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Abstract 

Background:  MicroRNAs (miRNAs) are a class of non-coding RNAs that play a pivotal 
role as gene expression regulators. These miRNAs are typically approximately 20 to 25 
nucleotides long. The maturation of miRNAs requires Dicer cleavage at specific sites 
within the precursor miRNAs (pre-miRNAs). Recent advances in machine learning-
based approaches for cleavage site prediction, such as PHDcleav and LBSizeCleav, have 
been reported. ReCGBM, a gradient boosting-based model, demonstrates superior 
performance compared with existing methods. Nonetheless, ReCGBM operates solely 
as a binary classifier despite the presence of two cleavage sites in a typical pre-miRNA. 
Previous approaches have focused on utilizing only a fraction of the structural informa-
tion in pre-miRNAs, often overlooking comprehensive secondary structure information. 
There is a compelling need for the development of a novel model to address these 
limitations.

Results:  In this study, we developed a deep learning model for predicting the pres-
ence of a Dicer cleavage site within a pre-miRNA segment. This model was enhanced 
by an autoencoder that learned the secondary structure embeddings of pre-miRNA. 
Benchmarking experiments demonstrated that the performance of our model 
was comparable to that of ReCGBM in the binary classification tasks. In addition, our 
model excelled in multi-class classification tasks, making it a more versatile and practi-
cal solution than ReCGBM.

Conclusions:  Our proposed model exhibited superior performance compared 
with the current state-of-the-art model, underscoring the effectiveness of a deep 
learning approach in predicting Dicer cleavage sites. Furthermore, our model could 
be trained using only sequence and secondary structure information. Its capacity 
to accommodate multi-class classification tasks has enhanced the practical utility 
of our model.
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Background
MicroRNAs (miRNAs) are a class of non-coding RNAs that function as gene expression 
regulators across various animal model systems [1]. Typically, miRNAs interact with the 3’ 
untranslated region of target mRNAs, leading to mRNA degradation and the downregula-
tion of gene expression [2]. The dysregulated miRNA expression is closely associated with 
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a spectrum of diseases including cancer [3–5], cardiovascular diseases [6, 7], inflammatory 
diseases [8–10], neurodevelopmental disorders [11–13], and others [14].

Mature miRNAs are approximately 20 to 25 nucleotides long. In the canonical biogenetic 
pathway of mature miRNAs, genes related to miRNAs are transcribed into much longer 
RNAs known as primary miRNAs (pri-miRNAs), which can extend up to several kilobases 
in length [15]. These pri-miRNAs undergo processing by a microprocessor complex com-
prising Drosha, a ribonuclease (RNase) III enzyme, and its associated helper proteins [16]. 
This processing step results in the generation of short RNAs termed precursor RNAs (pre-
miRNAs). Subsequently, an RNase III endonuclease called Dicer cleaves the pre-miRNAs, 
giving rise to mature miRNAs [1]. The cleavage of pre-miRNAs produces two mature 
miRNA strands, one originating from the 5’ arm and the other from the 3’ arm of the pre-
miRNAs [17].

Several machine learning-based approaches that primarily focus on protein cleavage sites 
have emerged for cleavage site prediction [18–27]. Two support vector machine (SVM) 
models were introduced for human Dicer cleavage site prediction [28, 29]. Liu et al. pro-
posed a gradient boosting machine model called ReCGBM [30], which predicts the pres-
ence of a cleavage site within the central portion of a 14-nucleotide (nt) sequence. Although 
ReCGBM surpasses other SVM-based models in performance, there is still room for fur-
ther enhancement. Firstly, ReCGBM operates solely as a binary classifier, which means it 
can determine whether a given segment contains a cleavage site but cannot discern the 
originating arm of the segment. This limitation is significant because pre-miRNAs contain 
two Dicer cleavage sites, thereby constraining the applicability of ReCGBM within an intri-
cate end-to-end system. Secondly, ReCGBM underutilizes structural information inherent 
in pre-miRNAs although the secondary structure plays an important role in RNA function 
[31, 32].

In recent machine learning research, deep neural networks (DNNs) have demonstrated 
proficiency in computer vision and natural language processing, successfully finding appli-
cations in various bioinformatics studies. Their capacity to extract latent features from 
input data has rendered them particularly valuable. One notable advantage of employing 
computational models lies in the ability of the models to offer a practical and dependable 
alternative to laborious and expensive experiments, such as RNA structure prediction [33, 
34] and drug-drug interaction prediction [35, 36]. Furthermore, extensive investigations 
have been conducted on the application of deep learning models to bioinformatics and 
computational biology [37–39].

In response to the limitations observed in ReCGBM, we introduce DiCleave, a DNN-
based model. DiCleave combines pre-miRNA sequence segments with their secondary 
structure information facilitated by an autoencoder. Our model operates as both a binary 
classifier and a multi-class classifier, and its performance is comparable to that of ReCGBM 
in binary classification tasks. Our proposed multi-class classification model also demon-
strates compelling performance.

Methods
Concept of cleavage pattern

ReCGBM employs a 14-nt-long segment of pre-miRNA as an input, which we refer to 
as the “cleavage pattern”. A cleavage pattern is categorized as positive if it has a Dicer 



Page 3 of 15Mu et al. BMC Bioinformatics           (2024) 25:13 	

cleavage site at its center. Conversely, it is designated as negative in the absence of a 
Dicer cleavage site. Pre-miRNA naturally folds into its secondary structure, resulting in 
the existence of a “complementary sequence” corresponding to each cleavage pattern. If 
a base within a cleavage pattern is paired with another base, the corresponding base is 
part of the complementary sequence and denoted by its standard nucleotide symbol (“A”, 
“C”, “G”, or “U”). Conversely, if no pairing occurs, the corresponding base in the comple-
mentary sequence is designated as “O”. An illustrative example of a cleavage pattern and 
its corresponding complementary sequence is presented in Fig. 1.

Main dataset

We utilized a total of 956 human pre-miRNA sequences sourced from ReCGBM [30], 
which were obtained from the miRBase database (Release 22.1) [40], to form the main 
dataset in this study. Each pre-miRNA sequence had two positive cleavage patterns: one 
derived from the 5’ arm and the other from the 3’ arm. We randomly selected two 14-nt 

Fig. 1  Illustrations depicting a cleavage window and its corresponding complementary sequence are 
presented. The predicted secondary structure of hsa-mir-548ar is shown as an example. a The 5’ end cleavage 
window is denoted by the red region, consisting of a 14-nt sequence. The Dicer cleavage site is indicated by 
a red asterisk positioned at the center of this region. The complementary sequence of the 5’ end cleavage 
window is shown above. It is worth noting that the fifth and the last two bases (U, A, A, respectively) remain 
unpaired. To represent this structural feature, we employ the addition symbol (O). b The 3’ end cleavage 
window is highlighted in blue, and the 3’ Dicer cleavage site is denoted by a blue asterisk positioned at its 
center. The complementary sequence of the 3’ end cleavage window is shown below. The unpaired first 
guanine (G) in this sequence is represented by the symbol O
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sequences from each pre-miRNA that did not contain the Dicer cleavage site, one from 
the 5’ arm and the other from the 3’ arm, and designated them as negative cleavage pat-
terns. As a result, each pre-miRNA yielded four distinct cleavage pattern entities, result-
ing in a cumulative collection of 3,824 entities for our study. Furthermore, we accessed 
miRBase (Release 22.1, the latest release at the time) to obtain the full-length sequences 
of these human pre-miRNAs. The full-length pre-miRNA sequences were subsequently 
processed using RNAfold, an RNA secondary structure prediction tool available from 
ViennaRNA [41], to derive the secondary structures of the pre-miRNAs in the dot-
bracket format. The configuration of the main dataset is presented in Table 1.

Autoencoder dataset

We trained an autoencoder to extract the secondary structure embeddings of pre-miR-
NAs. We retrieved all pre-miRNA sequences from miRBase and excluded those already 
present in the main dataset. Subsequently, we filtered the remaining sequences by their 
lengths, retaining those that are 40 to 200 nucleotides long. These selected sequences 
were then subjected to RNAfold to generate their corresponding secondary structures. 
This process resulted in the compilation of 36,190 pre-miRNA secondary structures for 
the autoencoder training.

Data preprocessing

RNAfold generates predicted secondary structures in the dot-bracket format employ-
ing three symbols: the left bracket, “(”, the right bracket,”)”, and the dot “.”, where pairs of 
left and right brackets indicate matching base pairs, and dots represent unpaired bases. 
To represent the secondary structures, we utilized one-hot encoding. The autoencoder 
received a fixed 200-nt-long sequence as the input, whereby any sequence shorter than 
200 nt was supplemented with the placeholder “N”. Consequently, pre-miRNA second-
ary structures were encoded using four symbols: “(”, “)”, “.”, and “N”, yielding a 4 × 200 ten-
sor (Additional file 1: Fig. S1(a)).

We similarly employed one-hot encoding to represent the cleavage pattern sequences. 
As illustrated in Fig.  1, when a base in the pattern sequence remained unpaired, the 

Table 1  Configuration of the main dataset

* In the binary classification task, the patterns containing a cleavage site are labeled 1, whereas those lacking a cleavage site 
are labeled 0. In the multi-class classification task, the positive patterns from the 5’ arm are labeled 1, whereas those from 
the 3’ arm are labeled 2

Column Header Description Example

Pat 14-nt-long cleavage pattern sequence AGU​GAU​UGU​CUU​CC

ID Pre-miRNA ID in miRBase hsa-mir-4704

Seq Full-length pre-miRNA sequence CUU​AUC​CUA​GAC​ACU​AGG​CAU​GUG​AGU​GAU​
UGU​CUU​CCU​CAC​UCA​AUC​AGU​CAC​AUA​UCU​
AGU​GUC​UAG​AAU​GAG​

Dot-Seq Pre-miRNA secondary structure (((((.((((((((((((.((((((.((((((………..)))))).)))))).)))))))
))))).)))))

Dot-Pat Secondary structure of cleavage pattern (.((((((……

Comp Complementary sequence UOACU​AAC​OOOOOO

Arm In which arm is the cleavage pattern located? 5

Label* Whether containing a cleavage site or not 1
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corresponding position in the complementary sequence was denoted by the symbol 
“O”. Consequently, both the cleavage patterns and their complementary sequences were 
encoded using five symbols: “A”, “C”, “G”, “U”, and “O”. The dot-bracket notation of the 
secondary structure of the cleavage pattern was one-hot encoded with three symbols 
without the use of the placeholder “N”.

Datasets separation

To facilitate the training and evaluation of the binary classification models, we divided 
the main dataset into two distinct sub-datasets. One sub-dataset comprised all pat-
terns originating from the 5’ arm whereas the other contained patterns from the 3’ arm. 
From the 5’ arm sub-dataset, we randomly selected 800 positive and 800 negative pat-
terns to form a training dataset referred to as 5p_train. The remaining 312 patterns 
were reserved for an independent test set designated as 5p_test. A similar process was 
applied to the patterns from the 3’ arm, resulting in the creation of 3p_train and 3p_
test sets.

To construct sub-datasets for the multi-class classification model, we redefined the 
labels of the patterns in the main dataset. The negative patterns and the 5’ positive pat-
terns retained labels 0 and 1, respectively, whereas the labels of the 3’ positive patterns 
were modified to 2. Subsequently, we randomly selected 800 patterns each from the 
5’ positive set and the 3’ positive sets and 800 negative patterns each from the 5’ arm 
and the 3’ arm. As a result, a total of 3,200 patterns were designated as the training set 
(multi-training), whereas the remaining 624 patterns were set aside as an inde-
pendent test set (multi-test) for multi-class classification. An overview of the data 
processing and partitioning is shown in Fig. 2.

Architecture of autoencoder

We trained the autoencoder to extract embeddings of pre-miRNA secondary structures. 
The architecture of the autoencoder is visually presented in Fig. 3. As described in the 
preceding section, the input of the autoencoder was a 4 × 200 tensor. Initially, the input 

Fig. 2  An overview of data processing and partitioning for the binary and multi-class classification tasks
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was flattened following which the encoder produces a 64-dimensional embedding vec-
tor. Subsequently, the decoder reconstructed the input from this embedding.

We utilized all 36,190 pre-miRNA secondary structures in  the training process. We 
computed the difference for each element in an input sequence compared with its corre-
sponding regenerated sequence using the mean squared error loss function. The training 
procedure was guided by minimizing the loss value facilitated by the Adam algorithm 
[42]. To ensure the model’s generalization ability, we conducted training over 10 epochs.

Architecture of classification model

The architecture of the classification model was divided into two modules with each 
module comprising convolution unit 1 (CU1), convolution unit 2 (CU2), and a fully 
connected unit (FC). Both the binary and multi-class classification models shared the 
same architecture, differing only in the number of FC neurons and the configuration of 
the output layer. The input to the proposed model was a 13 × 14 tensor encompassing a 
nucleic acid sequence, a complementary sequence, and the secondary structure infor-
mation of a cleavage pattern (Additional file 1: Fig. S1(b)). The architecture of the clas-
sification model is illustrated in Fig. 4.

The input tensor representing the cleavage pattern underwent an initial process-
ing step by CU1, which comprises three basic units. Each basic unit of CU1 consisted 
of a one-dimensional convolutional layer followed by an activation (ACT) layer. To 
ensure compatibility of the convolution output shape with the input shape, padding 
was employed. Subsequently, the input tensor was combined with the convolution 
output through a skip connection. Next, the output of CU1 was further processed by 
CU2, which comprises two basic units. Each basic unit of CU2 consisted of a convolu-
tion layer followed by a batch normalization (BN) layer [43] and an ACT layer. The first 
and second basic units had 16 and 32 filters in their respective convolutional layers. The 
extracted features were then passed to an FC layer to reshape the feature structure into 
a 64-dimensional vector. A dropout operation was implemented within the FC layer to 
mitigate overfitting during training [44]. The resulting feature vector was then concat-
enated with the embedding derived from the autoencoder, capturing the pre-miRNA 
secondary structure. This concatenation produced a 2 × 64 tensor. After that, this tensor 

Fig. 3  We employed a fully connected autoencoder to derive pre-miRNA secondary structure embeddings. 
The autoencoder’s input consists of one-hot encoded dot-bracket representations of secondary structures, 
all of which are standardized to a fixed length of 200. The output of the secondary structure autoencoder is a 
64-dimensional vector
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underwent further processing through another CU1 within the second module to repli-
cate the identical structure of the first module. In the second module, subtle distinctions 
emerged in the CU2 and FC layers between the binary and multi-class classification 
models. The CU2 of the multi-class classification model incorporates an additional con-
volution layer to expand the input features to a more extensive latent space. Within this 
convolution layer, the sequential application of a BN layer, a max pooling layer, and an 
ACT layer (see Fig. 4) was performed. Depending on the specific classification task, the 
FC layer adjusted the feature tensor to the required shape. In the binary classification 
model, the output layer consisted of a sigmoid layer, whereas the multi-class model, a 
softmax layer was employed as the output layer.

The training procedures for the binary classification models on 5’ and 3’ patterns were 
identical. We randomly allocated 20% of the patterns to form a validation set for moni-
toring the training process. The remaining 80% of the patterns constituted the training 
dataset. Owing to the relatively small size of the training dataset, we adopted a modest 
batch size (20 samples per mini-batch) during training. The binary cross entropy (BCE) 
was employed as the loss function. To manage the training process, the Adam algorithm 
was implemented with a learning rate of 0.005 and a weight decay of 0.001. The maxi-
mum training epoch was set to 50, and an early stopping mechanism was incorporated 
to mitigate overfitting. We retained three models that showed the highest accuracy in 
the validation set.

Although the training process for the multi-class classification model closely resembled 
that for the binary classification model, some distinctions were apparent. First, we replaced 

Fig. 4  The architecture of DiCleave can be broadly categorized into two modules. The initial module takes 
a 13-dimensional vector as the input, encompassing both sequential information and secondary structure 
information of a specific segment. The output of this first module is concatenated with the embedding of 
the corresponding pre-miRNA secondary structure, which is subsequently given as the input of the second 
module. The model’s ability to perform binary or multi-class predictions is dependent on its downstream task
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the BCE loss function with a negative log-likelihood loss function. Second, we assigned var-
ying weights to each class when computing the loss value. The number of negative patterns 
was twice that of the 5’ and 3’ positive patterns, respectively. Consequently, the weight of 
the negative patterns was set to 0.5 whereas that of the positive patterns remained at 1.

Ablation models

We used two ablation models to assess the effectiveness of the proposed architecture. In 
ablation model 1 (AM1), the output from the first module was directly processed by the 
second module without addition of the pre-miRNA secondary structure embeddings. Con-
versely, in ablation model 2 (AM2), all CU1 components were removed, signifying that the 
original input information for each module was not enhanced prior to the convolution pro-
cess. Both AM1 and AM2 followed the same training procedure as the proposed model 
with minor adjustments to the layer parameters.

Performance evaluation

In the context of binary classification, we computed several metrics to assess the model’s 
performance in the independent test sets. These metrics included accuracy (ACC​), specific-
ity (Spe), sensitivity (Sen), F1 score, and Matthews’ correlation coefficient (MCC) [45]. The 
definitions of these binary classification metrics are provided below:

where TP , TN  , FP , and FN  denote the counts of true positives, true negatives, false posi-
tives, and false negatives, respectively.

For the evaluation of the multi-class classification models, we adopted a macro-averaging 
approach for Acc , Spe , and Sen to calculate the average of each metric across all classes. In 
addition, we utilized an extension of the binary MCC to the multi-class scenario for evalua-
tion [46]. MCC for the multi-class classification is defined as below:

Acc =
TP + TN

TP + TN + FP + FN
,

Spe =
TN

TN + FP
,

Sen =
TP

TP + FN
,

F1 =
2× TP

2× TP + FP + FN
,

MCC =
TP × TN − FP × FN

√
(TP + FP)× (TP + FN )× (TN + FP)× (TN + FN )

,

MCCmulti =
c × s − K

k pk × tk

s2 − K
k p

2
k × (s2 − K

k t
2
k )

,
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where tk is the number of occurrences for class k , pk signifies the number of predictions 
for class k , c denotes the total number of samples correctly predicted, and s represents 
the total number of samples.

Results
Performance of binary classification models

The performance of the best models among replications is listed in Table  2. The test 
set was balanced, containing an equal number of positive and negative patterns (see 
Sect. "Methods"). There were no substantial differences between the performances of the 
models for 5’ and 3’ patterns; both models achieved accuracy, specificity, sensitivity, and 
F1 scores of 0.90 or higher, whereas MCC reached 0.82. Receiver operating characteris-
tic (ROC) curves and precision-recall (PR) curves for DiCleave in the binary classifica-
tion task are shown in Fig. 5. Although the area under the ROC curve (AUC) score of 
the 3’ pattern model was marginally higher than that of the 5’ pattern model, it could be 
concluded that both models demonstrated nearly identical performance. On the other 
hand, the performance on an unbalanced test set, which was created by randomly select-
ing 50 positive patterns and all negative patterns from the original test set, showed a 
slight decrease compared with that on the balanced dataset, although the F1 score and 
MCC remained above 0.80 and 0.75, respectively (Additional file 1: Tables S1 and S2).

The proposed model outperformed the ablation models in all classification tasks 
(Table  2). AM1, which lacked pre-miRNA secondary structure embeddings, exhibited 
the lowest accuracy in all classification tasks. Whereas AM1 achieved the highest spe-
cificities in the binary classification task, its sensitivities were the lowest. Conversely, 
the inclusion of secondary structure embeddings notably enhanced the overall perfor-
mance of AM2, resulting in significantly improved sensitivities at the acceptable cost 
of decreased specificity. However, the performance of AM2 was lagged behind that of 
DiCleave. This can be attributed to the absence of CU1, which hindered the preservation 
of information within the input.

To assess the effectiveness of our proposed models, we compared them with 
ReCGBM. We computed the average performance of DiCleave and ReCGBM across 
10 replications with different initial conditions to provide a comprehensive view 
of their performance. As shown in Fig.  6 and Additional file  1: Tables S3 and S4, 

Table 2  Performance of different models

AM1: Ablation model without pre-miRNA secondary structure embeddings

AM2: Ablation model without convolution unit 1 (CU1)

Accuracy Specificity Sensitivity F1 Score MCC

5’ prediction DiCleave 0.9135 0.9103 0.9167 0.9137 0.8269
AM1 0.8782 0.9167 0.8397 0.8733 0.7587

AM2 0.8910 0.8782 0.9038 0.8924 0.7823

3’ prediction DiCleave 0.9103 0.9167 0.9038 0.9097 0.8206
AM1 0.8782 0.9295 0.8269 0.8716 0.7604

AM2 0.8942 0.8974 0.8910 0.8939 0.7885

Multi-class prediction DiCleave 0.8942 0.9402 0.8900 0.8931 0.8302
AM1 0.8686 0.9274 0.8686 0.8681 0.7899

AM2 0.8734 0.9302 0.8868 0.8740 0.8029
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the performance of our models surpassed the average performance of ReCGBM in 
5’ pattern prediction. In addition, our models demonstrated similar performance 
in 5’ and 3’ pattern predictions whereas ReCGBM exhibited unequal performance 
between 5’ and 3’ pattern predictions (i.e., inferior performance in 5’ pattern predic-
tion compared with the 3’ pattern prediction). Figure 6 also includes a performance 
comparison with PHDcleav [28] and LBSizeCleav [29]. The PHDcleav model utilized 
binary input features and a window size of 14 [28], whereas the LBSizeCleav model 
employed parameter k = 1 and a window size of 14 [29]. We selected these two mod-
els because their input features closely resembled our architecture. As shown in 
Fig. 6, both SVM-based models struggled to compete with ReCGBM and DiCleave.

Fig. 5  Receiver-operating characteristic curves (a) and precision-recall curves (b) for DiCleave in the binary 
classification task. Blue and green lines indicate the performance of the 5’ classifier and the 3’ classifier, 
respectively

Fig. 6  Performance comparison between DiCleave and other existing methods for binary classification tasks 
for both a the 5’ cleavage site classification task and b the 3’ cleavage site classification task. DiCleave and 
ReCGBM show average performances of 10 replications. The performances of PHDcleav and LBSizeCleav 
(indicated by an asterisk) are sourced from their original articles [28, 29]
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Performance of the multi‑class classification model

Our model can perform multi-class classification tasks by adopting the output layer. 
When presented with a cleavage pattern sequence, our model was able to predict 
whether the sequence represented a 5’ pattern, a 3’ pattern, or a negative pattern. The 
performance of the multi-class classification model is summarized in Table 2. It achieved 
high accuracy, sensitivity, F1 socre of 0.89, and specificity of 0.94. Furthermore, for an 
unbalanced dataset for the multi-class classification tasks, both the F1 score and MCC 
exceeded 0.85 and 0.75, respectively (Additional file 1: Tables S1 and S2).

The confusion matrix for the multi-class classification model is shown in Fig. 7. Only 
one 5’ pattern sequence was misclassified as a 3’ pattern, and no 3’ patterns were mis-
classified as 5’ patterns. This outcome highlights our model’s capability to differentiate 
positive cleavage patterns from different arms. However, there is substantial room for 
improvement when distinguishing between positive and negative patterns, particularly 
in the differentiation of 3’ patterns from non-cleavage patterns.

The ROC and PR curves for the multi-class classification model using a one-vs-all 
strategy are shown in Fig. 8. The AUC scores for both 5’ and 3’ patterns reached 0.97, 
surpassing that of the negative pattern (= 0.93). In the PR curve, the precision for 3’ pat-
terns decreased more rapidly as recall increased, compared with that for 5’ and non-
cleavage patterns.

Discussion
We introduced a DNN model to predict the presence of a human Dicer cleavage site 
within a short sequence segment, defined as a cleavage pattern. Our model’s input con-
sisted of a combination of one-hot encodings for sequences, including pattern sequences 
and their complementary sequences, and secondary structure information. Rather than 

Fig. 7  Confusion matrix for the multi-class classification model. Rows and columns represent the counts 
of true and predicted labels, respectively. The values along the diagonal represent the counts of correctly 
predicted labels by the model
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merging these inputs into twelve types of dimers that include combinations of the four 
bases (“A”, “C”, “G”, “U”) and the three secondary structure indicators (“(”, “.”, “)”) [47], we 
opted to stack them. This approach was chosen to avoid creating a sparse input space 
that could yield an unnatural convolution output. The combination of sequence patterns 
and the secondary structure embeddings extracted by the autoencoder significantly 
improved the discriminative capacity of the DNN model, resulting in accuracies of 0.91 
and 0.89 for the binary and multi-class classification tasks, respectively. This result dem-
onstrated that incorporating pre-miRNA secondary structure embeddings and leverag-
ing the shortcut structure of CU1 significantly enhanced the performance of the model. 
It is worth noting that the multi-class classification model was trained with an unbal-
anced dataset in terms of the number of patterns for each class. Although no further 
measures were taken to address this imbalance apart from adjusting the weight of the 
negative patterns in the loss calculation, our model still yielded satisfactory results. 
This success could be attributed to the valuable information provided by the secondary 
structures, which proved effective in distinguishing between cleavage and non-cleavage 
patterns.

The computational experiments conducted in this study involved a random selection 
of training and test datasets from the main dataset. However, even when sequences with 
80% or higher similarity were pre-filtered from the main dataset using CD-HIT-EST 
software [48, 49], DiCleave still demonstrated high performance for predicting cleavage 
patterns. Specifically, the best model among 10 replications achieved an F1 score of 0.85 
or higher for both binary and multi-class classification tasks in the balanced case, and 
0.80 or higher in the unbalanced case (Additional file 1: Table S5).

One limitation of this study was the relatively small size of the human pre-miRNA 
dataset used for training the deep learning model, which led to overfitting during train-
ing. To mitigate this, we employed a small batch size of 20 samples per mini-batch, as 
preliminary experiments indicated that a larger batch size caused the models to become 
stuck in local minima. We set the learning rate to 0.005, which is larger than the default 
value in PyTorch’s Adam implementation. Low learning rates (e.g., 1e-4 or 5e-4) were 

Fig. 8  Receiver-operating characteristic curves (a) and precision-recall curves (b) for the multi-class 
classification model. In this experiment, the model was transformed into a binary classifier by designating 
one class as the positive class and the other two classes as the negative classes
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found to slow down the training process and hinder model convergence, whereas high 
learning rates led to overfitting. One potential solution for the small and unbalanced 
dataset is data augmentation, which can increase the number of training samples. How-
ever, effective data augmentation for nucleotide sequences requires expert knowledge in 
biology. Another limitation pertains to the definition of the cleavage pattern within pre-
miRNA sequences. In this study, a cleavage pattern was defined as a 14-nt-long sequence 
with a Dicer cleavage site at the center. However, in real scenarios, the cleavage site 
could occur at any position within a given sequence, which could significantly increase 
the dataset size if each possible position were considered.

Finally, as identified by Liu and colleagues, the features near the pre-miRNA center 
were observed to have great significance [30], suggesting an intrinsic interplay among 
the bases within pre-miRNA. Consequently, our future endeavors include the integra-
tion of a Transformer-based model, which has the potential to harness these intrinsic 
features through the attention mechanism [47]. We also aim to create an end-to-end 
generative model to directly generate mature miRNA sequences from pre-miRNAs 
based on our cleavage prediction method in forthcoming research.

Conclusions
We have demonstrated the effectiveness of our deep learning models in predicting the 
presence of a human Dicer cleavage site within a given pre-miRNA sequence using 
both its sequence and secondary structure information. Our binary classification model 
exhibited superior or comparable performance compared with existing models. Further-
more, our model’s ability to function as a multi-class classifier is highly advantageous 
and practical. This versatility allows our model to make predictions without requiring 
prior information for any sequence segment, ensuring accessibility to a broad range of 
data in the miRBase database even when the available information is incomplete.
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