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Abstract

The ease and throughput of single-cell genomics have steadily improved, and its current trajectory 

suggests that surveying single-cell populations will become routine. We discuss the merger 

of quantitative genetics with single-cell genomics and emphasize how this synergizes with 

advantages intrinsic to plants. Single-cell population genomics provides increased detection 

resolution when mapping variants that control molecular traits, including gene expression or 

chromatin accessibility. Additionally, single-cell population genomics reveals the cell types in 

which variants act and, when combined with organism-level phenotype measurements, unveils 

which cellular contexts impact higher-order traits. Emerging technologies, notably multiomics, can 

facilitate the measurement of both genetic changes and genomic traits in single cells, enabling 

single-cell genetic experiments. The implementation of single-cell genetics will advance the 

investigation of the genetic architecture of complex molecular traits and provide new experimental 

paradigms to study eukaryotic genetics.
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INTRODUCTION

Cellular differentiation into discrete biological roles underpins the success of multicellular 

life, allowing the organism to have more functions than the sum of its cellular constituents. 

However, this complex cellular milieu complicates any biological measurement from bulk 

tissues, as abundant cell-type signals mask those from less prevalent cells. Single-cell 

genomics provides the power to deconvolute the biological signals from bulk tissues. 

Single-cell genomics, although only in its nascent stage, is set to trigger a revolution in 
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biological research analogous to high-throughput sequencing in the 2000s. Beyond allowing 

researchers to better study specific cellular contexts, the ability to measure individual cells 

significantly increases the resolution and power of many preexisting techniques, including 

quantitative genetic studies.

Most heritable phenotypes are influenced by alleles at many unlinked loci. These complex, 

quantitative, or polygenic traits are often of utmost biological importance, including 

phenotypes such as disease susceptibility, developmental processes, physiological age, 

animal productivity, and crop yield (40, 72). Discovering the genetic drivers of quantitative 

traits involves measuring both the phenotype and genotype of a genetically diverse 

population. Then, through statistical associations, individual quantitative trait loci (QTL) can 

be implicated in controlling the measured phenotype. These population studies are effective 

at finding large-effect QTL. However, since many loci control quantitative traits, dissecting 

all loci that underpin their heritability remains a challenge, leading to missing heritability 

that even studies with thousands of individuals lack the power to find (44, 67, 79, 80, 152, 

162). Although presently unrealized, single-cell genomics may empower population genetics 

to unveil more of the genetic architecture behind quantitative traits.

Plant research is unique in that its applied product is the plants themselves, with much 

applied research aimed at breeding progressively better plant genotypes. Artificial selection 

on plants, by ancient and modern humans alike, has shaped plant products to meet human 

needs. Prehistoric hunter-gatherers unwittingly altered plant genomes when domesticating 

crop species, precipitating the agricultural revolution and the birth of civilization. Likewise, 

modern breeding applied quantitative genetics and genomics to release cutting-edge crop 

varieties, which are largely responsible for the increases in agronomic yield since the Green 

Revolution. The intense interest in plant quantitative genetics, along with several other 

aspects of plant biology, has repeatedly translated value to the broader research community, 

with plant systems pioneering techniques including blocking and split plot designs (35, 

106). These techniques account for the effects of impractical-to-control variables (e.g., the 

effect of hospitals on health outcomes or fields on plant growth) by distributing their effects 

evenly between individuals in a study. As has been the case historically, we believe that 

plant biology has unique advantages that will work in tandem with the single-cell genomics 

revolution to spearhead further human understanding of heritable quantitative traits.

Here, we frame the results of pioneering mammalian single-cell population studies against 

the backdrop of classical plant genetic questions, highlighting the potential of applying 

single-cell genomics to plant populations. We also outline how established plant genetic 

phenomena and resources can integrate with single-cell tools to usher in an era of single-cell 

genetics. We anticipate that further application of single-cell approaches will reveal much 

about quantitative traits and translate to a better understanding of the regulatory relationships 

between loci in eukaryotic genomes.

SINGLE-CELL SEQUENCING FROM PAST TO PRESENT

The first single-cell transcriptome was published in 2009 from a mechanically isolated 

mouse blastomere (137). Current single-cell sequencing techniques use combinatorial 
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indexing, microfluidics, or both to distinctly isolate and label individual cells or nuclei. 

Combinatorial indexing, which uses sequential indexing and mixing steps to give each 

cell a unique identifier, was originally used to measure 34 cellular transcriptomes 

(52). Microfluidic separation and tagging of cells increased individual measurements 

considerably, with early reports sequencing ~45,000 cells (78). The ease of single-cell 

sequencing has increased such that both microfluidic separation and combinatorial indexing 

“omic” techniques routinely measure ~104 cells per sample, and this is poised to increase 

tenfold in the immediate future (23, 65).

Single-cell methods have evolved to measure genome sequence, cell surface proteins, small 

RNAs, DNA methylation, histone modifications, chromatin accessibility, chromosomal 

conformation, and proteomes (20, 107, 130). Techniques have also been developed 

that measure two or more molecular traits from the exact same cell. These multiomic 

measurements are usually dependent on transforming biological signals into DNA-level 

information, which can be deconvoluted via sequencing. Some of these signals, such 

as DNA polymorphism detection, are inherent to sequencing techniques, whereas other 

multiomic measurements are molecularly engineered into the experiment, such as DNA 

tagging antibodies or sequencing CRISPR-CAS9 deletion cassettes to determine targets post 

hoc (26, 111, 130). Sequential read indexing steps for distinct genomic measurements can 

produce multiomic data, with multiomic single-cell measurement of RNA expression and 

chromatin accessibility becoming more common.

Cell functional divergence involves different uses of the genome, and these differences 

can occur via the altered usage of cis-regulatory elements (CREs) located within 

accessible chromatin regions (ACRs). Chromatin accessibility is measured through the 

biased restriction of enzymatic activity to nucleosome-depleted chromatin that houses the 

DNA regulatory motifs regulating gene expression. Chromatin accessibility is routinely 

determined via assay for transposase-accessible chromatin sequencing (ATAC-seq) (11). 

ATAC-seq utilizes Tn5, a hyperactive transposase, to insert sequencing adapters directly 

into accessible chromatin and is used for single-cell measurements (scATAC-seq). Since 

gene accessibility and RNA expression are only loosely correlated [Spearman’s correlation 

coefficient 0.54–0.58 (81), −0.07–0.77 (22); Pearson’s correlation coefficient 0.22–0.26 

(141)], single-cell RNA sequencing (scRNA-seq) complements scATAC-seq, with the 

integration of both data types providing a more comprehensive depiction of cellular states. 

Currently, both scATAC-seq and scRNA-seq only measure a small fraction of the transcripts 

or ACRs in a cell (resulting in high data sparsity), which, when combined with the large 

number of measurements, complicates the corresponding data analytics (reviewed in 4, 121). 

After analysis, both techniques place related cells into clusters, which can be analyzed 

independently. This cell type–level clustering prevents abundant cell-type signals from 

drowning out signals originating in rarer cells. In this way, scATAC-seq unveiled which 

genes and ACRs exhibit cell-type enrichment, as well as the prevalence of heterogeneity 

and subtypes within individual cell types (82). Even in animal models, which, unlike plants, 

possess pure cell culture lines, scATAC-seq provided a more representative measure of 

the in vivo cell-type reality (107). Likewise, scRNA-seq has deconvoluted transcriptomes, 

facilitating the discovery of novel cell-type functions, including the previously unknown 

ultraviolet (UV) protectant role of Arabidopsis palisade mesophyll cells (108).
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The cell wall has been a barrier to the migration of techniques from animal systems to 

plant models. However, single-cell techniques, such as scATAC-seq and scRNA-seq, can 

be performed on isolated nuclei instead of cells (34, 81). Analyzing nuclei facilitates 

high-throughput genomic approaches much like in mammalian systems. Additionally, 

since single-nucleus RNA sequencing (snRNA-seq) detects polyadenylated transcripts 

before their nuclear export, it removes the measurement of nonautonomous (cell-to-cell 

mobile) messenger RNA (mRNA), a common plant phenomenon with currently unknown 

ramifications in single-cell analysis (58). For this reason, snRNA-seq has the potential to 

be a more accurate measure of mRNA transcription in each cell type. However, measuring 

nuclei ablates all cytoplasmic information, precluding the observation of signals such as cell 

proteomes (20). Although most organellar genes are nuclear encoded, assaying nuclei strips 

each cellularized measurement from its complementary plastids and mitochondria, partially 

obscuring organelle roles in planta.

Removing walls from plant cells creates protoplasts and enables cell separation techniques 

analogous to those used with animal cells. Although protoplast-based methods have 

produced whole-cell transcriptomes (68, 73, 92, 108, 113, 115, 119, 158, 166), we believe 

the high-throughput nature of nuclei-based single-cell measurements provides a powerful 

and adaptable tool that will address many outstanding questions in the field. In particular, 

multiomic measurement of chromatin accessibility and RNA expression in high numbers 

of nuclei will advance our ability to study transcriptional regulation. Concurrent multiomic 

approaches result in somewhat lower throughput, as cell-level quality control is stricter when 

applied to two modalities instead of one. However, similar to the general trend in single-cell 

approaches, further technical developments will likely lead to improvements in scalability. 

These multiomic measurements can combine with unique aspects of plant biology to expose 

how genomes manifest complex phenotypes.

ASPECTS OF PLANT BIOLOGY THAT SYNERGIZE WITH SINGLE-CELL 

TECHNOLOGIES

Aspects of plant biology leave it uniquely positioned to address basic genetic questions 

through single-cell approaches. Plant organs consist of specialized cell types with cellular 

arrangements semiconserved between species. Unlike mammals, plants undergo continuous 

growth and development (Figure 1a), with new organs arising from meristematic stem-cell 

niches throughout their life cycle (120, 125, 129). Within a species, organs are produced 

by repeating cell-type patterns that are similar between older and younger organs. This 

continual and consistent organogenesis means that cells exist in progressive stages of 

maturation at one time point, simplifying the sampling of developmental gradients to study 

cellular differentiation. Single-cell sampling of these developmental gradients in roots (119, 

166) and other organs (81, 115) has rediscovered known master regulators and uncovered the 

spatiotemporal context in which unstudied transcription factors act (119).

Plants, being sessile, cannot move to escape stressful environments and instead endure 

them. To withstand stress, plants have evolved to modify their growth and development 

in response to their environment. This developmental plasticity means one genotype can 
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produce different morphologies (99) and biochemistries in distinct environments, with 

the extent of plasticity varying between and within species (133). Development and cell 

function rely upon changes to chromatin accessibility, altering CRE use, and tuning gene 

expression as needed (99). However, the chromatin changes that tune plastic development 

or biochemistry remain poorly understood, although some progress has been made mapping 

loci that influence traits such as organ morphologies (64), and plastic changes to ACR 

peak shape have been observed (71). Single-cell measurements of mRNA and chromatin 

within plastic genotypes in different environments will reveal more about the molecular 

mechanisms and cell types that drive environmental adaptation. We expect that some cell 

types have oversized roles in specific stress responses (e.g., the stomata, epidermis, and 

vasculature in response to drought) and that the associated genomic changes in these cell 

types will be revealed via scRNA- or scATAC-seq. Uncovering the mechanisms behind plant 

plasticity could ease the selection for beneficial plastic responses or for genetic manipulation 

to induce the genetic assimilation of beneficial traits.

Transgenesis is a great ancillary tool to single-cell studies, helping to both label cell 

populations through cell-specific reporters and confirm or elaborate upon any findings. 

The ease of stable transgenesis in Arabidopsis (18) is a considerable asset to investigate 

the mechanistic roles of interesting genes or CREs highlighted by single-cell genomics. 

Beyond the ability to create novel transgenics to address hypotheses, Arabidopsis has 

established cell-type reporters that have aided cell-type discovery from single-cell data (108, 

168). Unlike Arabidopsis, most crops and nonmodel plants rely upon tissue culture–based 

transformation, making them more recalcitrant to transgenesis. However, methods have been 

pioneered in maize that use transient expression of growth regulators to generate transgenics 

via somatic embryogenesis (16). Importantly, the extension of these somatic embryogenesis–

based methods to more species will ease the use of transgenic techniques (Figure 1b) to 

verify and expand upon single-cell genomic findings.

Plant genomes tolerate many genetic manipulations better than metazoans, including 

changes in ploidy (Figure 1c). Organogenesis in flowering plants incorporates 

endoreduplication (24), and the generation of triploid endosperm during reproduction is 

required for viable embryogenesis. Moreover, angiosperm lineages have undergone whole-

genome duplications, or polyploidizations, during their evolution (144). These historical 

polyploidizations are thought to have provided diversity and functional redundancy during 

stressful geological eras, fueling plant divergence in form and function (144). Single-cell 

study of these systems will reveal how individual cell types respond to ploidy changes, 

providing insights into how genomes adapt to these differing gene doses. Plants also endure 

reductions in ploidy, with all plants consisting of a haploid gametophytic stage, and many 

angiosperm (sporophytic) haploids develop to sexual maturity (31). Due to the breeding 

benefits of doubled haploids, haploid induction techniques have been created in a wide range 

of crops (56, 59, 148, 160) and models such as Arabidopsis (110). The reduced genetic 

redundancy in haploids makes all alleles fully penetrant and reduces the sequencing depth 

needed to cover the genome, a great asset for single-cell approaches. These established 

ploidy manipulation systems are an asset in designing plant single-cell studies, notably those 

investigating how ploidy changes alter cellular development.
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Many plants, notably crops, can exist in a highly inbred state, leaving each locus 

effectively homozygous (Figure 1d). These inbred genotypes often have complete and 

annotated genomes, for example, Arabidopsis (1, 57, 165), maize (51, 55, 118, 126), 

tomato (49, 131, 135), rice (109) and soy (70, 75). Having only one allele variant present 

greatly simplifies allelic functional characterization. Moreover, genomic homozygosity 

allows for genotypic replication across different conditions, which is impossible in 

species intolerant of inbreeding. The inbreeding tolerance of many plants, along with 

controlled crosses, facilitates the generation of powerful population-level tools (Figure 

1e). Beyond classical biparental recombinant inbred lines (RILs) (5), other population 

designs, including nested association mapping (NAM) (37, 63, 124, 164) and multiparent 

advanced generation intercross (MAGIC) populations (63, 77), have been created that 

captured more genetic diversity and improved trait-mapping resolutions. The maize NAM 

population is accompanied by complete reference genomes (51), facilitating the functional 

dissection of allelic variants typically missed by short-read sequencing and dependence on 

a single reference assembly. In contrast to inbreeding tolerance, some plants withstand wide 

hybridization events, with certain interspecific crosses producing viable offspring and with 

cross-species introgression driving plant trait evolution (140). Many crops have extant wild 

progenitors or relatives that retain sexual compatibility with their domesticated counterparts. 

This has been exploited to create recombinant populations segregating domesticated and 

wild alleles (3, 6, 15). These populations provide a unique opportunity to study genome 

domestication, in addition to identifying wild alleles for crop improvement. Furthermore, the 

many polymorphisms between domesticated and wild transcripts provide a great opportunity 

to track allele-specific expression, simplifying the study of how domesticated alleles have 

changed. The combination of these established populations with single-cell population 

genomics will be helpful in learning more about both domestication and the genetic control 

of phenotypes.

QUANTITATIVE GENETICS HAS SHAPED OUR UNDERSTANDING OF 

COMPLEX TRAIT INHERITANCE

Continuous phenotypes, such as disease susceptibility, height, crop yield, and stress 

tolerance, are influenced by both environmental and hereditary factors, with heritability 

referring to the proportion of the population phenotypic variance explained by genetics. The 

polygenic or quantitative genetics that underpins the heritability of continuous phenotypes 

is complex, encompassing the contributions of many unlinked genes. To uncover the loci 

controlling continuous traits, a population with genetic and trait diversity must be selected 

and the phenotypes and genotypes of individuals within it measured (Figure 1c). If a 

variant affects a quantitative trait, there should be a discernible phenotypic difference 

between individuals with or without the variant of interest (Figure 2c). Early quantitative 

genetics used crosses between two phenotypically different parents to generate recombinant 

progeny, segregating both known genetic markers and unknown genes controlling a trait. 

Through tracing recombination and quantifying individual phenotypes, it became possible 

to know the number of QTL in a population and their genetic locations (138). Molecular 

genetic markers provided better and more ubiquitous coverage of the genome, facilitating 

the mapping of the first disease-causing gene through similarly tracking recombination 
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(45). Array hybridization technology expanded the ability to measure polymorphisms, 

often single-nucleotide polymorphisms (SNPs), while also facilitating early transcriptomics. 

These arrays lead to the first expression QTL (eQTL) studies, which used gene expression as 

a quantitative trait and mapped the genetic variants that influence individual gene expression 

genome-wide (8, 116). eQTL analysis can uncover both proximal (cis) and distal (trans) 

genetic variants affecting gene expression (94). Trans effects tend to have smaller effect 

sizes than cis equivalents, and even concurrent studies with >104 individuals can lack the 

power to exhaustively find all trans regulators (94, 147).

Although powerful, tracking recombination between biparental alleles is often impractical 

in real-world populations. By comparing phenotypes between individuals with a variant of 

interest to the rest of a study population, genome-wide association (GWA) can uncover 

loci influencing polygenic traits in populations segregating for many divergent haplotypes, 

taking advantage of historical recombination to partition large haplotypes. Pioneered in the 

2000s (61, 98), GWA has since been applied to many populations where it has unveiled 

molecular mechanisms controlling complex traits in humans, plants, and animals (64, 128, 

136). However, GWA is complicated by statistical type I errors due to multiple testing, the 

difficulty in tying significant loci to causal DNA changes, and the confounding effects of 

shared ancestry (population structure) causing the coinheritance of noneffect alleles with 

causal variants (136).

Quantitative genetics has advanced our understanding of the functional genome and 

found loci with large trait effects, providing tangible benefits to disease research (136) 

and enabling genomic selection during plant and animal breeding (46, 47). Quantitative 

genetics has also revealed the importance of rare, large-effect alleles in standing variation 

(17, 39, 62). The large contribution of rare alleles to phenotype has breeding relevance, 

as a too-stringent selection cutoff may prevent the advancement of important variants. 

Paradoxically, these ultrarare alleles are recalcitrant to quantitative genetic study due to low 

allele frequency (low n) translating to poor statistical power. This problem can be improved 

by pooling different variants (105) in similar features (e.g., treating variants in the same 

exon as equivalent alleles) or generating biparental populations to increase allele frequency.

Even when examining traits with high heritability, quantitative genetics often only finds a 

small fraction of the loci controlling a trait (76, 85). Illustrating this missing heritability, 

pioneer quantitative genetic studies of human height explained ~5% of human height 

variability, a trait that is 80% heritable (44, 67, 152). Plant models, owing to their high 

genetic diversity, controlled crosses, and propensity for genotypic replication, can provide 

an exception to this rule. For example, a study of a maize diversity panel explained 89% 

of time-to-flowering heritability (10) and a high proportion of other heritable traits (32). 

However, other plant studies of highly heritable traits contain missing heritability (66, 

149). Much of this missing heritability is thought to stem from underpowered statistical 

associations, small allele effect sizes, and the need for stringent significance cutoffs to 

control type I errors (74), which has led to the notion that only a portion of heritability can 

be explained via the SNPs used in a GWA study (i.e., SNP heritability) (159). Exemplifying 

this, even with ~5.4 million individuals saturating SNP heritability, half of human height 

variation remained unexplained (163). Quantitative genetic studies have led to the omnigenic 
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model of inheritance (74), where there are a few large-effect genes that either directly 

influence the trait or serve as network master regulators (Figure 2d). These genes are in 

turn regulated by peripheral genes, which themselves integrate into the organismal gene 

regulatory network, such that much phenotypic variation is explained by variants with 

infinitesimally small network effects that remain unidentified. Although GWA studies have 

provided many insights into the control of trait inheritance, alternative techniques need to be 

developed to discover these peripheral regulators and their genetic interactions in order for 

models to explain all trait heritability.

BULK MOLECULAR PROFILING OBSCURES THE CELLULAR CONTEXT OF 

GENETIC VARIANTS

The proliferation of GWA studies has identified innumerable causative loci implicated 

in myriad phenotypes. However, defining the precise molecular and cellular mechanisms 

that translate GWA loci to phenotypic variation remains challenging. In humans, up 

to 95% of disease risk variants have been attributed to noncoding sequences (151), 

implicating transcriptional regulation as the driver of phenotypic diversity. Indeed, recent 

studies show that eQTL and chromatin accessibility QTL (caQTL) overlap considerably 

with disease-associated variants (38, 43). Similarly, plant bulk-tissue QTL studies for 

molecular phenotypes including DNA methylation (30, 57, 117) and transcription abundance 

(62) significantly coincide with organismal phenotype–associated variants. Bulk-tissue 

population-scale genetic investigations of molecular traits lack the resolution to pinpoint 

the cellular context in which a given genetic variant has an effect, particularly for variants 

affecting narrow developmental windows or rare cells (145). Single-cell population genomic 

association can circumvent these shortcomings, providing unprecedented insight into where 

and when genetic variants contribute to phenotypic variation (Figure 2e). However, single-

cell genomic association studies are underpowered (due to data sparsity) compared to their 

bulk counterparts with similar individual numbers (145).

ANIMAL SINGLE-CELL MOLECULAR QUANTITATIVE TRAIT LOCUS 

STUDIES HAVE REVEALED THE IMPACTS OF CELL TYPE-RESTRICTED 

VARIANTS

Single-cell genomic association methods have been developed in animal models to identify 

the cellular and developmental contexts of disease-associated variants. For example, a study 

of human endoderm differentiation from 125 individuals leveraged scRNA-seq to identify 

developmentally or cellularly restricted eQTL for 1,833 genes (~17% of genes tested) (21). 

The importance of development and cell contexts has been repeatedly corroborated for 

eQTL (60, 91, 100, 161), and caQTL appear to be influenced similarly (7). Highlighting 

the relevance of cell type–restricted variants to continuous phenotypes, another single-cell 

genomic association found 95 developmental and cellular context–specific eQTL near 

established disease-associated loci, including a known basal cell carcinoma risk factor 

(13). Similarly, studying midbrain development from 215 donors across three time points 

identified an overlap of context-specific eQTL with 1,284 disease-associated variants (54). 

Minow et al. Page 8

Annu Rev Genet. Author manuscript; available in PMC 2024 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Indeed, the relevance of context-specific eQTL to disease has only been revealed through 

single-cell population genomics (142). Through single-cell plant genomic associations, it 

will be critical to determine whether genetic variants underlying agronomic trait variation 

are also restricted to narrow developmental and cellular contexts.

APPLICATIONS OF PLANT SINGLE-CELL TRANSCRIPTOME AND 

CHROMATIN ACCESSIBILITY PROFILING

To date, single-cell genomic associations remain unimplemented in plants. However, 

commercial scRNA-seq products have facilitated many plant scRNA-seq studies. These 

scRNA-seq experiments, particularly of Arabidopsis roots (25, 53, 113, 119, 122, 154, 

167), established proof of principle, paving the way for plant single-cell genomics and 

revealing developmental transcriptomic patterns. Supporting the translational value of these 

root atlases, scRNA-seq of rice roots found strong conservation in the developmental 

programs between rice and Arabidopsis roots, particularly for cells with meristematic 

identity (166). Plant scRNA-seq has moved beyond atlas production to address pointed 

biological questions. For example, transcriptomic data from over 110,000 cells from wild 

type and 2 cell identity mutants, shortroot (shr) and scarecrow (scr), revealed putative 

trans-differentiation of cortical to endodermal cell identity in scr and aberrant vascular cell 

identities in shr backgrounds (119). Likewise, analysis of Arabidopsis seed snRNA-seq 

established strikingly dynamic and heterogeneous parental imprinting with distinct spatial 

and cell cycle–dependent patterning (102). scRNA-seq approaches have been applied to 

important crops, including maize (68, 92, 93, 115, 134, 158) and rice (73, 166). scRNA-seq 

of maize shoot apices revealed mechanisms that contribute to the genomic integrity of plant 

stem cells and defined the transcriptional program driving early shoot differentiation (115). 

Two maize scRNA-seq studies followed meiotic development to reveal the transcriptional 

changes coordinating cell-state transitions and the timing of the sporophyte-to-gametophyte 

transcriptional transition (92, 93). scRNA-seq of developing maize inflorescence revealed 

the proximity between cell identity genes and yield GWA loci (158), hinting that variation 

in agronomic traits could indeed be biased toward restricted developmental and cellular 

contexts such as human disease (142). Construction of more single-cell atlases across the 

plant kingdom will define the conserved and derived transcriptional programs underlying the 

differentiation of plant cells.

In contrast to scRNA-seq, plant scATAC-seq chromatin accessibility profiling is still in 

its infancy, having only been implemented in Arabidopsis roots (29, 34, 141) and a 

maize organ panel (81). These initial studies have resulted in several discoveries. For 

example, scATAC-seq of Arabidopsis roots revealed positive correlations between chromatin 

accessibility and nuclear gene transcription predictive of cell identity (34). Independent 

integration of Arabidopsis root scATAC-seq and scRNA-seq identified which expressed 

transcription factors putatively controlled chromatin accessibility at specific loci (29). 

Exhibiting the power of combined scRNA- and scATAC-seq, this study also discovered 

three endodermal subtypes with distinct cell identities and predicted functions, which were 

undetected by scRNA-seq alone (29). In maize, cell type–specific ACRs, especially in floral 

tissues, had both signs of selection and increased association with phenotype-associated 

Minow et al. Page 9

Annu Rev Genet. Author manuscript; available in PMC 2024 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



GWA variants (81). These findings suggest that, as in animals, variation within cell type–

restricted genes and ACRs may disproportionately drive phenotypic diversity. Future studies 

combining scATAC- and scRNA-seq will undoubtedly lead to appreciable discoveries in 

plants. Importantly, tandem scRNA- and scATAC-seq genomic association approaches will 

reveal more about the molecular mechanisms and spatiotemporal cellular context in which 

extant genetic variation controls phenotype manifestation.

FUTURE APPLICATION OF SINGLE-CELL PLANT POPULATION GENOMICS

Single-cell plant genomic association offers several advantages over conventional bulk-

tissue approaches: (a) Single-cell platforms profile cell states without requiring transgenic or 

endogenous cell-type marker genes, which do not exist for most plant species. (b) Cell-type 

proportions in single-cell data reflect endogenous in planta cell-type distributions (however, 

biased nuclei/cell recovery can be a major issue; see 134) that can serve as a secondary 

phenotype, allowing cell-type frequency comparisons between genotypes. (c) Single-cell 

eQTL and caQTL mapping enables the dissection of genetic variant effects in diverse 

cellular states (e.g., cell type, developmental or cell cycle stage, and ploidy), enabling 

QTL identification in rare cell states that is not possible through bulk approaches. Single-

cell genomic associations will be more powerful when utilizing scRNA- and scATAC-seq 

multiomics. Multiomic measurements of large, genetically diverse cohorts will disentangle 

the relationships among genetic variants, chromatin landscapes, transcription dynamics, 

cell types, and quantitative traits. It seems likely that some plant cell types will have a 

disproportionate influence on specific phenotypes, mirroring animal models. Discovering 

these cell-to-phenotype interactions will further our understanding of plant phenotypic 

control and provide novel targets for biotechnological or breeding manipulation to improve 

crop traits. Beyond finding future breeding targets, comparing wild and domesticated 

subpopulations will provide insights into how millennia of human selection have altered 

plant genomes, potentially revealing pan-species domestication targets.

SOMACLONAL VARIATION CAN FUEL SINGLE-CELL GENETIC 

ASSOCIATION WITH MOLECULAR TRAITS

Instead of relying on individual-level genetic diversity, single-cell genetic associations can 

examine somaclonal variation to determine how molecular phenotypes become varied in 

genetically divergent cell lineages. Somaclonal variation arises from the accumulation of 

mutations in distinct somatic lineages within an individual, leading to functional differences 

within cells of the same identity. In animals, somaclonal variation is linked to physiological 

aging and disease (36, 139). Single-cell genetics has already been applied to ascertain how 

mammalian genome sequences drift somatically (139, 157). Multiomics will enable the 

measurement of these somatic mutations and their effects on molecular phenotypes such 

as chromatin accessibility and gene expression, better revealing how specific somaclonal 

changes contribute to aging and disease. Investigation into mammalian somatic variants 

has developed tools to detect polymorphisms from single-cell data (89) or build de novo 

references at the cellular level (157), which can be translated to plant systems.
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Plants have a rich research history involving somaclonal variation, and several components 

intrinsic to plant biology leave it well-poised to combine single-cell genetics with 

somaclonal variation. Plant somaclonal variation was first described in the early twentieth 

century (9), and somaclonal variation was later used to map out the patterns of cell divisions 

during development (87, 104, 114, 127). Flowering plant meristems are divided into two 

or three layers; the outermost layer, the L1, gives rise to all epidermal tissue, while the 

inner L2 layer gives rise to most organs, including most gametes (84). Meristematic cell 

divisions are arranged such that the L1, L2, and sometimes L3 (114) layers maintain distinct 

cellular lineages, except for layer invasion events (132), during somatic development. In 

vegetatively propagated plants, the accumulation of mutations in each layer produces stable 

chimeras. Some crops, notably grape, have been vegetatively propagated for centuries or 

longer, leading to functional clonal diversity that has been selected upon for modern grape 

improvement (146). Perhaps the most extreme example of clonal variation is Vitis vinifera 
cv. Pinot Noir, which may predate the Roman conquest of Gaul (~50 BC) and has many 

clonal variants, most with chimeric L1/L2 layers (48). These L1/L2 sectors represent the 

culmination of hundreds of years of somatic changes and selection from one ancestral 

genome. Single-cell genetics provides the utility to separate the signals from these chimeric 

clones, determining how these mutations affect chromatin accessibility or gene expression 

and providing a foundational model to study the process, and ramifications, of the genesis of 

novel somatic variation.

QUANTITATIVE GENETICS IS RESTRICTED BY STANDING VARIATION

The results of any population genetics approach are intrinsically restricted by the genetic 

variation present in the study population; one can only evaluate the impact of the alleles 

captured in a chosen population, and quantitative genetic studies using a distinct population 

will find different genetic interactions. Different QTL studies examining the same phenotype 

in different populations often find different trait-associated loci. For example, study of 

human height found different QTL (44, 67, 152), although studies that use a large and 

diverse enough population can discover most common variants underlying extant trait 

variation (163). Likewise, studying giant Gough Island mice revealed size-controlling loci 

that were not found in other populations (41). Large-effect alleles can be subpopulation 

restricted, which can occur due to interspecific introgression, as in the cases of a hypoxia 

tolerance allele introgressed from Denisovans into Tibetans (50) and altered timing of the 

floral transition by an inverted haploblock introgressed between Helianthus spp. (sunflower) 

(140). Population fixation of important alleles can also obfuscate important trait regulators. 

For example, cultivated maize contains a Teosinte Branched1 (Tb1) variant fixed during 

domestication, and only a recombinant population derived from its wild ancestor, teosinte, 

revealed how Tb1 controls branching (27). Alternatively, fixing a large-effect QTL can allow 

for the discovery of other smaller-effect loci (155). Mirroring these studies, the evaluation 

of diverse populations via single-cell genomic associations will reveal more of the genetics 

behind complex traits.

Although population selection can ameliorate the issue, single-cell genomic association 

on standing variation limits what can be learned about the genetics controlling any 

phenotype, as extant variants only affect a small fraction of the true genetic architecture that 
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manifests complex traits. The standing variation in a wild or domesticated population only 

encompasses polymorphisms that survive natural or artificial selection, respectively; this 

often excludes variants in key trait regulators, precluding their discovery through mapping 

or association. To illustrate this, we return to the GWA of maize flowering (10). Buckler et 

al. (10), despite explaining 89% of maize time-to-flowering heritability, found no variants 

associated with Indeterminate1 (Id1), a potent regulator of flowering (10, 19, 123). Loss-

of-function id1 alleles flower extremely late, which is thought to produce a reproductive 

barrier, preventing variants from existing in wild or domesticated maize. Instead, the 

role of Id1 in maize flowering was only uncovered through mutational approaches (19, 

123). Using mutagens to create populations was critical in mapping many physiologically 

important genes, including genes involved in the floral transition such as LEAFY (153) 

and those involved in specifying essential cell types such as MUTE (103), that were 

intolerant of mutation outside of a lab. Mirroring the value of mutations in classical genetics, 

we anticipate that the merger of single-cell mutant populations with single-cell genomic 

measurement will be a powerful technique to interrogate the genetic control of molecular 

traits, notably transcript levels, independent of extant population variation. We believe these 

single-cell genetics approaches will transform our understanding of what controls molecular 

phenotypes throughout the genome.

TRANSITIONING FROM SINGLE-CELL GENOMICS TO SINGLE-CELL 

GENETIC SCREENS WILL FURTHER INTERROGATE THE GENETIC 

ARCHITECTURE OF COMPLEX TRAITS

Single-cell genetics is being applied to mammalian systems, through techniques such as 

Perturb-seq (26). Perturb-seq utilizes a pool of barcoded CRISPR guide RNA sequences that 

are introduced randomly to individual cells containing CAS9 to disrupt endogenous gene 

expression, followed by scRNA-seq to determine both the CRISPR target sequence(s) and 

the effects of the cassette on the transcriptome (26). This high-throughput approach, when 

using dCAS9, allows the individual repression [CRISPR interference (CRISPRi)] of every 

expressed gene in a cell type (111), and variants have been developed based on ectopic 

mRNA expression (143). Perturb-seq, which requires cytoplasmic RNA to deconvolute the 

guide RNA sequences post hoc, is difficult to adapt to plant systems due to the challenges 

and technical artefacts of isolating and manipulating protoplasts. In particular, it remains 

challenging to limit the number of guide RNA sequences introduced to each protoplast. 

As such, alternative single-cell genetic methods must be developed and applied to plant 

systems.

The difficulties in adapting high-throughput CRISPR-CAS9 screens to plants lead us 

to propose the use of more traditional mutagens, such as chemical mutagens, or 

ionizing radiation to generate genetically diverse mutant cell populations to associate 

loci with molecular phenotypes, such as mRNA transcription, via single-cell genetic 

screens. However, to associate individual mutations with changes in transcription, the 

induced mutations must be detectable at the cellular level concurrent with transcriptome 

measurements. Multiomic scRNA- and scATAC-seq have great potential here, with scATAC-

seq measuring induced mutations over most of the functional genome, and scRNA-seq 
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measuring the subsequent transcriptional changes. However, the high sparsity of these 

multiomic measurements remains an impediment to mutation detection when screening 

mutant cell populations. To address this sparsity problem, mutagenized cell populations can 

be measured after cell proliferation. For example, when exposed to multicellular plants, 

mutagens create chimeras, with each mutagenized cell containing independent mutations 

(Figure 3). From this chimera, mutant meristematic cells divide to produce clonal sectors 

with unique genotypes, and sampling these sectors aids mutation detection by allowing 

the amalgamation of repeated measurements of cells or nuclei from the same genotype. 

Additionally, since plants share metabolites through their symplasm, chimeric sectors 

carrying mutations in some core metabolism genes should be recoverable, and studiable, 

even though they would be lethal if fixed organism-wide. A complementary approach to 

improve mutation detection is to mutagenize haploid cells; in haploids, only one allele 

is present, facilitating cell genotype determination with fewer reads. Another benefit of 

mutagenizing haploids is that all mutations become penetrant, easing the study of mutant 

alleles. Although common in plants but not in animals, the isolation and maintenance 

of haploid mammalian cell lines and individuals have increased in prevalence (33, 69), 

allowing similarly designed single-cell mutant population screens in animals.

Induced mutation creates alleles that have large, often very deleterious, effects and allow 

the discovery of regulatory relationships between loci that are invariant in organism-level 

populations due to fitness constraints. Notably, this large allele effect size should empower 

the detection of trans regulators that, presumably due to the large phenotypic consequences 

of their alteration, often contain only small-effect variants within species (147). Although 

mutant alleles will often have large effects, they will also have an exceptionally small minor 

allele frequency (MAF) in the cellular population, with the chances of inducing the exact 

same mutation being near zero for large genomes. This low MAF will hamper the ability to 

find significant associations between mutants and transcriptional variants. Large-effect, but 

rare, alleles are a common occurrence in natural populations (62, 105), and allele pooling 

strategies that treat variants in similar genomic features (e.g., in the same exon or gene) 

as comparable alleles have been successful in mapping human disease-associated variants 

(105). In a similar way, pooling mutant alleles within the same exons, genes, or ACRs 

will bolster MAF, increasing the power of single-cell mutant population screens to identify 

associations with expression variation.

Single-cell mutant genetic screens will confer distinct advantages compared to the 

quantitative genetic study of domesticated or wild individuals: (a) Induced mutation will 

generate large effect-size alleles in important genomic loci that would be too maladaptive 

to exist in individuals. (b) Large cell populations can reside in Petri dishes or chimeric 

individuals, conferring significant space, and cost, savings compared to equivalent numbers 

of individuals. (c) Mutant tolerance will vary by cell type (these survivorship approaches are 

elaborated upon below), revealing the specific cellular contexts in which CREs and genes 

become indispensable. (d) As all mutations will be independent, there will be no underlying 

population structure between alleles, deconvoluting linked genetic effects, including those 

in low recombination regions. (e) Cell types should tolerate mutations that are lethal due 

to developmental (e.g., embryonic) defects, revealing pleiotropic roles of genes unstudiable 

in their fixed forms. (f) Detection of causal mutations, and not polymorphisms linked 
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to a functional variant, will ease the process of linking genes or CREs to phenotypes. 

These advantages position single-cell mutant screens to reveal much about the cis and trans 
transcriptional regulators functioning in different cell types. This approach will synergize 

with established single-locus and classical population genetics techniques, further unveiling 

the intricate relationships behind omnigenic trait heritability.

Since single-cell mutant screens involve the de novo generation of genetic diversity, they 

will open new horizons to expand quantitative genetics techniques to organisms with 

poor genetic diversity. For example, domesticated animals, such as cattle, contain runs of 

homozygosity (101) where past selection and inbreeding have eliminated genetic diversity in 

large, linked regions. The strong historic selection on these runs of homozygosity highlights 

their agronomic importance, yet the lack of diversity greatly impedes examining any 

underlying function. Similarly, wild populations that have recovered from near extinction 

events have dramatically reduced extant genetic diversity (42, 96). Here, the creation of 

single-cell mutant populations circumvents the need for standing variation and furthers the 

use of quantitative genetics to study the genetic control of traits in these recalcitrant systems.

Single-cell mutant screens will also help to overcome long generation times, which 

remain common obstacles in individual-level quantitative genetics techniques. Perennial 

crops are plagued by this problem, with seed-sown (recombinant) individuals often taking 

years to reach sexual maturity. Additionally, many perennial cultivars share extensive 

coancestry (88, 90, 150), limiting genetic diversity within elite germplasm. These problems 

impede quantitative genetic approaches, slowing both the basic understanding of perennial 

plant genetics and the process of breeding their improvement. Again, single-cell mutant 

populations will bypass these limitations, improving our understanding of perennial plant 

genetic architecture.

Single-cell genetics will enable novel experimental approaches that were previously 

infeasible. For example, in mutant cell populations, especially haploid ones, the integral 

parts of the genome will be revealed by low mutation recovery rates. This genomic 

survivorship analysis will reveal the many genomic regions that are integral to all cell 

viability. Additionally, a cell type–specific survivorship analysis will reveal the loci required 

to generate or maintain different cell fates. This single-cell mutant survivorship analysis can 

be combined with abiotic or biotic stresses to highlight the genes, CREs, and cell types 

needed to endure these conditions.

Single-cell genomics also provides a high-throughput framework to exploit Arabidopsis 
T-DNA insertional mutant libraries (2, 97), which exist for most genes. Cells from many 

plants with mapped T-DNA insertion lines can be extracted en masse and measured via 

single-cell genomics. By treating cells as individuals, and devising a T-DNA line pooling 

and detection strategy, single-cell measurement of expression and/or chromatin accessibility 

in these established T-DNA may address the dearth of experimentally validated functions of 

plant genes (112). Beyond Arabidopsis, mutant libraries have been created for other plant 

models such as maize (83, 86), allowing for the translation of this scheme to diverse species. 

These are just a few examples outlining how single-cell genetics provides an opportunity 
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for creative and new high-throughput experimental approaches to address a wide range of 

outstanding biological questions.

CHALLENGES AND TECHNOLOGICAL ADVANCES FACING SINGLE-CELL 

TECHNOLOGY

Single-cell genomics is currently expensive, making many studies cost prohibitive. 

Therefore, reducing costs is a major priority that will expand its user base and promote 

discovery. This situation is analogous to the emergence of high-throughput sequencing, 

where technological advances rapidly increased the number of reads produced per run; 

Illumina sequencing output changed from ~30 million 32-bp reads to 25 billion paired-end 

150-bp reads today. This improvement significantly reduced costs and thereby democratized 

its research use. Similar efforts are underway to reduce single-cell genomics costs by 

expanding the number of cells or nuclei that are obtained per experiment. The biggest gains 

in cell numbers have resulted from combinatorial indexing or preindexing samples and 

overloading microfluidic instruments. Droplet single-cell combinational ATAC-seq (dsci-

ATAC-seq) (65) and single-cell combinatorial fluidic indexing (scifi)-RNA-seq (23) both 

achieved >100,000 cells per library, increasing cell output 10- to 25-fold. Other approaches 

to increasing cell throughput have utilized additional rounds of barcoding, including 

sci-ATAC-seq3 (28) and sci-RNA-seq3 (12). These advances enable deeper coverage of 

samples and/or using multiple samples per library, depending on the pre-indexing steps. 

Although these methods are designed to measure chromatin accessibility and mRNAs, future 

innovations in library preparation will enable measurement of additional genomic features 

such as histone modifications, chromatin interactions, transcription factor binding, and other 

molecular traits.

The process of annotating cell types, which requires characterized cell type–specific 

markers, remains challenging, especially in poorly studied organisms. Spatial-omics 

provides one solution to improving cell-type annotations. For example, 10× Genomics’ 

Visium Spatial Gene Expression images, sections, and sequences mRNA while fixing the 

mRNA coordinates in the tissue. This identifies transcripts in their spatial context, increasing 

the accuracy of cell-type annotation, both on the slide and in any accompanying single-

cell data. Beyond the restrictions imposed by prohibitively high costs, current 10× spatial 

resolutions, ~55 μm, are limiting as they are larger than most plant cells. However, ~500-

nm resolution transcriptomics measurements have been achieved through spatial enhanced 

resolution omics-sequencing (Stereo-seq) (14, 156). Another tool, plant hybridization-based 

targeted observation of gene expression map (PHYTOMap) (95), provides an alternative 

spatial method to measure cell type–specific mRNAs. This method uses multiplexed 

fluorescent probes for in situ hybridization, identifying cell type–specific expression of 

target genes in a three-dimensional context. PHYTOMap is currently limited to a few 

target genes, but its labeling scheme can expand to thousands. Vizgen offers another high-

resolution in situ hybridization technique, but currently it only assays ~500 predesignated 

transcripts. The ability to produce cell type–specific measurements from >100,000 cells per 

library combined with emerging spatial-omics will lead to high-confidence cell-type atlases, 

enabling accurate and rapid cell-type annotation in subsequent experiments.

Minow et al. Page 15

Annu Rev Genet. Author manuscript; available in PMC 2024 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FUTURE APPLICATIONS OF EMERGING SINGLE-CELL TECHNOLOGIES

Single-cell genomics is in its infancy, and the number of cells or nuclei profiled from each 

experiment continues to rise. We see routine outputs changing from ~104 cells to at least 

105–6 cells per run in the coming years. This increased throughput will allow approaches 

analogous to those done on bacterial cells in culture, impacting the types of questions that 

can be addressed and future experimental design. Most studies currently measure limited 

developmental stages and genotypes due to cost and limiting cell/nuclei yield. However, 

future studies will examine plant processes over developmental progression, in response to 

many environments and treatments and across genetically distinct individuals. In particular, 

eQTL and caQTL studies from biparental populations or diversity panels will identify the 

cell types in which genetic variants act to alter important continuous phenotypes such 

as yield and stress response. This unprecedented resolution will reveal much about how 

genotype shapes complex phenotypes.

There is a natural tendency to replace assays such as bulk RNA-seq with scRNA-seq 

within pre-existing experimental designs, which will certainly lead to greater resolution, 

especially for signals from rare cell types. However, the transition from single-cell genomics 

to single-cell genetics offers opportunities to break the experimental mold by turning 

cells into individual test tubes, allowing truly unprecedented experiments. As described 

earlier, mutagenesis can be used to study gene and regulatory element function at cell-type 

resolution. Individual cells can also be altered via chemical or environmental treatments 

or permuted ectopic gene expression (143), such as transcription factors, and then assayed 

via single-cell genomics. The advent of single-cell genetics will identify which cell types 

elicit what molecular responses to these many stimuli, accelerating our understanding of 

how gene regulatory networks in different cells integrate to produce phenotypes. Although 

it is a future endeavor, it is important to recognize the potential for single-cell genetics to 

further our understanding of cell type–specific processes, as we expand our toolkit to push 

the boundaries of biological discovery.
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Glossary

Heritability
the proportion of a population’s phenotypic variance that can be explained by genetics

Single-cell genetics
the combination of cellular-level genetic manipulation with single-cell phenotypic 

measurements

Chromatin accessibility
the measure of DNA unbound by nucleosomes or other DNA-binding proteins

Multiomic
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measurement of two or more omic metrics from the same nucleus or cell

Data sparsity
data with a high proportion of missing information (dropouts) per measurement

Protoplast
a plant cell isolated from its cell wall

Plasticity
the ability of one genotype to produce diverse phenotypes in response to the environment

Genetic assimilation
the process through which a previously environmentally induced response becomes 

constitutive

Ploidy
the number of chromosomes sets in a cell

Endoreduplication
DNA duplication without subsequent cell division

Introgression
the process in which a haplotype is moved from one species or subpopulation into another 

through hybridization followed by recurrent backcrosses

Type I errors
rejecting the null hypothesis when it is really true (false positives in statistical tests)

Population structure
the coinheritance of groups of alleles due to shared ancestry and genetic linkage

Chimera
an individual that contains two or more distinct genotypes

Symplasm
the shared cytoplasm of multiple plant cells that are connected by plasmodesmata pores

T-DNA
the piece of DNA integrated into plant genomes by Agrobacterium tumefaciens

Spatial-omics
an omics measurement integrated with information about position within an organism

LITERATURE CITED

1. Alonso-Blanco C, Andrade J, Becker C, Bemm F, Bergelson J, et al. 2016. 1,135 genomes reveal the 
global pattern of polymorphism in Arabidopsis thaliana. Cell 166(2):481–91 [PubMed: 27293186] 

2. Alonso M, Stepanova AN, Leisse TJ, Kim CJ, Chen H, et al. 2003. Genome-wide insertional 
mutagenesis of Arabidopsis thaliana. Science 301(5633):653–57 [PubMed: 12893945] 

Minow et al. Page 17

Annu Rev Genet. Author manuscript; available in PMC 2024 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Ashrafi H, Kinkade M, Foolad MR. 2009. A new genetic linkage map of tomato based on a 
Solanum lycopersicum × S. pimpinellifolium RIL population displaying locations of candidate 
pathogen response genes. Genome 52(11):935–56 [PubMed: 19935918] 

4. Baek S, Lee I. 2020. Single-cell ATAC sequencing analysis: from data preprocessing to hypothesis 
generation. Comput. Struct. Biotechnol. J 18:1429–39 [PubMed: 32637041] 

5. Bailey DW. 1971. Recombinant-inbred strains: an aid to finding identity, linkage, and function of 
histocompatibility and other genes. Transplantation 11:325–27 [PubMed: 5558564] 

6. Beche E, Gillman JD, Song Q, Nelson R, Beissinger T, et al. 2020. Nested association mapping 
of important agronomic traits in three interspecific soybean populations. Theor. Appl. Genet 
133(3):1039–54 [PubMed: 31974666] 

7. Benaglio P, Newsome J, Han JY, Chiou J, Aylward A, et al. 2020. Mapping genetic effects on 
cell type-specific chromatin accessibility and annotating complex trait variants using single nucleus 
ATAC-seq. bioRxiv 2020.12.03.387894 10.1101/2020.12.03.387894

8. Brem RB, Yvert G, Clinton R, Kruglyak L. 2002. Genetic dissection of transcriptional regulation in 
budding yeast. Science 296(5568):752–55 [PubMed: 11923494] 

9. Buar E. 1909. Das Wesen und die Erblichkietsverhaltnisse der “Varietates Albomarginata Hort” von 
Pelargonium Zonale. Zeit. Indukt. Abstamm. Vererb 1:330–51

10. Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, et al. 2009. The genetic architecture 
of maize flowering time. Science 325(5941):714–18 [PubMed: 19661422] 

11. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. 2013. Transposition of native 
chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins 
and nucleosome position. Nat. Methods 10(12):1213–18 [PubMed: 24097267] 

12. Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, et al. 2019. The single-cell transcriptional 
landscape of mammalian organogenesis. Nature 566(7745):496–502 [PubMed: 30787437] 

13. Chahal HS, Wu W, Ransohoff KJ, Yang L, Hedlin H, et al. 2016. Genome-wide association 
study identifies 14 novel risk alleles associated with basal cell carcinoma. Nat. Commun 7:12510 
[PubMed: 27539887] 

14. Chen A, Liao S, Cheng M, Ma K, Wu L, et al. 2022. Spatiotemporal transcriptomic atlas of 
mouse organogenesis using DNA nanoball-patterned arrays. Cell 185(10):1777–92.e21 [PubMed: 
35512705] 

15. Chen Q, Yang CJ, York AM, Xue W, Daskalska LL, et al. 2019. TeoNAM: a nested 
association mapping population for domestication and agronomic trait analysis in maize. Genetics 
213(3):1065–78 [PubMed: 31481533] 

16. Chen Z, Debernardi JM, Dubcovsky J, Gallavotti A. 2022. The combination of morphogenic 
regulators BABY BOOM and GRF-GIF improves maize transformation efficiency. bioRxiv 
2022.09.02.506370 10.1101/2022.09.02.506370

17. Cirulli ET, Goldstein DB. 2010. Uncovering the roles of rare variants in common disease through 
whole-genome sequencing. Nat. Rev. Genet 11(6):415–25 [PubMed: 20479773] 

18. Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated 
transformation of Arabidopsis thaliana. Plant J. 16(6):735–43 [PubMed: 10069079] 

19. Colasanti J, Yuan Z, Sundaresan V. 1998. The indeterminate gene encodes a zinc finger protein and 
regulates a leaf-generated signal required for the transition to flowering in maize. Cell 93:593–603 
[PubMed: 9604934] 

20. Ctortecka C, Hartlmayr D, Seth A, Mendjan S, Tourniaire G, et al. 2022. An automated workflow 
for multiplexed single-cell proteomics sample preparation at unprecedented sensitivity. bioRxiv 
2021.04.14.439828 10.1101/2021.04.14.439828

21. Cuomo ASE, Seaton DD, McCarthy DJ, Martinez I, Bonder MJ, et al. 2020. Single-cell RNA-
sequencing of differentiating iPS cells reveals dynamic genetic effects on gene expression. Nat. 
Commun 11(1):810 [PubMed: 32041960] 

22. Cusanovich DA, Hill AJ, Aghamirzaie D, Daza RM, Pliner HA, et al. 2018.A single-cell atlas of in 
vivo mammalian chromatin accessibility. Cell 174(5):1309–24.e18 [PubMed: 30078704] 

23. Datlinger P, Rendeiro AF, Boenke T, Senekowitsch M, Krausgruber T, et al. 2021. Ultra-high-
throughput single-cell RNA sequencing and perturbation screening with combinatorial fluidic 
indexing. Nat. Methods 18(6):635–42 [PubMed: 34059827] 

Minow et al. Page 18

Annu Rev Genet. Author manuscript; available in PMC 2024 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



24. de Veylder L, Larkin JC, Schnittger A. 2011. Molecular control and function of endoreplication in 
development and physiology. Trends Plant Sci. 16(11):624–34 [PubMed: 21889902] 

25. Denyer T, Ma X, Klesen S, Scacchi E, Nieselt K, Timmermans MCP. 2019. Spatiotemporal 
developmental trajectories in the Arabidopsis root revealed using high-throughput single-cell RNA 
sequencing. Dev. Cell 48(6):840–52.e5 [PubMed: 30913408] 

26. Dixit A, Parnas O, Li B, Chen J, Fulco CP, et al. 2016. Perturb-Seq: dissecting molecular circuits 
with scalable single-cell RNA profiling of pooled genetic screens. Cell 167(7):1853–66.e17 
[PubMed: 27984732] 

27. Doebley J, Stec A, Gustus C. 1995. teosinte branched1 and the origin of maize: evidence for 
epistasis and the evolution of dominance. Genetics 141(1):333–46 [PubMed: 8536981] 

28. Domcke S, Hill AJ, Daza RM, Cao J, O’Day DR, et al. 2020. A human cell atlas of fetal chromatin 
accessibility. Science 370(6518):eaba7612 [PubMed: 33184180] 

29. Dorrity MW, Alexandre CM, Hamm MO, Vigil A-L, Fields S, et al. 2021. The regulatory 
landscape of Arabidopsis thaliana roots at single-cell resolution. Nat. Commun 12(1):3334 
[PubMed: 34099698] 

30. Dubin MJ, Zhang P, Meng D, Remigereau MS, Osborne EJ, et al. 2015. DNA methylation in 
Arabidopsis has a genetic basis and shows evidence of local adaptation. eLife 4(May):e05255 
[PubMed: 25939354] 

31. Dunwell JM. 2010. Haploids in flowering plants: origins and exploitation. Plant Biotechnol. J 
8(4):377–424 [PubMed: 20233334] 

32. Eli RM, Daniel LV, Hank WB, Edward SB. 2016. Open chromatin reveals the functional maize 
genome. PNAS 113(22):3177–84

33. Elling U, Woods M, Forment JV, Fu B, Yang F, et al. 2019. Derivation and maintenance of mouse 
haploid embryonic stem cells. Nat. Protoc 14(7):1991–2014 [PubMed: 31160788] 

34. Farmer A, Thibivilliers S, Ryu KH, Schiefelbein J, Libault M. 2021. Single-nucleus RNA and 
ATAC sequencing reveals the impact of chromatin accessibility on gene expression in Arabidopsis 
roots at the single-cell level. Mol. Plant 14(3):372–83 [PubMed: 33422696] 

35. Fisher RA. 1935. The Design of Experiments. Edinburgh, UK: Oliver and Boyd

36. Forsberg LA, Gisselsson D, Dumanski JP. 2017. Mosaicism in health and disease—clones picking 
up speed. Nat. Rev. Genet 18(2):128–42 [PubMed: 27941868] 

37. Gage JL, Monier B, Giri A, Buckler ES. 2020. Ten years of the maize nested association mapping 
population: impact, limitations, and future directions. Plant Cell 32(7):2083–93 [PubMed: 
32398275] 

38. Gate RE, Cheng CS, Aiden AP, Siba A, Tabaka M, et al. 2018. Genetic determinants of 
co-accessible chromatin regions in activated T cells across humans. Nat. Genet 50(8):1140–50 
[PubMed: 29988122] 

39. Gibson G. 2012. Rare and common variants: twenty arguments. Nat. Rev. Genet 13(2):135–45 
[PubMed: 22251874] 

40. Gibson G, Powell JE, Marigorta UM. 2015. Expression quantitative trait locus analysis for 
translational medicine. Genome Med. 7(1):60 [PubMed: 26110023] 

41. Gray MM, Parmenter MD, Hogan CA, Ford I, Cuthber RJ, et al. 2015. Genetics of rapid and 
extreme size evolution in island mice. Genetics 201(1):213–28 [PubMed: 26199233] 

42. Grossen C, Guillaume F, Keller LF, Croll D. 2020. Purging of highly deleterious mutations through 
severe bottlenecks in Alpine ibex. Nat. Commun 11(1):1001 [PubMed: 32081890] 

43. GTEx Consort. 2020. The GTEx Consortium atlas of genetic regulatory effects across human 
tissues. Science 369(6509):1318–30 [PubMed: 32913098] 

44. Gudbjartsson DF, Walters GB, Thorleifsson G, Stefansson H, Halldorsson BV, et al. 2008. Many 
sequence variants affecting diversity of adult human height. Nat. Genet 40(5):609–15 [PubMed: 
18391951] 

45. Gusella JF, Wexler NS, Conneally PM, Naylor SL, Anderson MA, et al. 1983. A polymorphic 
DNA marker genetically linked to Huntington’s disease. Nature 306(5940):234–38 [PubMed: 
6316146] 

Minow et al. Page 19

Annu Rev Genet. Author manuscript; available in PMC 2024 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



46. Haley CS, Visscher PM. 1998. Strategies to utilize marker-quantitative trait loci associations. J. 
Dairy Sci 81(Suppl. 2):85–97 [PubMed: 9777515] 

47. Hickey JM, Chiurugwi T, Mackay I, Powell W. 2017. Genomic prediction unifies animal and 
plant breeding programs to form platforms for biological discovery. Nat. Genet 49(9):1297–303 
[PubMed: 28854179] 

48. Hocquigny S, Pelsy F, Dumas V, Kindt S, Heloir MC, Merdinoglu D. 2004. Diversification within 
grapevine cultivars goes through chimeric states. Genome 47(3):579–89 [PubMed: 15190375] 

49. Hosmani PS, Flores-Gonzalez M, van de Geest H, Maumus F, Bakker LV, et al. 2019. An 
improved de novo assembly and annotation of the tomato reference genome using single-molecule 
sequencing, Hi-C proximity ligation and optical maps. bioRxiv 767764. 10.1101/767764

50. Huerta-Sánchez E, Jin X, Asan Bianba Z, Peter BM, et al. 2014. Altitude adaptation in Tibetans 
caused by introgression of Denisovan-like DNA. Nature 512(7513):194–97 [PubMed: 25043035] 

51. Hufford MB, Seetharam AS, Woodhouse MR, Chougule KM, Ou S, et al. 2021. De novo assembly, 
annotation, and comparative analysis of 26 diverse maize genomes. Science 373(6555):655–62 
[PubMed: 34353948] 

52. Islam S, Kjällquist U, Moliner A, Zajac P, Fan JB, et al. 2011. Characterization of the single-cell 
transcriptional landscape by highly multiplex RNA-seq. Genome Res. 21(7):1160–67 [PubMed: 
21543516] 

53. Jean-Baptiste K, McFaline-Figueroa JL, Alexandre CM, Dorrity MW, Saunders L, et al. 2019. 
Dynamics of gene expression in single root cells of Arabidopsis thaliana. Plant Cell 31(5):993–
1011 [PubMed: 30923229] 

54. Jerber J, Seaton DD, Cuomo ASE, Kumasaka N, Haldane J, et al. 2021. Population-scale single-
cell RNA-seq profiling across dopaminergic neuron differentiation. Nat. Genet 53(3):304–12 
[PubMed: 33664506] 

55. Jiao Y, Peluso P, Shi J, Liang T, Stitzer MC, et al. 2017. Improved maize reference genome with 
single-molecule technologies. Nature 546(7659):524–27 [PubMed: 28605751] 

56. Kasha KJ, Kao KN. 1970. High frequency haploid production in barley (Hordeum vulgare L.). 
Nature 225(5235):874–76 [PubMed: 16056782] 

57. Kawakatsu T, Huang SSC, Jupe F, Sasaki E, Schmitz RJ, et al. 2016. Epigenomic diversity in a 
global collection of Arabidopsis thaliana accessions. Cell 166(2):492–505 [PubMed: 27419873] 

58. Kehr J, Kragler F. 2018. Long distance RNA movement. New Phytol. 218(1):29–40 [PubMed: 
29418002] 

59. Kelliher T, Starr D, Richbourg L, Chintamanani S, Delzer B, et al. 2017. MATRILINEAL, 
a sperm-specific phospholipase, triggers maize haploid induction. Nature 542(7639):105–9 
[PubMed: 28114299] 

60. Kim-Hellmuth S, Aguet F, Oliva M, Muñoz-Aguirre M, Kasela S, et al. 2020. Cell type-
specific genetic regulation of gene expression across human tissues. Science 369(6509):eaaz8528 
[PubMed: 32913075] 

61. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, et al. 2005. Complement factor H polymorphism 
in age-related macular degeneration. Science 308(5720):385–89 [PubMed: 15761122] 

62. Kremling KAG, Chen SY, Su MH, Lepak NK, Romay MC, et al. 2018. Dysregulation of 
expression correlates with rare-allele burden and fitness loss in maize. Nature 555(7697):520–23 
[PubMed: 29539638] 

63. Ladejobi O, Elderfield J, Gardner KA, Gaynor RC, Hickey J, et al. 2016. Maximizing the potential 
of multi-parental crop populations. Appl. Transl. Genom 11:9–17 [PubMed: 28018845] 

64. Laitinen RAE, Nikoloski Z. 2019. Genetic basis of plasticity in plants. J. Exp. Bot 70(3):795–804 
[PubMed: 30462241] 

65. Lareau CA, Duarte FM, Chew JG, Kartha VK, Burkett ZD, et al. 2019. Droplet-based 
combinatorial indexing for massive-scale single-cell chromatin accessibility. Nat. Biotechnol 
37(8):916–24 [PubMed: 31235917] 

66. Laurie CC, Chasalow SD, LeDeaux JR, McCarroll R, Bush D, et al. 2004. The genetic architecture 
of response to long-term artificial selection for oil concentration in the maize kernel. Genetics 
168(4):2141–55 [PubMed: 15611182] 

Minow et al. Page 20

Annu Rev Genet. Author manuscript; available in PMC 2024 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



67. Lettre G, Jackson AU, Gieger C, Schumacher FR, Berndt SI, et al. 2008. Identification of ten 
loci associated with height highlights new biological pathways in human growth. Nat. Genet 
40(5):584–91 [PubMed: 18391950] 

68. Li X, Zhang X, Gao S, Cui F, Chen W, et al. 2022. Single-cell RNA sequencing reveals the 
landscape of maize root tips and assists in identification of cell type-specific nitrate-response 
genes. Crop. J 10(6):1589–600

69. Li Y, Shuai L. 2017. A versatile genetic tool: haploid cells. Stem Cell Res. Ther 8(1):197 [PubMed: 
28962667] 

70. Li YH, Zhou G, Ma J, Jiang W, Jin LG, et al. 2014. De novo assembly of soybean wild relatives for 
pan-genome analysis of diversity and agronomic traits. Nat. Biotechnol 32(10):1045–52 [PubMed: 
25218520] 

71. Liang Z, Myers ZA, Petrella D, Engelhorn J, Hartwig T, Springer NM. 2022. Mapping responsive 
genomic elements to heat stress in a maize diversity panel. Genome Biol. 23(1):234 [PubMed: 
36345007] 

72. Liu H-J, Yan J. 2019. Crop genome-wide association study: a harvest of biological relevance. Plant 
J. 97(1):8–18 [PubMed: 30368955] 

73. Liu Q, Liang Z, Feng D, Jiang S, Wang Y, et al. 2021. Transcriptional landscape of rice roots at the 
single-cell resolution. Mol. Plant 14(3):384–94 [PubMed: 33352304] 

74. Liu X, Li YI, Pritchard JK. 2019. Trans effects on gene expression can drive omnigenic 
inheritance. Cell 177(4):1022–34.e6 [PubMed: 31051098] 

75. Liu Y, Du H, Li P, Shen Y, Peng H, et al. 2020. Pan-genome of wild and cultivated soybeans. Cell 
182(1):162–76.e13 [PubMed: 32553274] 

76. López-Cortegano E, Caballero A. 2019. Inferring the nature of missing heritability in human traits 
using data from the GWAS catalog. Genetics 212(3):891–904 [PubMed: 31123044] 

77. Mackay I, Powell W. 2007. Methods for linkage disequilibrium mapping in crops. Trends Plant 
Sci. 12(2):57–63 [PubMed: 17224302] 

78. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, et al. 2015. Highly parallel genome-wide 
expression profiling of individual cells using nanoliter droplets. Cell 161(5):1202–14 [PubMed: 
26000488] 

79. Maher B. 2008. Personal genomes: the case of the missing heritability. Nature 456(7218):18–21 
[PubMed: 18987709] 

80. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, et al. 2009. Finding the missing 
heritability of complex diseases. Nature 461(7265):747–53 [PubMed: 19812666] 

81. Marand AP, Chen Z, Gallavotti A, Schmitz RJ. 2021. A cis-regulatory atlas in maize at single-cell 
resolution. Cell 184(11):3041–55.e21 [PubMed: 33964211] 

82. Marand AP, Schmitz RJ. 2022. Single-cell analysis of cis-regulatory elements. Curr. Opin. Plant 
Biol 65:102094 [PubMed: 34390932] 

83. Marcon C, Altrogge L, Win YN, Stöcker T, Gardiner JM, et al. 2020. BonnMu: a sequence-
indexed resource of transposon-induced maize mutations for functional genomics studies. Plant 
Physiol. 184(2):620–31 [PubMed: 32769162] 

84. Marcotrigiano M, Bernatzky R. 1995. Arrangement of cell layers in the shoot apical meristems of 
periclinal chimeras influences cell fate. Plant J. 7(2):193–202

85. Matthews LJ, Turkheimer E. 2022. Three legs of the missing heritability problem. Stud. Hist. 
Philos. Sci 93:183–91 [PubMed: 35533541] 

86. McCarty DR, Suzuki M, Hunter C, Collins J, Avigne WT, Koch KE. 2013. Genetic and molecular 
analyses of UniformMu transposon insertion lines. Methods Mol. Biol 1057:157–66 [PubMed: 
23918427] 

87. McDaniel CN, Poethig RS. 1988. Cell-lineage patterns in the shoot apical meristem of the 
germinating maize embryo. Planta 175(1):13–22 [PubMed: 24221624] 

88. Migicovsky Z, Gardner KM, Richards C, Chao CT, Schwaninger HR, et al. 2021. Genomic 
consequences of apple improvement. Hortic. Res 8(1):9 [PubMed: 33384408] 

Minow et al. Page 21

Annu Rev Genet. Author manuscript; available in PMC 2024 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



89. Muyas F, Li R, Rahbari R, Mitchell TJ, Hormoz S, Cortés-Ciriano I. 2022. Accurate de 
novo detection of somatic mutations in high-throughput single-cell profiling data sets. bioRxiv 
2022.11.22.517567 10.1101/2022.11.22.517567

90. Myles S, Boyko AR, Owens CL, Brown PJ, Grassi F, et al. 2011. Genetic structure and 
domestication history of the grape. PNAS 108(9):3530–35 [PubMed: 21245334] 

91. Nathan A, Asgari S, Ishigaki K, Valencia C, Amariuta T, et al. 2022. Single-cell eQTL models 
reveal dynamic T cell state dependence of disease loci. Nature 606(7912):120–28 [PubMed: 
35545678] 

92. Nelms B, Walbot V. 2019. Defining the developmental program leading to meiosis in maize. 
Science 364(6435):52–56 [PubMed: 30948545] 

93. Nelms B, Walbot V. 2022. Gametophyte genome activation occurs at pollen mitosis I in maize. 
Science 375(6579):424–29 [PubMed: 35084965] 

94. Nica AC, Dermitzakis ET. 2013. Expression quantitative trait loci: present and future. Philos. 
Trans. R. Soc. B 368(1620):20120362

95. Nobori T, Oliva M, Lister R, Ecker JR. 2022. PHYTOMap: Multiplexed single-cell 3D spatial gene 
expression analysis in plant tissue. bioRxiv 2022.07.28.501915 10.1101/2022.07.28.501915

96. O’Brien SJ, Johnson WE, Driscoll CA, Dobrynin P, Marker L. 2017. Conservation genetics of the 
cheetah: lessons learned and new opportunities. J. Hered 108(6):671–77 [PubMed: 28821181] 

97. O’Malley RC, Barragan CC, Ecker JR. 2015. A user’s guide to the Arabidopsis T-DNA insertion 
mutant collections. Methods Mol. Biol 1284:323–42 [PubMed: 25757780] 

98. Ozaki K, Ohnishi Y, Iida A, Sekine A, Yamada R, et al. 2002. Functional SNPs in the 
lymphotoxin-α gene that are associated with susceptibility to myocardial infarction. Nat. Genet 
32(4):650–54 [PubMed: 12426569] 

99. Palmer CM, Bush SM, Maloof JN. 2012. Phenotypic and developmental plasticity in plants. eLS. 
10.1002/9780470015902.a0002092.pub2

100. Perez RK, Gordon MG, Subramaniam M, Kim MC, Hartoularos GC, et al. 2022. Single-
cell RNA-seq reveals cell type–specific molecular and genetic associations to lupus. Science 
376(6589):eabf1970 [PubMed: 35389781] 

101. Peripolli E, Munari DP, Silva MVGB, Lima ALF, Irgang R, Baldi F.2017. Runs of 
homozygosity: current knowledge and applications in livestock. Anim. Genet 48(3):255–71 
[PubMed: 27910110] 

102. Picard CL, Povilus RA, Williams BP, Gehring M. 2021. Transcriptional and imprinting 
complexity in Arabidopsis seeds at single-nucleus resolution. Nat. Plants 7(6):730–38 [PubMed: 
34059805] 

103. Pillitteri LJ, Sloan DB, Bogenschutz NL, Torii KU. 2007. Termination of asymmetric cell division 
and differentiation of stomata. Nature 445(7127):501–5 [PubMed: 17183267] 

104. Poethig RS, Szymkowiak EJ. 1995. Clonal analysis of leaf development in maize. Maydica 
40(1):67–76

105. Povysil G, Petrovski S, Hostyk J, Aggarwal V, Allen AS, Goldstein DB. 2019. Rare-variant 
collapsing analyses for complex traits: guidelines and applications. Nat. Rev. Genet 20(12):747–
59 [PubMed: 31605095] 

106. Preece DA. 1990. R. A. Fisher and experimental design: a review. Biometrics 46(4):925–35

107. Preissl S, Gaulton KJ, Ren B. 2023. Characterizing cis-regulatory elements using single-cell 
epigenomics. Nat. Rev. Genet 24(1):21–43 [PubMed: 35840754] 

108. Procko C, Lee T, Borsuk A, Bargmann BOR, Dabi T, et al. 2022. Leaf cell-specific and single-cell 
transcriptional profiling reveals a role for the palisade layer in UV light protection. Plant Cell 
34(9):3261–79 [PubMed: 35666176] 

109. Qin P, Lu H, Du H, Wang H, Chen W, et al. 2021. Pan-genome analysis of 33 genetically 
diverse rice accessions reveals hidden genomic variations. Cell 184(13):3542–58.e16 [PubMed: 
34051138] 

110. Ravi M, Chan SWL. 2010. Haploid plants produced by centromere-mediated genome elimination. 
Nature 464(7288):615–18 [PubMed: 20336146] 

Minow et al. Page 22

Annu Rev Genet. Author manuscript; available in PMC 2024 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



111. Replogle JM, Saunders RA, Pogson AN, Hussmann JA, Lenail A, et al. 2022. 
Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq. Cell 
185(14):2559–75.e28 [PubMed: 35688146] 

112. Rhee SY, Mutwil M. 2014. Towards revealing the functions of all genes in plants. Trends Plant 
Sci. 19(4):212–21 [PubMed: 24231067] 

113. Roszak P, Heo J-O, Blob B, Toyokura K, Sugiyama Y, et al. 2021. Cell-by-cell 
dissection of phloem development links a maturation gradient to cell specialization. Science 
374(6575):eaba5531 [PubMed: 34941412] 

114. Satina S, Blakeslee AF, Avery AG. 1940. Demonstration of the three germ layers in the shoot 
apex of Datura by means of induced polyploidy in periclinal chimeras. Am. J. Bot 27(10):895–
905

115. Satterlee JW, Strable J, Scanlon MJ. 2020. Plant stem-cell organization and differentiation at 
single-cell resolution. PNAS 117(52):33689–99 [PubMed: 33318187] 

116. Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, et al. 2003. Genetics of gene expression 
surveyed in maize, mouse and man. Nature 422(6929):297–302 [PubMed: 12646919] 

117. Schmitz RJ, Schultz MD, Urich MA, Nery JR, Pelizzola M, et al. 2013. Patterns of population 
epigenomic diversity. Nature 495(7440):193–98 [PubMed: 23467092] 

118. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, et al. 2009. The B73 maize genome: 
complexity, diversity, and dynamics. Science 326(5956):1112–15 [PubMed: 19965430] 

119. Shahan R, Hsu C-W, Nolan TM, Cole BJ, Taylor IW, et al. 2022. A single-cell Arabidopsis 
root atlas reveals developmental trajectories in wild-type and cell identity mutants. Dev. Cell 
57(4):543–60.e9 [PubMed: 35134336] 

120. Sharman BC. 1942. Developmental anatomy of the shoot of Zea mays L. Ann. Bot 6(2):245–82

121. Shaw R, Tian X, Xu J. 2021. Single-cell transcriptome analysis in plants: advances and 
challenges. Mol. Plant 14(1):115–26 [PubMed: 33152518] 

122. Shulse CN, Cole BJ, Ciobanu D, Lin J, Yoshinaga Y, et al. 2019. High-throughput single-cell 
transcriptome profiling of plant cell types. Cell Rep. 27(7):2241–47.e4 [PubMed: 31091459] 

123. Singleton RW. 1946. Inheritance of indeterminate growth in maize. J. Hered 37(2):61–64 
[PubMed: 21025142] 

124. Song Q, Yan L, Quigley C, Jordan BD, Fickus E, et al. 2017. Genetic characterization 
of the soybean nested association mapping population. Plant Genome 10(2). 10.3835/
plantgenome2016.10.0109

125. Sparks E, Wachsman G, Benfey PN. 2013. Spatiotemporal signalling in plant development. Nat. 
Rev. Genet 14(9):631–44 [PubMed: 23949543] 

126. Springer NM, Anderson SN, Andorf CM, Ahern KR, Bai F, et al. 2018. The maize W22 genome 
provides a foundation for functional genomics and transposon biology. Nat. Genet 50:1282–88 
[PubMed: 30061736] 

127. Stewart RN, Dermen H. 1979. Ontogeny in monocotyledons as revealed by studies of the 
developmental anatomy of periclinal chloroplast chimeras. Am. J. Bot 66(1):47–58

128. Strable J. 2021. Developmental genetics of maize vegetative shoot architecture. Mol. Breed 
41(3):19 [PubMed: 37309417] 

129. Strable J, Nelissen H. 2021. The dynamics of maize leaf development: patterned to grow while 
growing a pattern. Curr. Opin. Plant Biol 63:102038 [PubMed: 33940553] 

130. Stuart T, Satija R. 2019. Integrative single-cell analysis. Nat. Rev. Genet 20(5):257–72 [PubMed: 
30696980] 

131. Su X, Wang B, Geng X, Du Y, Yang Q, et al. 2021. A high-continuity and annotated tomato 
reference genome. BMC Genom. 22(1):898

132. Sud RM, Dengler NG. 2000. Cell lineage of vein formation in variegated leaves of the C4 grass 
Stenotaphrum secundatum. Ann. Bot 86(1):99–112

133. Sultan SE. 1996. Phenotypic plasticity for offspring traits in Polygonum persicaria. Ecology 
77(6):1791–807

Minow et al. Page 23

Annu Rev Genet. Author manuscript; available in PMC 2024 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



134. Sun G, Xia M, Li J, Ma W, Li Q, et al. 2022. The maize single-nucleus transcriptome 
comprehensively describes signaling networks governing movement and development of grass 
stomata. Plant Cell 34(5):1890–911 [PubMed: 35166333] 

135. Takei H, Shirasawa K, Kuwabara K, Toyoda A, Matsuzawa Y, et al. 2021. De novo genome 
assembly of two tomato ancestors, Solanum pimpinellifolium and Solanum lycopersicum var. 
cerasiforme, by long-read sequencing. DNA Res. 28(1):dsaa029 [PubMed: 33475141] 

136. Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. 2019. Benefits and limitations of 
genome-wide association studies. Nat. Rev. Genet 20(8):467–84 [PubMed: 31068683] 

137. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, et al. 2009. mRNA-Seq whole-transcriptome 
analysis of a single cell. Nat. Methods 6(5):377–82 [PubMed: 19349980] 

138. Thoday JM. 1961. Location of polygenes. Nature 191:368–70

139. Thorpe J, Osei-Owusu IA, Avigdor BE, Tupler R, Pevsner J. 2020. Mosaicism in human health 
and disease. Annu. Rev. Genet 54:487–510 [PubMed: 32916079] 

140. Todesco M, Owens GL, Bercovich N, Légaré JS, Soudi S, et al. 2020. Massive haplotypes 
underlie ecotypic differentiation in sunflowers. Nature 584(7822):602–7 [PubMed: 32641831] 

141. Tu X, Marand AP, Schmitz RJ, Zhong S. 2022. A combinatorial indexing strategy for low-cost 
epigenomic profiling of plant single cells. Plant Commun. 3(4):100308 [PubMed: 35605196] 

142. Umans BD, Battle A, Gilad Y. 2021. Where are the disease-associated eQTLs? Trends Genet. 
37(2):109–24 [PubMed: 32912663] 

143. Ursu O, Neal JT, Shea E, Thakore PI, Jerby-Arnon L, et al. 2022. Massively parallel phenotyping 
of coding variants in cancer with Perturb-seq. Nat. Biotechnol 40(6):896–905 [PubMed: 
35058622] 

144. van de Peer Y, Ashman TL, Soltis PS, Soltis DE. 2021. Polyploidy: an evolutionary and 
ecological force in stressful times. Plant Cell 33(1):11–26 [PubMed: 33751096] 

145. van der Wijst MGP, de Vries DH, Groot HE, Trynka G, Hon CC, et al. 2020. The single-cell 
eQTLGen consortium. eLife 9:e52155 [PubMed: 32149610] 

146. van Leeuwen C, Roby J-P, Alonso-Villaverde V, Gindro K. 2013. Impact of clonal variability in 
Vitis vinifera cabernet franc on grape composition, wine quality, leaf blade stilbene content, and 
downy mildew resistance. J. Agric. Food Chem 61(1):19–24 [PubMed: 23205623] 

147. Võsa U, Claringbould A, Westra H-J, Bonder MJ, Deelen P, et al. 2021. Large-scale cis- and 
trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood 
gene expression. Nat. Genet 53(9):1300–10 [PubMed: 34475573] 

148. Wang N, Gent JI, Dawe RK. 2021. Haploid induction by a maize cenh3 null mutant. Sci. Adv 
7(4):eabe2299 [PubMed: 33523932] 

149. Wang S, Xu S, Chao S, Sun Q, Liu S, Xia G. 2019. A genome-wide association study of highly 
heritable agronomic traits in durum wheat. Front. Plant Sci 10:919 [PubMed: 31379901] 

150. Warschefsky EJ, von Wettberg EJB. 2019. Population genomic analysis of mango (Mangifera 
indica) suggests a complex history of domestication. New Phytol. 222(4):2023–37 [PubMed: 
30730057] 

151. Watanabe K, Stringer S, Frei O, Umićević Mirkov M, de Leeuw C, et al. 2019. A global overview 
of pleiotropy and genetic architecture in complex traits. Nat. Genet 51(9):1339–48 [PubMed: 
31427789] 

152. Weedon MN, Lango H, Lindgren CM, Wallace C, Evans DM, et al. 2008. Genome-wide 
association analysis identifies 20 loci that influence adult height. Nat. Genet 40(5):575–83 
[PubMed: 18391952] 

153. Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM. 1992. LEAFY controls floral 
meristem identity in Arabidopsis. Cell 69(5):843–59 [PubMed: 1350515] 

154. Wendrich JR, Yang BJ, Vandamme N, Verstaen K, Smet W, et al. 2020. Vascular 
transcription factors guide plant epidermal responses to limiting phosphate conditions. Science 
370(6518):eaay4970 [PubMed: 32943451] 

155. Winter SMJ, Shelp BJ, Anderson TR, Welacky TW, Rajcan I. 2007. QTL associated with 
horizontal resistance to soybean cyst nematode in Glycine soja PI464925B. Theor. Appl. Genet 
114(3):461–72 [PubMed: 17119912] 

Minow et al. Page 24

Annu Rev Genet. Author manuscript; available in PMC 2024 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



156. Xia K, Sun HX, Li J, Li J, Zhao Y, et al. 2022. The single-cell stereo-seq reveals region-specific 
cell subtypes and transcriptome profiling in Arabidopsis leaves. Dev. Cell 57(10):1299–310.e4 
[PubMed: 35512702] 

157. Xie H, Li W, Hu Y, Yang C, Lu J, et al. 2022. De novo assembly of human genomes at single-cell 
levels. Nucleic Acids Res. 50(13):7479–92 [PubMed: 35819189] 

158. Xu X, Crow M, Rice BR, Li F, Harris B, et al. 2021. Single-cell RNA sequencing of developing 
maize ears facilitates functional analysis and trait candidate gene discovery. Dev. Cell 56(4):557–
68.e6 [PubMed: 33400914] 

159. Yang J, Zeng J, Goddard ME, Wray NR, Visscher PM. 2017. Concepts, estimation and 
interpretation of SNP-based heritability. Nat. Genet 49(9):1304–10 [PubMed: 28854176] 

160. Yao L, Zhang Y, Liu C, Liu Y, Wang Y, et al. 2018. OsMATL mutation induces haploid seed 
formation in indica rice. Nat. Plants 4(8):530–33 [PubMed: 29988153] 

161. Yazar S, Alquicira-Hernandez J, Wing K, Senabouth A, Gordon MG, et al. 2022. Single-cell 
eQTL mapping identifies cell type–specific genetic control of autoimmune disease. Science 
376(6589):eabf3041 [PubMed: 35389779] 

162. Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, et al. 2018. Meta-analysis of genome-
wide association studies for height and body mass index in ~700 000 individuals of European 
ancestry. Hum. Mol. Genet 27(20):3641–49 [PubMed: 30124842] 

163. Yengo L, Vedantam S, Marouli E, Sidorenko J, Bartell E, et al. 2022. A saturated map of common 
genetic variants associated with human height. Nature 610:704–12 [PubMed: 36224396] 

164. Yu J, Holland JB, McMullen MD, Buckler ES. 2008. Genetic design and statistical power of 
nested association mapping in maize. Genetics 178(1):539–51 [PubMed: 18202393] 

165. Zhang R, Kuo R, Coulter M, Calixto CPG, Entizne JC, et al. 2022. A high-resolution single-
molecule sequencing-based Arabidopsis transcriptome using novel methods of Iso-seq analysis. 
Genome Biol. 23(1):149 [PubMed: 35799267] 

166. Zhang T-Q, Chen Y, Liu Y, Lin W-H, Wang J-W. 2021. Single-cell transcriptome atlas and 
chromatin accessibility landscape reveal differentiation trajectories in the rice root. Nat. Commun 
12(1):2053 [PubMed: 33824350] 

167. Zhang T-Q, Xu Z-G, Shang G-D, Wang J-W. 2019. A single-cell RNA sequencing profiles the 
developmental landscape of Arabidopsis root. Mol. Plant 12(5):648–60 [PubMed: 31004836] 

168. Zhao S, Hong CKY, Myers CA, Granas DM, White MA, et al. 2023. A single-cell massively 
parallel reporter assay detects cell-type-specific gene regulation. Nat. Genet 55(2):346–54 
[PubMed: 36635387] 

Minow et al. Page 25

Annu Rev Genet. Author manuscript; available in PMC 2024 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Plant biology provides unique advantages for single-cell analysis. (a) Plants develop 

organs continuously from shoot (i) and root (ii) meristems, which undergo predictable 

cellular divisions to produce organs with consistent cellular organizations. This meristematic 

growth greatly simplifies the sampling of single cells along a developmental gradient. 

(b) Stable transgenesis, a powerful tool to support single-cell techniques and confirm 

discoveries, is routine in many plant models and expanding in crops and nonmodel 

species. (c) Many plants, notably important crops, tolerate inbreeding to whole-genome 

homozygosity, aiding any single-cell genetic or genomic inquiries and allowing genotypic 

replication across treatments or environments. (d) Plants tolerate increases and decreases in 

ploidy, allowing for the interrogation of how different cell types respond to genome-wide 

gene dosage changes while easing certain single-cell analyses. (e) Through controlled 

crossing and inbreeding, many plant populations have been designed to map and study the 

genetic variants that underpin trait heritability. Using these resources, single-cell population 

genomics will provide better resolution to find molecular trait–associated variants while 

discerning which cell types they affect.
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Figure 2. 
Integrating measurements of genetically diverse populations with single-cell techniques. 

(a) Historically, population genetics required a population of individuals with variation in 

heritable phenotypes. (b) The individual genotypes in this population are determined and 

paired with phenotypic measurements. (c) Paired genotypes and phenotypes enable the trait 

comparison between the subpopulations with various complements of all alleles. Different 

alleles linked to loci that variably control a trait should have discernable effect sizes on 

phenotypes. As more regions controlling phenotypes are discovered, more of the heritability 
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underpinning a trait can be explained. (d) Study of trait heritability revealed that complex 

traits are controlled by a few loci with large phenotype effects and many loci that have 

infinitesimally small impacts, leading to the omnigenic model of inheritance. In this model, 

variants in a few core genes (blue circles) directly control traits, having a large effect 

on phenotype. These core genes are in turn regulated by peripheral genes (black circles), 

including peripheral master regulators (purple circle). As these peripheral regulators descend 

into the organismal gene regulatory network, they have a diminishing effect on phenotypes 

and become more difficult to discover. (e) Measuring molecular traits in single cells from 

genetically diverse individuals reveals variants that have impacts in rare cell types previously 

obscured in bulk assays. Combined with the ability to ascertain which cell types variants 

impact, the increased discovery power of single-cell assays will provide more insights 

into the genetic architecture driving phenomena such as plant environmental responses and 

development. Abbreviation: mRNA, messenger RNA.
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Figure 3. 
Use of single-cell mutant populations to generate and map functional genetic diversity 

throughout the genome. Mutagenesis provides an opportunity to interrogate more of the 

genetic architecture underpinning a trait than exists in extant populations. Mutagenesis of 

meristems creates chimeric cells, each with a unique set of mutations that impact molecular 

phenotypes such as gene expression and chromatin accessibility. Subsequent development 

will create chimeric sectors that share a set of mutations (rainbow colors). Multiomic 

measurement of these sectors will measure both molecular phenotype and mutations, the 

latter of which can be merged from repeated measurements of cells from the same sector to 

build sector genotypes. Since the chances of inducing the exact same mutation are poor, a 

rare-variant collapsing strategy can be used to pool sectors with similar mutations, bolstering 

minor allele frequencies. Then, phenotypic comparison between unaltered (A; red) and 

mutant (a; blue) alleles can reveal the loci that influence the measured molecular trait. 

Although it may be possible to find and associate heterozygous mutations in diploids (top), 

haploidy (bottom) will greatly simplify this scheme, simplifying mutation detection and 

improving mutation penetrance. A similar scheme can be applied to cell lines in nonplant 

systems.
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