mostly restricted 

to tumors lacking AR signaling activity and expressing neuroendocrine markers. Conversely, 

TROP2 is expressed at high levels in most tumors except for NEPC. Despite these molecular 

subtype-specific expression differences, we demonstrate that TROP2 and DLL3 show relatively 

limited inter-tumoral heterogeneity. In addition, we show a relative enrichment of cell surface antigen 

expression in certain somatic genomic backgrounds, and we highlight a novel epigenetic 

mechanism involved in the regulation of DLL3, CEACAM5, and TROP2. These data provide 

valuable information on therapeutic target expression in CRPC and present a rationale for informed 

co-targeting strategies. 

 

RESULTS 

Patterns of DLL3, CEACAM5, PSMA and TROP2 protein expression across molecular 

subtypes of mCRPC 

To contextualize the expression patterns of cell surface antigens in mCRPC, we utilized a recently 

published molecular subgrouping framework based on AR signaling and neuroendocrine (NE) 

marker expression 5,6,20,37. This approach allows for the classification of tumors into four clinically 

relevant subtypes: prostatic adenocarcinoma (AR+/NE-), NEPC (AR-/NE+), amphicrine carcinoma 

(AR+/NE+) and double negative CRPC (AR-/NE-) 20,37. To investigate the expression of DLL3, 

CEACAM5, and TROP2, we employed previously validated antibodies and immunohistochemistry 

(IHC) assays on a dataset consisting of 753 samples from 372 distinct metastatic sites of 52 patients 

who underwent a rapid autopsy as part of the University of Washington Tissue Acquisition Necropsy 

(UW-TAN) cohort 5,6.  
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DLL3, CEACAM5, and TROP2 exhibited membranous and cytoplasmic reactivity, with substantial 

differences in semiquantitative expression levels (H-score) across different molecular subtypes 

(Figure 1A). Consistent with prior reports, we observed the highest levels of DLL3 expression in 

AR-/NE+ tumors (median H-score: 90; range, 0-180) (Figure 1A,B) 24,25. Similarly, CEACAM5 

expression was high in AR-/NE+ tumors (median, 60; range, 0-200) (Figure 1A,C) 26. Of note, we 

also observed CEACAM5 reactivity in AR-/NE- tumors (Figure 1C). TROP2 expression was 

consistently present in AR+/NE- (median H-score: 200; range, 0-200), AR+/NE+ (median H-score: 

180; range, 0-200), and AR-/NE- (median H-score: 200; range, 0-200) tumors (Figure 1A,D), 

whereas AR-/NE+ tumors were mostly negative (median, 0; range, 0-200). Notably, TROP2 showed 

more uniform expression compared to PSMA in the same cohort of AR+/NE- (median H-score:  120; 

range, 0-200) and AR-/NE- (median H-score: 12; range, 0-160) tumors  20. 

Next, we determined the co-expression patterns of cell surface antigens across patients. Applying 

a cut-off for positive expression of an H-score of ≥20 (Supplementary Figure 1), we found that in 

AR+/NE- tumors 233/304 (77%) of lesions showed expression of both TROP2 and PSMA, 7/304 

(2%) were positive only for PSMA, 61/304 (20%) were positive only for TROP2 and 3/304 (1%) 

showed neither PSMA nor TROP2 (Figure 1E, Supplementary Table 2, Supplementary Figure 

2). Similarly, in AR-/NE+ tumors, we found DLL3 and CEACAM5 co-expression in 38/71 (54%) 

tumors, DLL3 expression alone in 21/71 (30%), CEACAM5 expression alone in 3/71 (4.2%) and 

expression of neither target in 9/71 (13%) (Figure 1F, Supplementary Table 2, Supplementary 

Figure 2).  

 

Anatomic site distribution and inter- and intra-tumoral heterogeneity of TROP2, DLL3, and 

CEACAM5 expression  

Prior studies suggested differences in cell surface protein expression based on the tumor 

microenvironment in different anatomic locations 21. Indeed, lower levels of PSMA expression were 

observed in liver metastases 20,21. To examine the association between anatomic location and the 

level of cell surface antigen expression, we assessed DLL3, CEACAM5, and TROP2 expression 

across 11 major anatomic sites of CRPC metastases (Figure 2A). While bone was the most 

common metastatic site in this cohort, we observed a high frequency of liver and soft tissue 

metastases, irrespective of the molecular tumor phenotype (Figure 2A). We observed significantly 

lower TROP2 expression in liver (mean H-score difference: -17; 95% CI -31 to -3.0; p=0.02) and 

lung (mean H-score difference: -40; 95% CI -65 to -15; p=0.001) than in vertebral bone metastases 

(mean H-score: 131; 95% CI 110 to 151). CEACAM5 expression in the prostate was significantly 

higher (mean H-score difference: 19; 95% CI 9.2 to 28; p<0.001) than in vertebral bone (mean H-

score:19; 95% CI 5.6 to 33), whereas DLL3 expression was higher in liver (mean H-score difference: 

11; 95% CI 5.5 to 17; p<0.001) and lung (mean H-score difference: 14; 95% CI 4.3 to 23; p=0.005) 
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compared to vertebral bone metastases (mean H-score: 12; 95% CI 1.4 to 22). Note, while these 

differences were statistically significant, estimated differences in mean H-scores were very modest 

in magnitude and unlikely to be biologically relevant (Figure 2A). 

CRPC is known to be a heterogeneous disease, often showing phenotypic differences between 

different metastatic sites in a given patient 7,20,38. To characterize the heterogeneity of TROP2, DLL3, 

and CEACAM5 expression, we quantified the hypergeometric probability of concordant binarized H-

scores (both ≥20 or both <20) for random pairs of samples from a given patient (intra-patient, inter-

tumoral) or from the same tumor (intra-tumoral) (Figure 2B). Estimated heterogeneity was highest 

for PSMA (intra-patient 17% and intra-tumoral 5%, previously reported20), then CEACAM5 (14% 

and 6%), then TROP2 (8% and 2%), and finally DLL3 (7% and 2%). 

We analyzed TROP2, DLL3, and CEACAM5 expression levels across different metastatic sites 

and classified patients into three groups: non-expressors, heterogeneous expressors, and high-

expressors. In 39/52 (75%) of cases, DLL3 showed no expression, while in 9/52 (17%) of cases, it 

showed heterogenous expression and in 4/52 (8%) of cases, it showed homogeneous high 

expression. Of note, most cases with heterogeneous expression displayed different molecular 

subtypes across metastatic sites. Furthermore, except for two cases (Figure 2C), DLL3 labeling 

was present in AR-/NE+ metastases, even in the context of metastases of other molecular subtypes, 

confirming the tight association between DLL3 expression and neuroendocrine differentiation even 

in admixed molecular phenotype backgrounds. TROP2 showed the most consistent expression 

among the three analytes tested in this study. Only 6/52 (12%) cases showed no expression, and 

negative cases were enriched for NE+ tumors, with only one AR+/NE- dominant case lacking 

TROP2 reactivity (Figure 2D). Heterogenous TROP2 expression was present in at least one tumor 

in 12/52 (23%) cases, while tumors in 34/52 cases (65%) were uniformly positive. This high rate of 

TROP2 expression compares favorably to the expression of PSMA in the same cohort (25% no 

expression, 44% heterogeneous, and 31% uniformly positive) 20. CEACAM5, on the other hand, was 

not expressed in 26/52 (51%) of cases, heterogeneously expressed in 22/51 (43%) of cases, and 

uniformly positive in only 3/51 (6%) of cases (Figure 2E). Notably, even in some cases which 

showed AR-/NE+ disease in the majority of metastases, CEACAM5 expression was low; conversely, 

a subset of tumors that lacked neuroendocrine features showed reactivity, suggesting that molecular 

subtype alone might not be sufficient to determine CEACAM5 expression. 

 

Genomic and epigenetic determinants of TROP2, PSMA, DLL3, and CEACAM5 expression 

To explore associations between TROP2, PSMA, DLL3, and CEACAM5 expression and somatic 

genomic alterations, we evaluated logistic regressions and found statistically significantly higher 

odds of PSMA expression (OR 25; 95% CI 2.4 to 260; p=0.007) in tumors with AR amplification but 

lower odds of PSMA expression in tumors with RB1 homozygous loss (OR 0.02; 95% CI 0.0 to 0.3; 
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p=0.006) (Figure 3A, Supplementary Table 3). We also found lower odds of TROP2 expression 

in tumors with RB1 homozygous loss (OR 0; 95% CI 0.0 to 0.02; p<0.001) and in tumors with PTEN 

alterations (OR 0.77; 95% CI 0.77 to 0.77; p<0.001). In independent publicly available 

transcriptomics and genomics data from 99 mCRPC cases from the StandUp2Cancer West Coast 

Dream Team (SU2C-WCDT), we observed higher odds of CEACAM5 expression in tumors with 

PTEN deletions (OR 4.9; 95% CI 1.3 to 21; p=0.02), lower odds of CEACAM5 expression in tumors 

with AR amplifications (OR 0.2; 95% CI 0.05 to 0.74; p=0.02), and lower odds of DLL3 in tumors 

with AR amplifications (OR 0.06; 95% CI 0.0 to 0.4; p=0.01), and higher odds of TACSTD2 

expression with AR amplification (OR 13; 95% CI 1.8 to 260; p=0.03) (Figure 3B, Supplementary 

Table 4). 

Prior studies have shown that FOLH1 (PSMA) expression is regulated by an orchestrated 

interaction between DNA methylation and histone acetylation changes 20. To study the epigenetic 

configuration of TROP2 (encoded by TACSTD2), DLL3, and CEACAM5 in tumors with variable 

levels of target expression, we evaluated previously published whole-genome bisulfite sequencing 

(WGBS) and histone H3 lysine 27 acetyl (H3K27ac) and histone H3 lysine 27 tri-methyl 

(H3K27me3) chromatin immunoprecipitation sequencing (ChIP-seq) from CRPC patient-derived 

xenograft (PDX) models. We observed that in AR+/NE- PDX lines the TACSTD2 locus was enriched 

for H3K27ac marks, consistent with an actively transcribed gene locus (Figure 3C). AR-/NE+ 

tumors, however, showed gain of the repressive polycomb mark H3K27me3. No consistent DNA 

methylation changes associated with TACSTD2 were observed (Supplementary Figure 3). We 

further investigated the chromatin patterns at the DLL3 and CEACAM5 locus in AR+/NE- and AR-

/NE+ tumors and observed H3K27ac enrichment in AR-/NE+ lines. DLL3- and CEACAM5-negative 

tumors were characterized by enrichment for H3K27me3. Collectively, these data demonstrate that 

distinct chromatin states are associated with TROP2, DLL3, and CEACAM5 expression. 

 

DISCUSSION 

Targeting cell-surface proteins has opened novel avenues for cancer therapy 12–17. In advanced 

metastatic PC, PSMA-directed agents have demonstrated encouraging clinical activity, which 

culminated in the recent approval of PSMA-directed radioligand therapy 177-Lu-PSMA-617 39,40. 

However, a notable fraction of mCRPC tumors exhibit insufficient levels of PSMA expression for 

effective targeting 41. Furthermore, heterogeneity in expression that may not be detected on 

molecular imaging can drive treatment resistance. While experimental approaches to augment 

PSMA expression are being explored 20,42, it is crucial to investigate alternative cell-surface antigens 

to overcome primary or secondary resistance to PSMA-directed therapies and optimize therapeutic 

outcomes. 



8 

 

An additional challenge in the treatment of CRPC is the presence of molecular subtypes, which 

show distinct phenotypic and expression differences 5. Importantly, the expression patterns of cell 

surface proteins vary across these subtypes; for example, PSMA is rarely found in NEPC 20, and 

even within a subtype, there can be substantial heterogeneity in cell surface protein expression 20,22. 

Pan-cancer analyses have determined that cell surface proteins are being expressed in a 

lineage-independent manner across multiple tumor types. TROP2 is one such protein that has been 

shown to be present in multiple epithelial-derived tumors 34–36. Sacituzumab govitecan and other 

TROP2-directed ADCs, including datopotamab deruxtecan, are currently in clinical development 43. 

Sacituzumab govitecan, which has already been approved for triple-negative breast cancer and 

urothelial carcinoma, has also displayed activity across multiple tumor types and is presently under 

evaluation in mCRPC (NCT03725761) 27. 

Given the lack of detailed TROP2 protein expression data in CRPC, we determined TROP2 

levels in 52 patients of the UW rapid autopsy cohort. Our analyses revealed that TROP2 protein 

expression is present in 88% of cases, with 34/52 patients (65%) showing TROP2 expression in all 

metastatic sites. Prior studies have suggested that TROP2 expression induces a neuroendocrine 

phenotype and that TROP2 is enriched in NEPC 44. However, subsequent in silico analyses have 

demonstrated low TACSTD2 (which encodes for TROP2) transcript levels in NEPC 20,27. Similarly, 

our data show that TROP2 expression is absent in most NEPC (AR-/NE+) tumors. Collectively, 

TROP2 expression does not appear to be associated with the prognostically poor neuroendocrine 

subtype, and therefore, TROP2 targeting approaches are likely not effective in NEPC. Notably, 

compared to PSMA, which we previously analyzed in the same set of tissues 20, TROP2 

demonstrated more robust and uniform reactivity in most other CRPC tumors. Of particular interest 

is the high expression of TROP2 in AR-/NE- tumors, a molecular tumor subtype for which there are 

presently only limited specific therapies 6. 

Clinically, NEPC represents a major challenge and novel therapies for this aggressive variant of 

CRPC are needed 3,10,11. DLL3 is an inhibitory ligand of the Notch signaling pathway, which has 

been found to be expressed on the surface of a variety of different neuroendocrine neoplasms, 

including NEPC 24,25,45. Although some early clinical trials with DLL3 ADCs (Rova-T and SC-002) 

were impeded by systemic toxicities due to payload conjugation concerns, recent studies using 

bispecific T-cell engagers (such as tarlatamab, BI 764532, and HPN328) have demonstrated 

encouraging early results 23,24,46–48. This expanding spectrum of targeting agents make DLL3 a very 

interesting and potentially relevant target in NEPC. Our protein expression data corroborated that 

DLL3 is primarily expressed in AR-/NE+ (NEPC) tumors. Notably, when considering all tumors, 

DLL3 positivity was limited, but 83% (69/83) of NEPC tumors showed protein expression, while no 

AR+/NE- tumors exhibiting positivity, indicating that DLL3 is a sensitive and specific marker for 

NEPC. This information is relevant for the development of DLL3 targeting agents for NEPC imaging.  



9 

 

In addition to DLL3, CEACAM5 has been shown to be expressed at high levels in NEPC 26. 

Although CEACAM5 expression can also be found in gastrointestinal, genitourinary, breast and lung 

cancers, a recent unbiased surface profiling effort showed a strong enrichment of CEACAM5 

expression in NEPC and subsequent in vivo models demonstrated activity of a CEACAM5 ADC in 

NEPC PDX models 26,30. While our study confirmed the expression of CEACAM5 in NEPC, we also 

noted expression in AR-/NE- tumors. Of note, 4/52 (8%) patients showed no expression of TROP2, 

CEACAM5, DLL3 and PSMA. 

Our somatic genomic association studies showed that lower levels of TROP2 and PSMA were 

present in tumors with homozygous RB1 loss, whereas higher levels were seen in tumors with AR 

amplification. Conversely, high DLL3 expression was seen in RB1 deleted cases. While these data 

present intriguing novel insights between the expression of TROP2, DLL3 and PSMA with common 

genomic alterations in CRPC, it is important to note that these associations are also tightly 

associated with tumor phenotype (i.e., AR amplification is seen in AR+/NE- tumors, whereas RB1 

loss is enriched in NEPC). Therefore, it is challenging to untangle the genomic alteration from 

broader cellular state shifts that contribute to differential expression patterns 8,11,49. 

DLL3 and CEACAM5 have been shown to be regulated by the neuronal transcription factor 

ASCL1 25,26. Here, we further determined the epigenetic context of these gene loci in tumors with 

high and low DLL3 and CEACAM5 expression. We observe that the repressive polycomb mark 

H3K27me3 shows strong enrichment at transcriptional start sites and gene bodies of both genes in 

PDX tumors with low DLL3 and CEACAM5 expression. Similarly, we show that PDX lines that lack 

TROP2 expression also showed enrichment for H3K27me3. This contrasts with our prior findings 

demonstrating that DNA methylation alterations, rather than polycomb marks, are associated with 

PSMA repression. Thus, polycomb repressive marks, which are established by Enhancer of zeste 

homolog 2 (EZH2), are likely an important epigenetic determinant of TROP2, DLL3 and CEACAM5 

expression. It will therefore be important to test in future studies if EZH2 inhibitors, which are 

currently in clinical development for prostate cancer, can be used to pharmacologically enhance the 

expression of these cell surface antigens and, therefore, increase tumor targeting.  

It is essential to consider several limitations of our study. First, this autopsy-based, single-

institution study included only patients with extensive pretreatment. Thus, it remains to be 

established how our findings would apply to patients in earlier stages of the disease, including 

castration-sensitive disease. Second, the use of tissue microarray sampling may not entirely capture 

the intra-tumoral heterogeneity of individual lesions. Additionally, pre-analytical variables must be 

taken into account, particularly when evaluating bone lesions, as with all studies using formalin-

fixed, paraffin-embedded tissues. Despite this potential limitation, it's worth noting that we did not 

observe a trend towards lower expression in bone metastasis. 
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In summary, we have investigated the expression of clinically relevant cell surface targets in 

mCRPC, providing the most comprehensive tissue-based assessment of TROP2, DLL3, and 

CEACAM5 in CRPC to date. Our findings highlight the molecular subtype-specific expression of 

these proteins and provide crucial insights for the future clinical development of these drug targets. 

 

MATERIALS AND METHODS 

Human tissue samples 

This study was approved by the Institutional Review Board of the University of Washington 

(protocol no. 2341). Formalin-fixed, paraffin-embedded tissues from 52 patients were used to 

construct tissue microarrays as described previously 20.  

 

Immunohistochemical staining 

Slides were deparaffinized and steamed for 45 min in Target Retrieval Solution (Dako Cat. 

S169984-2). Primary antibodies and dilutions used were as follows: TROP2 (Abcam, ab214488, 

1:200), CEACAM5 (Agilent, M7072, 1:20), and PSMA (Agilent, M3620, 1:20). PV Poly-HRP Anti-

Mouse IgG (Leica Microsystems Cat. PV6114) or Anti-Rabbit IgG (Leica Microsystems Cat. 

PV6119) was used as secondary antibody. Further signal amplification was done for CEACAM5 

immunostains by using the Biotin XX Tyramide SuperBoost kit (Life Tech Cat. B40931). DLL3 

staining was carried out on a Roche Benchmark Ultra instrument (Roche) using DLL3 (Ventana, 

SP347, 790-7016, 1µg/ml) and the CC1 module. DAB was used as the chromogen and 

counterstaining was done with hematoxylin and slides were digitized on a Ventana DP 200 Slide 

Scanner (Roche). Immunoreactivity was scored in a blinded manner by two pathologists (M. P. R., 

E. S.), whereby the staining level (“0” for no brown color, “1” for faint and fine brown chromogen 

deposition, and “2” for prominent chromogen deposition) was multiplied by the percentage of cells 

at each staining level, resulting in a total H-score with a range of 0–200. Note that PSMA and 

CEACAM5 expression in this cohort were detailed previously 20. 

 

Genomic and epigenomic studies 

Somatic alterations of the University of Washington rapid autopsy samples 5,6,38,50,51 and 

genomics calls from the SU2C-WCDT were derived from published sources 52,53. ChIP-seq and 

whole genome bisulfite sequencing data were published previously and analyzed as described 

previously 20,54,55. 

 

Statistics 

Mean H-scores for each cell surface antigen were estimated using linear mixed models with fixed 

effects for anatomical site and random effects for patients to account for repeated sampling. 
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Associations between expression (dichotomized FPKM) and genomic mutations were evaluated 

using logistic regressions with random effects for patients to account for repeated sampling. Intra-

tumoral and inter-tumoral heterogeneity were estimated by bootstrap random sampling of 1000 pairs 

of tissue samples from the same tumor block or from the same patient and evaluating whether H-

scores were both above or both below a pre-specified threshold of ≥20. Bias-corrected and 

accelerated 95% confidence limits used the R package Bootstrap 50. In all analyses, a p-value <0.05 

was considered statistically significant. 
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FIGURE LEGENDS 

Figure 1. Distribution and co-expression patterns of DLL3, CEACAM5, PSMA, and TROP2 

expressions across different molecular subtypes of mCRPC. A. Representative images of cell 

surface antigen expressions (determined by IHC) across different molecular subtypes (AR+/NE- 

[green], AR-/NE+ [yellow], AR+/NE+ [red], and AR-/NE- [blue]). Molecular subtypes were defined 

by expression of AR signaling markers (AR, NKX3.1) and NE markers (SYP, INSM1) as described 

previously 20. Box plots show the distribution of B. DLL3, C. CEACAM5, and D. TROP2 expressions 

based on H-score in the UW-TAN cohort (N=753). Box and dot colors indicate molecular phenotypes 

as above. E. Top, micrographs of PSMA and TROP2 in AR+/NE- tumors. Bottom, donut chart shows 

the distribution of PSMA and TROP2 reactivity. F. Top, micrographs of DLL3 and CEACAM5 in AR-

/NE+ tumors. Bottom, donut chart shows the distribution of DLL3 and CEACAM5 reactivity. (See 

Supplementary Table 2 for all co-expression profiles). Scale bars denote 50 μm. 

Figure 2. Anatomic site distribution and inter- and intra-tumoral heterogeneity of TROP2, 

DLL3 and CEACAM5 expression in mCRPC. A. Distribution of DLL3, TROP2, and CEACAM5 

protein expression across different organ sites based on IHC H-scores. Dot colors indicate 

molecular phenotypes. Each dot represents a tumor sample; the color codes indicate the molecular 

subtype (AR+/NE- [green], AR-/NE+ [yellow], AR+/NE+ [red], and AR-/NE- [blue]). B. Inter- and 

intra-tumoral heterogeneity of TROP2, PSMA, CEACAM5 and DLL3 expression. Mean (95% 

confidence interval) hypergeometric expression heterogeneity indices across different metastatic 

sites in a given patient (inter-tumoral heterogeneity, red) and within a metastatic site (intra-

tumoral heterogeneity, gray). Dot and box plots showing the distribution of C. DLL3, D. TROP2, 

and E. CEACAM5 protein expression IHC H-scores in 52 cases from the UW-TAN cohort. Each 

dot represents a tumor sample; the color codes indicate the molecular subtype (AR+/NE- [green], 

AR-/NE+ [yellow], AR+/NE+ [red], and AR-/NE- [blue]). Gray shadings show interquartile ranges. 

Percentages show the frequencies of cell surface antigens in cases with uniformly low/negative 

expression (all sites H-score <20), heterogeneous expression (both H-scores <20 and H-score ≥20) 

and uniformly high expression (all sites H-scores ≥20). 

Figure 3. Genetic and epigenetic determinants of TROP2, PSMA, DLL3 and CEACAM5 

expression in CRPC. A. Mosaic plots show the frequencies of TROP2, PSMA, DLL3, and 

CEACAM5 protein expression determined by IHC (1, expressed; 0, not expressed) as a function of 
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the genomic status of AR, CHD1, PTEN, RB1, and TP53 (1, altered; 0, not altered) in 44 cases of 

the UW-TAN cohort. B. Mosaic plots show the frequencies of TACSTD2, FOLH1, DLL3 and 

CEACAM5 mRNA expression determined by RNA-seq (1, expressed; 0, not expressed) as a 

function of the genomic status of AR, BRCA2, CHD1, PTEN, RB1, SPOP, and TP53 (1, altered; 0, 

not altered) in 99 cases of the SU2C-WCDT. C. Representative H3K27ac (gray) and H3K27me3 

ChIP-seq tracks from AR+/NE- (LuCaP 77 and LuCaP 78) and AR-/NE+ (LuCaP 93 and LuCaP 

145.1) PDX lines. Note the inverse differential enrichment pattern of H3K27ac and H3K27me3 

(yellow box) in the upstream regulatory regions of TACSTD2, DLL3, and CEACAM5. 
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Figures

Figure 1

Distribution and co-expression patterns of DLL3, CEACAM5, PSMA, and TROP2 expressions across
different molecular subtypes of mCRPC. A. Representative images of cell  surface antigen expressions
(determined by IHC) across different molecular subtypes (AR+/NE-  [green], AR-/NE+ [yellow], AR+/NE+



[red], and AR-/NE- [blue]). Molecular subtypes were de�ned by expression of AR signaling markers (AR,
NKX3.1) and NE markers (SYP, INSM1) as described previously 20 . Box plots show the distribution of B.
DLL3, C. CEACAM5, and D. TROP2 expressions based on H-score in the UW-TAN cohort (N=753). Box and
dot colors indicate molecular phenotypes as above. E. Top, micrographs of PSMA and TROP2 in AR+/NE-
tumors. Bottom, donut chart shows  the distribution of PSMA and TROP2 reactivity. F. Top, micrographs
of DLL3 and CEACAM5 in AR- /NE+ tumors. Bottom, donut chart shows the distribution of DLL3 and
CEACAM5 reactivity. (See Supplementary Table 2 for all co-expression pro�les). Scale bars denote 50 μm.



Figure 2

Anatomic site distribution and inter- and intra-tumoral heterogeneity of TROP2,  DLL3 and CEACAM5
expression in mCRPC. A. Distribution of DLL3, TROP2, and CEACAM5  protein expression across different
organ sites based on IHC H-scores. Dot colors indicate  molecular phenotypes. Each dot represents a
tumor sample; the color codes indicate the molecular  subtype (AR+/NE- [green], AR-/NE+ [yellow],
AR+/NE+ [red], and AR-/NE- [blue]). B. Inter- and  intra-tumoral heterogeneity of TROP2, PSMA, CEACAM5
and DLL3 expression. Mean (95%  con�dence interval) hypergeometric expression heterogeneity indices
across different metastatic  sites in a given patient (inter-tumoral heterogeneity, red) and within a
metastatic site (intratumoral heterogeneity, gray). Dot and box plots showing the distribution of C. DLL3,
D. TROP2,  and E. CEACAM5 protein expression IHC H-scores in 52 cases from the UW-TAN cohort. Each
 dot represents a tumor sample; the color codes indicate the molecular subtype (AR+/NE- [green],
 AR-/NE+ [yellow], AR+/NE+ [red], and AR-/NE- [blue]). Gray shadings show interquartile ranges.
 Percentages show the frequencies of cell surface antigens in cases with uniformly low/negative
 expression (all sites H-score <20), heterogeneous expression (both H-scores <20 and H-score ≥20)  and
uniformly high expression (all sites H-scores ≥20).



Figure 3

Genetic and epigenetic determinants of TROP2, PSMA, DLL3 and CEACAM5 expression in CRPC. A.
Mosaic plots show the frequencies of TROP2, PSMA, DLL3, and  CEACAM5 protein expression
determined by IHC (1, expressed; 0, not expressed) as a function of  13 the genomic status of AR, CHD1,
PTEN, RB1, and TP53 (1, altered; 0, not altered) in 44 cases of  the UW-TAN cohort. B. Mosaic plots show
the frequencies of TACSTD2, FOLH1, DLL3 and  CEACAM5 mRNA expression determined by RNA-seq (1,



expressed; 0, not expressed) as a  function of the genomic status of AR, BRCA2, CHD1, PTEN, RB1, SPOP,
and TP53 (1, altered; 0,  not altered) in 99 cases of the SU2C-WCDT. C. Representative H3K27ac (gray)
and H3K27me3  ChIP-seq tracks from AR+/NE- (LuCaP 77 and LuCaP 78) and AR-/NE+ (LuCaP 93 and
LuCaP 145.1) PDX lines. Note the inverse differential enrichment pattern of H3K27ac and H3K27me3
 (yellow box) in the upstream regulatory regions of TACSTD2, DLL3, and CEACAM5.

Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

SupplementalMaterial.pdf

https://assets.researchsquare.com/files/rs-3745991/v1/fdba0a10517084db3f3ab8ae.pdf

