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Adaptive advantages of restorative RNA editing in fungi 
for resolving survival-reproduction trade-offs
Zhaomei Qi1, Ping Lu1, Xinyuan Long1, Xinyu Cao1, Mengchun Wu1, Kaiyun Xin1, Tuan Xue1, 
Xinlong Gao1, Yi Huang1, Qinhu Wang1, Cong Jiang1, Jin-Rong Xu2, Huiquan Liu1*

RNA editing in various organisms commonly restores RNA sequences to their ancestral state, but its adaptive ad-
vantages are debated. In fungi, restorative editing corrects premature stop codons in pseudogenes specifically 
during sexual reproduction. We characterized 71 pseudogenes and their restorative editing in Fusarium graminearum, 
demonstrating that restorative editing of 16 pseudogenes is crucial for germ tissue development in fruiting bodies. 
Our results also revealed that the emergence of premature stop codons is facilitated by restorative editing and 
that premature stop codons corrected by restorative editing are selectively favored over ancestral amino acid 
codons. Furthermore, we found that ancestral versions of pseudogenes have antagonistic effects on reproduction 
and survival. Restorative editing eliminates the survival costs of reproduction caused by antagonistic pleiotropy 
and provides a selective advantage in fungi. Our findings highlight the importance of restorative editing in the 
evolution of fungal complex multicellularity and provide empirical evidence that restorative editing serves as an 
adaptive mechanism enabling the resolution of genetic trade-offs.

INTRODUCTION
RNA editing challenges the central dogma of molecular biology by 
altering the genetic information at the transcript level. A variety of 
RNA editing types, including nucleotide insertions, deletions, or 
substitutions, have evolved independently multiple times in diverse 
eukaryotic lineages (1–3). Most of these are documented in organelle-
encoded RNAs, such as the cytidine-to-uridine (C-to-U) editing in 
plant mitochondria and chloroplasts, and the U insertion/deletion 
editing in kinetoplastid mitochondria. Adenosine-to-inosine (A-to-I) 
editing is remarkable among all RNA editing types found to date, 
as it changes plenty of nucleus-encoded mRNAs across the animal 
kingdom (3). Since the initial discovery of RNA editing in 1986 (4), 
why organisms have evolved such seemingly convoluted mechanisms 
to express their genes has been the subject of great interest and de-
bate. Organellar RNA editing commonly acts to restore the ancestral 
RNA sequence and, consequently, the ancestral protein function (1, 5). 
Restorative editing is commonly viewed as a compensatory repair 
mechanism that corrects pre-existing genomic mutations (6, 7). 
However, it is worth noting that many of the genomic mutations cor-
rected by RNA editing have serious physiological consequences. It 
seems unlikely that these mutations could persist without being elim-
inated by purifying selection long before the emergence of RNA edit-
ing to correct them. Therefore, while the compensatory type of 
restorative editing is considered adaptive because of the advantages 
of having editing over no editing, it is expected to occur less fre-
quently. On the other hand, the constructive neutral evolution (CNE) 
theory (8) and the harm-permitting model (9) propose that the re-
pair capacity of pre-existing RNA editing activities can relax func-
tional constraints at the DNA level, allowing otherwise harmful 
mutations to become fixed in genomes. As a critical number of dele-
terious mutations accumulate, RNA editing persists and becomes 
an essential component of the genetic information expression path-
way. Harm-permitting restorative editing is therefore crucial for 

establishing and maintaining RNA editing systems. This type of A-
to-I editing is common in animals (9, 10), with a well-known exam-
ple being the essential Q/R editing site in mammalian GluA2 (11). 
However, it is important to note that because harmful mutations are 
fixed through RNA editing, the mutation and editing processes can-
not be separated independently during evolution. Therefore, when 
evaluating the effects of harm-permitting A-to-I editing, it is more 
appropriate to compare it with the original genomic G rather than 
the postmutational A without editing (9). In this sense, harm-
permitting restorative editing encompasses both the mutation and 
editing processes, distinguishing it from compensatory restorative 
editing. Although harm-permitting restorative editing is functionally 
important, it is considered a nonadaptive and unnecessarily complex 
process since correcting one’s own “mistakes” does not seem to in-
crease fitness (9, 12). Currently, there is no empirical evidence to sup-
port the notion that harm-permitting restorative editing provides an 
adaptive advantage compared to the original unmutated versions.

Transcriptome-wide A-to-I RNA editing has recently been found 
in fungi (13). It occurs specifically during sexual reproduction and 
fruiting body formation in filamentous ascomycetes (Pezizomyco-
tina) (2). A-to-I RNA editing is a common feature in Sordariomyce-
tes (2), one of the largest classes of Ascomycota characterized by 
perithecia (fruiting bodies). It has also been found in Pyronema con-
fluens (14), a species belonging to Pezizomycetes. Our recent work 
has identified the A-to-I RNA editing machinery in Sordariomyce-
tes and demonstrated that it originated in the last common ancestor 
of Sordariomycetes (15). The A-to-I RNA editing in Pezizomycetes 
has an independent origin. Fruiting bodies are among the most 
complex structures produced by filamentous ascomycetes, differen-
tiating a range of cell types that are not found in vegetative hyphae, 
particularly the specialized sexual dikaryotic (germ) tissues includ-
ing ascogenous hyphae, croziers, and asci (16). Specialization of 
germ (reproductive) and somatic (vegetative) tissues is known as a 
hallmark of the evolution of multicellularity (17). More than 40,000 
A-to-I RNA editing sites have been identified in perithecia of 
Fusarium graminearum and Neurospora crassa (18, 19). Notably, re-
storative A-to-I editing, named premature stop codon correction 
(PSC) editing (2, 18), was found to correct UAG premature stop 
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codons of pseudogenes during sexual development in F. graminearum 
and N. crassa (18, 19). The above findings raise several intriguing 
questions: Do these pseudogenes and their PSC editing have impor-
tant functions in fungal complex multicellularity? Why did these 
genes evolve into pseudogenes? Is there an adaptive advantage of 
using PSC editing to repair pseudogenes compared to encoding 
normal genes directly in the genome, and if so, what is the adaptive 
advantage?

While natural selection is a powerful force in evolution, it is not 
all-powerful. Adaptations to one condition may lead to decreased 
fitness in other conditions, resulting in evolutionary trade-offs be-
tween different traits (20). All organisms face various forms of stress 
in their life histories and must balance different traits to maximize 
overall fitness during stressful times. The trade-offs between differ-
ent life-history traits, particularly those between the two fitness 
components of survival and reproduction, known as the “survival 
cost of reproduction,” play a critical role in the evolution of germ-
soma specialization and enable the transition toward higher levels 
of biological complexity (21–24). However, survival-reproduction 
trade-offs are rarely reported in fungi. To our knowledge, the only 
reported cases are in the budding yeast Saccharomyces cerevisiae 
(25) and the fission yeast Schizosaccharomyces pombe (26). Antago-
nistic pleiotropy is thought to be the predominant factor in causing 
life-history trade-offs (27). Although life-history trade-offs have 
been well documented in animals, relatively few genes with antago-
nistic effects on life-history traits have been identified (28, 29). Ge-
nomic mutations generate alleles in a binary manner, while RNA 
editing levels can be regulated specifically in tissues or developmen-
tal stages. The ability to induce genomic mutations and flexibly reg-
ulate gene expression has led us to hypothesize that PSC editing may 
have a selective advantage in resolving trade-offs arising from an-
tagonistic pleiotropy.

F. graminearum is a predominant causal agent of Fusarium head 
blight (FHB), one of the most devastating diseases on cereal crops 
worldwide. Sexual reproduction plays a critical role in its life cycle 
because ascospores discharged from the perithecia produced on crop 
residues are the primary inoculum of FHB (30). F. graminearum 
serves as an excellent system for genetically studying sexual develop-
ment as it is homothallic and produces abundant perithecia under 
laboratory conditions. In this study, we systematically characterized 
71 pseudogenes and their PSC editing in F. graminearum. Our find-
ings revealed that most of these genes are genetic innovations that 
underpin the evolution of fruiting bodies in filamentous ascomyce-
tes. Among these pseudogenes, 18 play crucial roles in germ tissue 
development, and PSC editing is necessary for the functioning of 16 
of them. We showed that the emergence of premature stop codons in 
pseudogenes occurred during the evolution in Sordariomycetes and 
was facilitated by restorative editing and that the premature stop co-
dons were selectively favored over ancestral amino acid codons. 
Moreover, we demonstrated that the ancestral unmutated versions of 
at least two pseudogenes act as trade-off genes with antagonistic ef-
fects on reproduction and survival. Thus, the emergence of prema-
ture stop codons (pseudogenization) and sexual stage–specific PSC 
editing in these genes eliminates the survival costs of reproduction 
caused by antagonistic pleiotropy and provides a selective advantage 
in fungi. Overall, our findings challenge the neutral evolutionary 
view that harm-permitting restorative editing is a nonadaptive pro-
cess. Our study provides insights for understanding the origin and 
maintenance of different RNA editing systems.

RESULTS
Identification and characterization of PSC pseudogenes in 
F. graminearum
In the previous study (13), we identified 70 pseudogenes with PSC-
editing sites in their coding regions (described as PSC pseudogenes 
in this study) in F. graminearum. On the basis of the updated ge-
nome sequence and annotation of F. graminearum strain PH-1 (31), 
seven of them were not PSC pseudogenes when they were correctly 
annotated. In addition, we identified eight PSC pseudogenes that 
were not found earlier because of annotation errors. Among the up-
dated list of 71 PSC pseudogenes (Fig. 1A and table S1), 6 of them, 
PSC03, PSC25, PSC34, PSC51, PSC62, and PSC68, have two PSC-
editing sites. The revised sequences of all PSC pseudogenes are 
available at FgBase (http://fgbase.wheatscab.com/).

On the basis of published RNA sequencing (RNA-seq) data (31), 
the expression of 55 PSC pseudogenes was up-regulated in perithe-
cia compared to vegetative and infectious hyphae (Fig. 1A). Tran-
scripts of the remaining 16 PSC pseudogenes were abundant in all 
three stages. We then examined their expression and editing levels 
from RNA-seq data of 1 to 8 days postfertilization (dpf) (32). Al-
most all these PSC pseudogenes had up-regulated expression and 
detectable PSC-editing events after 5 dpf (Fig. 1A). With PSC edit-
ing, 28 PSC pseudogenes encode proteins with conserved domains, 
but the remaining 43 encode hypothetical proteins (Fig. 1A and ta-
ble S1). Notably, 50 of the 71 (71%) PSC pseudogenes encode pro-
teins with intrinsically disordered regions (IDRs) (33). Compared to 
all the predicted genes in the genome, these PSC pseudogenes were 
significantly enriched for IDR (Fig. 1B).

Eighteen PSC pseudogenes play crucial roles in different 
stages of germ tissue development
Deletion mutants of eight PSC pseudogenes, PSC01, PSC02, PSC03/PUK1, 
PSC04/AMD1, PSC24, PSC33/FgAMA1, PSC49/FgRID1, and PSC51, 
have been generated in previous studies (13, 34–36). For the remain-
ing 63 PSC pseudogenes, we obtained at least two independent dele-
tion mutants for each of them with the gene replacement approach 
(fig. S1 and table S2). The deletion mutants were examined for defects 
in vegetative growth, colonial morphology, conidiation, sexual repro-
duction, and sexual/asexual spore germination (table S3). Whereas all 
these deletion mutants were normal in asexual stages, the deletion of 
14 PSC pseudogenes resulted in defects in different stages of sexual 
development (Fig.  1C and fig.  S2), in addition to the four (PUK1, 
AMD1, FgAMA1, and FgRID1) known to be important in sexual repro-
duction previously.

Mutants deleted of three PSC pseudogenes, PSC58, PSC69, and 
PSC70, formed smaller perithecia that were sterile and lacked germ 
tissues (Fig. 1, C and D). These three mutants produced morphologi-
cally normal asci and ascospores as a female in crossing with the 
mat1-1-1 deletion mutant (fig. S2), indicating that they are functional 
in the inner ascogenous hyphae (from both the male and female) 
rather than the outer envelope (from the female). Accordingly, PSC58, 
PSC69, and PSC70 are essential for ascogenous hypha formation.

Deletion mutants of PSC10, PSC20, and PSC46 developed normal-
sized perithecia without cirrhi formation and spore firing at 7 dpf 
(Fig. 1C and fig. S2). No typical asci were produced in the psc10 
mutant, and only a few asci were observed in the psc20 and psc46 
mutants. The psc10 mutant regularly formed short ascogenous hy-
phae and croziers at 3 dpf. Unexpectedly, its croziers did not pro-
duce asci but continued to form ascogenous hyphae, resulting in 

http://fgbase.wheatscab.com/
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Fig. 1. Expression patterns, editing dynamics, protein domains, and functional importance of PSC pseudogenes in Fusarium graminearum. (A) Expression pat-
terns, editing dynamics, and protein domains of 71 PSC pseudogenes. Heatmaps show the log2-normalized transcripts per million (TPM) values from RNA-seq data of 
vegetative hyphae (H), host infection (I), and perithecia (P), or row z-score scaled TPM values (left) and editing levels (right) from RNA-seq data of sexual development from 
1 to 8 days postfertilization (dpf ). Bubble maps show the maximum editing level (%). The full-length proteins with conserved domains or intrinsically disordered regions 
(IDRs) are shown on the far right. Red bars mark the PSC-editing sites on proteins. Gene names for germ-needed PSC pseudogenes are highlighted in yellow. The red font 
indicates the PSC pseudogenes that require PSC editing for functions. Asterisk (*) marks the genes characterized previously. aa, amino acids. (B) Stacked bar charts show-
ing percentages of PSC pseudogenes (PSC) or all predicted genes in the genome with or without IDR. The P value from the χ2 test is indicated. (C) The 7-dpf mating cul-
tures of PH-1 [wild type (WT)] and the marked deletion mutants were examined for perithecium formation (scale bar, 0.2 mm), ascus/ascospore morphology (scale 
bar, 20 μm), and ascospore discharge. (D) The diameter of perithecia produced by the marked strains at 7 dpf. Mean and SD were calculated with data from three inde-
pendent replicates (n = 3), each with at least 20 perithecia examined. Different letters indicate significant differences based on one-way analysis of variance (ANOVA) 
followed by Turkey’s multiple range test (P < 0.05).
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masses of excessively elongated ascogenous hyphae (Fig. 2A). In the 
psc20 mutant, ascus and ascospore maturation was normal but ascus 
formation was delayed about 3 days (Fig. 2B). In the psc46 mutant, 
ascogenous hyphae and asci were regularly formed but most of them 
were prematurely degraded in developing perithecia (Fig. 2B). At 10 
dpf, only a few germinated ascospores were observed in perithecia. 
Therefore, PSC10 is critical for the differentiation of asci; PSC20 is 
important for ascus formation by promoting the development of as-
cogenous hyphae; PSC46 is important for ascus formation and mat-
uration possibly by inhibiting programmed cell death (PCD) of 
ascogenous hyphae and asci.

Deletion mutants of PSC24, PSC27, and PSC64 exhibited de-
creased spore firing (Fig. 1C). These three mutants showed a reduc-
tion in the average number of asci per perithecium by 37 to 71%. 
(Fig. 2C). Relatively few ascogenous hyphae were formed at 3 dpf 
(Fig. 2B), indicating that defects in ascogenous hypha development 
may partially account for the reduced number of asci. Moreover, 
whereas fascicles of asci were present in mature perithecia of the 
wild type, scattered ascospores but fewer intact asci were observed 

in those of the psc27 and psc64 mutants (Figs. 1C and 2D), suggest-
ing the breakdown of ascus walls. The ascospore walls and the inner 
face of ascus walls increased in thickness irregularly in the psc27 and 
psc64 mutants (Fig. 2D). Ascospore germination was visible inside 
the perithecia of both mutants. These results indicate that the struc-
tural changes in ascus and ascospore walls may account for improp-
er ascus wall disintegration and ascospore germination. The psc07 
mutant showed a 1.8-fold increase in the average number of asci per 
perithecium compared to the wild type. However, no spore firing 
was observed in this mutant (Figs. 1C and 2C). There were no obvi-
ous changes in the amount of ascogenous hyphae at 3 dpf, but the 
fascicles of asci at 5 dpf were larger than those of the wild type 
(Fig. 2A), implying that the rate of ascus-crozier formation is in-
creased in the psc07 mutant. Therefore, PSC07, PSC24, PSC27, and 
PSC64 are important for ascus formation and the last two are also 
important for ascus and ascospore maturation.

Deletion mutants of PSC17, PSC30, PSC37, and PSC52 regularly 
produced asci, but most of their asci had fewer than eight ascospores 
(Fig. 2E). Particularly, more than 45% of asci in the psc52 mutant 
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contained only one to two ascospores per ascus. In addition, the as-
cospores formed by the psc30 and psc17 mutants had morphological 
abnormalities (Fig. 1C). Whereas normal ascospores were four-
celled, most ascospores in the psc17 mutant were two-celled. Like in 
the puk1 mutant (13), some ascospores were deeply constricted at 
the septum in the psc30 mutant. The fraction of asci with the abnor-
mal number (6 or 7) of nuclei at 5 dpf was slightly increased in the 
psc37 mutant (Fig. 2F). At 6 dpf, only part of the eight nuclei en-
closed by spore membranes were often observed in the psc37 mutant 
and more than one nucleus enclosed by one spore membrane were 
occasionally observed in the psc17 mutant (fig. S2). No obvious de-
fects in nuclear division and ascospore delimitation were observed 

in the psc30 and psc52 mutants, indicating that many ascospores are 
likely dead during subsequent development possibly due to dysreg-
ulation of PCD. Therefore, PSC17, PSC37, PSC30, and PSC52 play 
important roles in ascosporogenesis.

PSC editing is essential for the function of 16 germ-needed 
PSC pseudogenes
The median editing level of PSC-editing sites was 79% (Fig. 3A), 
which is over sixfold higher than that of all detected A-to-I editing 
sites in F. graminearum (19), suggesting the important roles of PSC 
editing on the functions of PSC pseudogenes during sexual develop-
ment. Among the 18 germ-needed PSC pseudogenes, four PUK1, 
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produced by the marked strains at 5 dpf. For (D) and (E), mean and SD were calculated with data from three independent replicates (n = 3), each with at least 17 perithecia 
examined. Different letters indicate significant differences based on one-way ANOVA followed by Turkey’s multiple range test (P < 0.05). (F) The percentage of asci contain-
ing a specific number of ascospores produced by the marked strains at 7 dpf. The data are presented as the mean calculated from three independent replicates (n = 3), 
each with at least 80 asci examined.



Qi et al., Sci. Adv. 10, eadk6130 (2024)     5 January 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

6 of 14

AMD1, FgAMA1, and FgRID1 have been shown to require PSC edit-
ing for their functions (13, 34, 35, 37). For the remaining 14, we gen-
erated uneditable mutant alleles in situ in PH-1 to determine the 
function of their PSC editing by changing the premature stop codon 
TAG to TAA. Transformants with the uneditable allele (TAA) for all 
PSC pseudogenes, except PSC46 and PSC70, exhibited similar de-
fects in germ tissue development as corresponding deletion mutants 
(Fig. 3). These findings demonstrate the crucial role of PSC editing in 
the function of these PSC pseudogenes in germ tissues. For PSC46 
and PSC70, we observed that transformants with the uneditable al-
lele did not display any defects in sexual development (fig. S3). This 
suggests that PSC editing is not necessary for their functions. It is 
worth noting that the PSC-editing sites of PSC46 and PSC70 are lo-
cated in the predicted C terminus of proteins (Fig. 1A), which is in 
contrast to the essential PSC-editing sites of other PSC pseudogenes, 
which are mostly located in the N-terminal of proteins or in or before 
the conserved domains, except for those in PSC37, PSC52, and PSC58.

To investigate whether the truncated versions of PSC pseudo-
genes have any function, we created edited mutant alleles in PH-1 by 
replacing the premature stop codon TAG with TGG. All transfor-
mants with the edited allele (TGG) exhibited normal sexual devel-
opment, similar to the wild type (fig. S3). These findings confirm the 
restorative function of PSC editing and suggest that the full-length 
proteins of PSC pseudogenes alone can exhibit full functionality 
during sexual development, while the unedited truncated proteins 
do not appear to have any function.

The emergence of premature stop codons was facilitated by 
PSC editing
To investigate the origin of PSC pseudogenes in fungi, we searched 
for their homologs and orthologs across 546 fungal genomes. Our 
analysis revealed that orthologs of 57 (80%) PSC pseudogenes are 
present exclusively in Pezizomycotina (fig. S4). Particularly, 49 
(69%) PSC pseudogenes had no detectable homologs outside of Pe-
zizomycotina, indicating that most PSC pseudogenes are genetic in-
novations that underpin the evolution of complex multicellularity in 
filamentous ascomycetes. Among the 18 germ-needed PSC pseudo-
genes, 12 (67%) have emerged in Pezizomycotina and therefore play 
an important role in the evolution of fungal complex multicellular-
ity. Note that PSC17 is a Fusarium-specific innovation important for 
ascosporogenesis.

On the basis of the parsimonious principle, we inferred the evo-
lutionary origin of the premature stop codon TAG at each PSC-
editing site. All premature stop codons in the PSC pseudogenes in 
F. graminearum arose at different ancestral nodes in Sordariomycetes 
(Fig. 4, A and B, and figs. S5 and S6). In addition, we observed multi-
ple independent occurrences of premature stop codons at the same 
sites in different lineages of Sordariomycetes. For example, six inde-
pendent events of premature stop codon origin were observed in 
PSC33/FgAMA1 orthologs at the equivalent PSC-editing site. These 
observations, combined with the fact that A-to-I RNA editing is a 
common feature in Sordariomycetes and that the editing system orig-
inated in the last common ancestor of Sordariomycetes (15), suggest 
that the emergence of premature stop codons (pseudogenization) in 
ancestors of PSC pseudogenes is facilitated by PSC editing itself, as 
proposed by the CNE and harm-permitting model. Premature stop 
codons were also observed at several PSC-editing sites in individual 
species belonging to other classes in Pezizomycotina, where the pres-
ence of A-to-I RNA editing is yet to be determined.

The emergence of premature stop codons TAG in 61 PSC pseu-
dogenes occurred long after the origin of the genes. Among these, 
36 PSC pseudogenes originated before the A-to-I RNA editing sys-
tem in Sordariomycetes. Only 10 PSC pseudogenes had PSC editing 
fixed immediately following their origin (Fig. 4). Among these, eight 
emerged in Fusarium, while the other two emerged in the last com-
mon ancestor of Fusarium and its closest related genus, Neonectria. 
These findings suggest that the ancestors of most PSC pseudogenes 
had already served their function before the fixation of PSC editing.

Ancestral amino acid state reconstruction revealed that TAG 
premature stop codons were mainly derived from the postedited 
amino acid codon TGG (W) via G-to-A mutation (Fig. 4C), in line 
with the CNE and harm-permitting model. It is worth noting that 
the TAG premature stop codons were often derived from non-TGG 
(W) codons by a single nucleotide mutation. This suggests that res-
toration of the function of PSC pseudogenes is not necessary to re-
store the ancestral amino acid residue.

Premature stop codons corrected by PSC editing are 
selectively favored over ancestral amino acid codons
If PSC editing is nonadaptive and the emergence of premature stop 
codons in ancestors of PSC pseudogenes is a result of genetic drift, 
we would expect the nonsynonymous substitution rate at PSC-
editing sites in descendant species to be equal to or higher than the 
neutral substitution rate. This is because RNA editing is not 100% 
effective in correcting premature stop codons, whereas back muta-
tions can fully restore the original genes. However, the premature 
stop codons of most PSC pseudogenes were generally conserved 
during evolution, particularly those in functionally important 
PSC pseudogenes with essential editing sites (Fig. 4, A and B). We 
identified 161 synonymous and 2744 nonsynonymous editing sites 
shared by F. graminearum (species complex Sambucinum) and 
F. neocosmosporiellum (species complex Solani) (table S4). Editing at 
these sites most likely occurred in the common ancestors of these 
two species complexes. For comparison, we randomly selected 77 
synonymous and nonsynonymous shared editing sites each, which 
were equivalent to the PSC-editing sites. We also selected an equal 
number of synonymous and nonsynonymous shared editing sites 
with a TAG triplet (a T at the −1 position and a G at the +1 posi-
tion), similar to the PSC-editing sites. We then estimated the fre-
quency of nucleotide substitutions at each editing site in descendant 
species. Our analysis revealed that the nucleotide substitution fre-
quency at PSC-editing sites was significantly lower compared to that 
at the shared synonymous editing sites with a TAG triplet (Fig. 5A), 
which are presumed to be neutral. Furthermore, the nucleotide sub-
stitution frequency at PSC-editing sites was even lower than that at 
the nonsynonymous editing sites with a TAG triplet. The nucleotide 
substitution frequency at the shared synonymous editing sites did 
not differ significantly from those with a TAG triplet, indicating that 
our sampling results do not affect the conclusion.

In addition, we calculated Shannon entropy for each editing site as 
a measure of nucleotide conservation. The lower the Shannon entropy, 
the higher the conservation. Our results showed that compared to the 
synonymous and nonsynonymous editing sites with a TAG triplet, 
the Shannon entropy was significantly lower for PSC-editing sites 
(Fig. 5A). Among the 44 PSC-editing sites shared by F. graminearum 
and F. neocosmosporiellum, the nucleotide substitution frequency and 
Shannon entropy were even lower. These findings indicate that PSC 
editing is more likely to be retained during evolution compared to 
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synonymous and nonsynonymous editing. Therefore, natural selec-
tion favors the correction of premature stop codons by PSC editing 
over the direct encoding of ancestral amino acid codons in the 
genome. However, it is worth noting that premature stop codons in 
certain PSC pseudogenes have been lost in some lineages during evo-
lution (Fig. 4). In some cases, these lost premature stop codons were 
later reacquired during subsequent evolution. This suggests that the 
preference for premature stop codons over amino acid codons is con-
text dependent and may not remain consistent throughout evolution.

Ancestral versions of PSC64 and PSC69 have antagonistic 
effects on reproduction and survival
Why is PSC editing preferred over encoding the ancestral amino 
acid codons directly in the genome? According to RNA-seq data, 

while most PSC pseudogenes were up-regulated during sexual de-
velopment, they were also expressed in other stages, with transcripts 
of some PSC pseudogenes being abundant in hyphae (Figs. 1A and 
5B). Although not pseudogenes, the orthologs of these PSC pseudo-
genes in N. crassa were also expressed during growth (Fig. 5B), sug-
gesting that the expression of PSC pseudogenes outside of sexual 
stages represents the ancestral state. On the basis of this evidence, 
we speculated that the ancestral unmutated versions of these PSC 
pseudogenes may have antagonistic pleiotropic effects, meaning 
that they are necessary for sexual stages but may be harmful to 
other stages.

We assessed whether the expression of the ancestral unmutated 
versions (represented by the edited versions) of PSC pseudogenes 
could be harmful to vegetative growth, especially under stressful 
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conditions. The defects of transformants with the edited (TGG) and 
uneditable (TAA) alleles of 12 germ-needed PSC pseudogenes with 
essential PSC-editing sites were examined in response to hyperos-
motic (NaCl), oxidative (H2O2), cell membrane (SDS), and cell wall 

(Congo red) stresses. As expected, the growth rates of all the unedit-
able transformants had no significant alterations in the assayed 
stressful conditions compared with the wild type (Fig. 5, C to F, 
and figs. S7 to S9). However, the edited transformants of PSC69 
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Fig. 5. Adaptive advantages of PSC editing. (A) Boxplots comparing the nucleotide substitution frequency and Shannon entropy at each site in descendant species of the last 
common ancestor of F. graminearum and F. neocosmosporiellum among different groups. These groups include 44 shared PSC-editing sites (PSC_GN), 77 shared synonymous 
(Syn) and nonsynonymous (NonSyn) editing sites each, and 77 shared synonymous (SynTAG) and nonsynonymous (NonSynTAG) editing sites with a TAG triplet each between 
F. graminearum and F. neocosmosporiellum, as well as all 77 PSC-editing sites (PSC) in F. graminearum. P values from the two-tailed Wilcoxon rank sum test with continuity correc-
tion are indicated. (B) Expression levels [Log2(TPM + 1)] of PSC pseudogene orthologs in F. graminearum and N. crassa during sexual reproduction (Sex6d) and vegetative growth 
(Hyp24h). The expression ratio of Sex6d compared with Hyp24h is shown as bubble maps with Log2(S/H) values. The star (*) indicates that the gene in N. crassa is also a PSC 
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displayed increased sensitivity to various stresses, particularly to the 
cell membrane stress (Fig. 5, C and D and fig. S9). Its growth was 
significantly reduced under stressful conditions in comparison with 
the wild type and edited transformants. The edited transformant of 
PSC64 was also hypersensitive to the cell membrane stress. The re-
sults demonstrated that expressing the ancestral unmutated ver-
sions of either PSC69 or PSC64 causes harmful effects on growth 
under stressful conditions. Therefore, the ancestors of PSC69 and 
PSC64 are bona fide life-history trade-off genes with antagonistic 
effects on reproduction and survival. Pseudogenization and sexual 
stage–specific PSC editing of these trade-off genes during evolution 
resolve the trade-offs caused by their antagonistic pleiotropy.

The orthologs of PSC69 are widely distributed in Sordariomyce-
tes and occur also in individual species in Leotiomycetes, the sister 
class of Sordariomycetes. The orthologs of PSC64 are present in the 
orders Hypocreales and Coronophorales within Sordariomycetes. 
However, the emergence of PSC editing in both genes occurred only 
in the last common ancestor of Hypocreales (Fig. 4). This suggests 
that the selection pressure for the emergence of PSC editing in 
PSC69 and PSC64, driven by their antagonistic effects, was strong in 
the last common ancestor of Hypocreales.

The germ-needed PSC pseudogenes are implicated in 
regulating stress response
Of all the germ-needed pseudogenes characterized in this study that 
require PSC editing for their functions, only PSC20, PSC24, and 
PSC37 encode proteins with known functional domains. PSC24 en-
codes a Rho (Ras homologous) guanosine triphosphatase (GTPase) 
while PSC37 encodes a Rho GTPase-activator protein (RhoGAP), 
suggesting their involvement of small GTPase signaling (38). PSC20 
encodes a protein homologous to α-1,2-mannosyltransferases that 
are involved in protein glycosylation, a critical function of the secre-
tory pathway (39). The remaining pseudogenes, such as PSC64 and 
PSC69, encode hypothetical proteins that contain only IDRs. These 
IDRs are known to have a broad range of regulatory functions, such 
as binding other proteins, interacting with nucleic acids, or serving 
as scaffold proteins (33).

To investigate the potential cellular processes that these genes are 
involved in during sexual development, we conducted RNA-seq 
analyses of their deletion mutants. A various number of differen-
tially expressed genes (DEGs) were identified in these mutants 
(fig. S10). On the basis of the Gene Ontology (GO) enrichment 
analysis, it was found that cell adhesion, which is involved in signal 
transduction that allows cells to detect and respond to environmental 
changes (40), was significantly enriched in the up-regulated DEGs 
of the psc69 and psc64 mutants (Fig. 5G). This suggests that PSC69 
and PSC64 act as negative regulators of environmental response. 
GO terms associated with activities of transmembrane transporters, 
α-1,2-mannosyltransferases, endo−/exopeptidases, peroxidases, and 
adenosine triphosphate hydrolysis were overrepresented in down-
regulated DEGs in the psc37 mutant (Fig. 5G). DEGs down-regulated 
in the psc24 mutant were enriched for “transmembrane transporter 
activity” and “FAD binding.” GO terms “FAD binding,” “hydrolase 
activity, acting on glycosyl bonds,” and “extracellular region” were 
enriched in up-regulated DEGs in the psc20 mutant. Related GO 
terms were also enriched in the up- or down-regulated DEGs in the 
other 9 mutants. Particularly, the “transmembrane transporter ac-
tivity,” “FAD binding,” and “extracellular region” were the common-
ly enriched terms in these mutants. FAD is a redox-active coenzyme 

associated with various flavoprotein oxidoreductases, and peroxi-
dases are a group of oxidoreductases localized in peroxisomes. Both 
are involved in redox and oxidative stress. Other enriched functions 
are likely related to membrane trafficking (secretory, vacuolar trans-
port, and endocytic) pathways that play pivotal roles in environ-
mental response (41). The membrane trafficking system has also 
been speculated to be involved in spore delimitation and ascus/
ascospore-wall synthesis (42), and implicated in PCD (43, 44). Dys-
regulation of membrane trafficking may partially explain the ob-
served defects in ascus-ascospore formation and maturation in the 
mutants.

Numerous GO terms associated with ribosome biogenesis in the 
nucleolus were enriched in up-regulated DEGs in the psc58 mutant 
(Fig. 5G). PSC58 encodes a protein of unknown function with a 
DUF3716 domain. It is orthologous to a telomeric sequence-binding 
protein NCU05718 in N. crassa (45). Dysfunctional telomeres caused 
by telomere shortening elicit a DNA damage response (46). Ri-
bosome biogenesis must respond rapidly to environmental cues 
and turn “on” or “off ” signal transduction pathways is critical in 
response to environmental stimuli. Consistent with previous re-
ports that some small GTPases are involved in ribosome assembly 
(47, 48) and disruption of protein glycosylation results in activation 
of endoplasmic reticulum (ER) stress coping response (49), GO 
terms related to ribosome biogenesis were enriched in up-regulated 
DEGs in the psc37 mutant and down-regulated DEGs in the psc20 
mutants. The down-regulated DEGs of the psc07 mutant at 3 dpf 
were also enriched for GO terms related to ribosome biogenesis.

Collectively, these germ-needed PSC pseudogenes participate in 
various cellular processes that may be involved in responding to en-
vironmental stress. Given that stress conditions can induce various 
life-history trade-offs, it is possible that, in addition to PSC69 and 
PSC64, the ancestral unmutated versions of other PSC pseudogenes 
may also act as trade-off genes for survival and reproduction under 
specific untested environmental conditions, although their edited 
transformants did not show significant alterations in sensitivity to 
the tested stressful conditions.

DISCUSSION
Uncovering the genetic principles of evolution toward increased bi-
ological complexity remains a major challenge for evolutionary and 
developmental biology. Pezizomycotina is the largest fruiting-body-
forming lineage in fungi with an independent origin of complex 
multicellularity (50, 51), but the genetic underpinnings are limited 
understanding. In multicellular animals and plants, co-option of ex-
isting genes has been proposed to be a major contributor to the evo-
lution of multicellularity and cell differentiation whilst de novo gene 
evolution plays a minor role (52, 53). Concordantly, recent compar-
ative genomic and transcriptomic analyses of different fungal lin-
eages revealed that both simple hyphae and complex fruiting bodies 
evolved by limited fungal-specific innovations but dominant co-
option of existing genes (24, 51, 54–57). In this study, we showed 
that 18 genes are important for the differentiation and development 
of germ tissues inside perithecia (fruiting bodies) in F. graminearum. 
Among these, six are likely co-opted into germ tissues during the 
evolution of sexual fruiting bodies in Pezizomycotina. PSC03/PUK1 
encodes a protein kinase important for ascosporogenesis in both 
F. graminearum and N. crassa (13, 18). PSC49/FgRID1 is the ortholog 
of RID that mediates repeat-induced point mutation, a sexual-specific 



Qi et al., Sci. Adv. 10, eadk6130 (2024)     5 January 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

10 of 14

genome defense mechanism in Pezizomycotina (36). The orthologs 
of both genes occur also in Basidiomycota but were lost in unicel-
lular yeasts. PSC33/FgAMA1 and PSC37 are the only ones with or-
thologs in unicellular yeasts. Although orthologous to Ama1, an 
activator of the meiotic anaphase-promoting complex in budding 
yeasts, FgAma1 has no meiosis-specific roles but is necessary for 
ascospore morphogenesis (34). PSC37 encodes a RhoGAP impor-
tant for ascosporogenesis, but its ortholog Rga6 is involved in the 
regulation of polarized growth in fission yeasts (58). PSC24 and 
PSC20 encode a Rho GTPase and an α-1,2-mannosyltransferase, re-
spectively; both are important for ascogenous hypha development 
and likely derived from gene duplication. Unexpectedly, 12 germ-
needed genes are evolutionary innovations for sexual fruiting bodies 
in Pezizomycotina. Of these, PSC04/AMD1 encodes a major facilitator 
superfamily protein important for ascus maturation (35). PSC58 en-
codes a potential telomeric factor essential for ascogenous hypha 
formation. The rest of the 10 germ-needed genes encode hypotheti-
cal proteins without known function domains. Nevertheless, they 
are important for germ tissue development potentially as regulators 
of cell adhesion, membrane trafficking, and/or redox. In addition, 
the deletion of several genes (PSC46, PSC30, PSC52, etc.) caused 
unprogrammed degradation of germ tissues, indicating that they 
may participate in regulating PCD. Because previous phylogenetic 
and genomic studies proposed that cell adhesion, membrane sys-
tems, cell signaling, and PCD are pivotal to the evolution of complex 
multicellularity (51, 52), our results demonstrate that beyond co-
option, genetic innovations of regulators of these processes contrib-
ute importantly to the evolution and development of sexual fruiting 
bodies in Pezizomycotina.

Why and how did these genes evolve into germ-needed regula-
tors? In fungi, stressful conditions commonly trigger sexual repro-
duction because the sexual fruiting body itself serves as a survival 
structure and the generation of genotypic diverse offspring can en-
sure long-term survival (59). Therefore, the ability to trade off vegeta-
tive growth (survival) for sexual reproduction in response to stress 
can be beneficial for fungi. The engaged cellular processes by the 
germ-needed genes are potentially involved in stress response. In par-
ticular, expressing the ancestral versions of PSC69 and PSC64 caused 
increased sensitivity to stresses during vegetative growth. In addi-
tion, PSC68, PSC19, and PSC57 encode a universal stress protein, a 
DNA mismatch repair protein, and a stress-responsive DEAD-like 
helicase, respectively, although their mutants had no detectable de-
fects. The incidental acquisition of functions in stress response, 
either through de novo emergence or modification of existing genes, 
can be expected to be deleterious to immediate survival, as pre-
existing stress response mechanisms have been optimized for adap-
tation to the current circumstances. However, when these genes have 
larger beneficial effects on sexual reproduction, despite causing neg-
ative effects on growth in stressful environments, they can be favored 
by natural selection and gradually evolve into regulators of germ tis-
sues in fruiting bodies by changing their expression from an inciden-
tal context to a spatiotemporally/developmental context (Fig. 6A). 
An important role of stress responses in the evolution of biological 
complexity has been proposed in green algae and humans (60, 61). 
The discovery of these germ-needed regulators involved in survival-
reproduction trade-offs has improved our understanding of the evo-
lution of complex multicellularity and life-history strategies in fungi.

Why did these life-history trade-off genes evolve into PSC pseu-
dogenes? It is possible to resolve trade-offs between reproduction 

and survival through precise germ-specific optimization of gene ex-
pression using classical gene regulation mechanisms, such as cis- 
and trans-regulatory mutations. However, these mechanisms may 
only be efficient under strong selection pressures (62). These life-
history trade-off genes have minor negative effects on growth under 
specific conditions but play a crucial role in sexual development. 
Natural selection tends to prioritize the optimization of these genes 
for sexual development rather than growth, leading to suboptimal 
expression during growth. This situation is similar to the trade-offs 
observed in aging). In addition, classical gene regulation mecha-
nisms cannot completely prevent the expression and function of 
genes outside of sexual development due to inherent gene expres-
sion noise in biological systems (63). These life-history trade-off 
genes are indeed expressed outside of sexual development. In Sor-
dariomycetes, the sexual stage–specific A-to-I RNA editing system 
originated in their last common ancestor (15). The editing capability 
promotes the pseudogenization of these ancestral life-history trade-
off genes during evolution in Sordariomycetes by the fixation of pre-
mature stop codons. The resulting PSC pseudogenes are inactive 
outside sexual reproduction but become active in germ tissues after 
editing (Fig. 6A). Therefore, when the editing system is available 
and the life-history trade-off genes have accessible sites, PSC editing 
is a cost-effective solution to block gene expression and function 
outside of sexual development and eliminate trade-offs. Notably, 
yeast AMA1 contains an intron that is spliced specifically in meiotic 
cells (64). This suggests that intron splicing likely evolved indepen-
dently in yeasts that lack the A-to-I RNA editing system to resolve 
trade-offs between reproduction and survival.

Is PSC editing adaptive in fungi? We propose that the emergence 
of PSC editing in fungi is driven by genetic trade-offs. PSC editing is 
adaptive in fungi as it eliminates the survival costs of reproduction. 
During evolution, PSC editing is generally selectively favored over 
the original genomic G. This adaptive model assumes that gene mat-
uration in terms of function and expression, as well as the manifes-
tation of trade-offs, occurs before the emergence of PSC editing. 
Alternatively, a neutral model suggests that PSC editing emerges 
immediately after gene origin and may be fixed by drift due to low 
expression and weak trade-offs. After fixation, genes mature during 
evolution without negatively affecting growth. PSC editing may be 
neutral at the time of fixation but becomes indispensable later in 
evolution. While we do not rule out the possibility proposed by the 
neutral model, it is less likely compared to our adaptive model, as 
premature stop codons in most PSC pseudogenes occurred long af-
ter gene origin. Furthermore, the manifestation of trade-offs can be 
influenced by various factors, including genetic background and en-
vironmental conditions (20), and therefore, trade-offs may not be 
consistently expressed throughout evolution after gene origin. The 
strength of trade-offs can vary across different fungal lineages and 
over different periods of evolution. It is worth noting that PSC edit-
ing levels are not 100%, which means that it may be less beneficial 
than the original genomic G in sexual development, although it may 
be more beneficial in growth. When the harm to growth is weak, 
having a genomically encoded G appears to be more advantageous. 
Conversely, when the harm to growth is strong, having a restorative 
editing mechanism seems to be more beneficial. Therefore, natural 
selection may balance between PSC editing and the genomically en-
coded G to optimize overall fitness based on the strength of trade-
offs during evolution. The observation that multiple independent 
fixations of the same premature stop codons have occurred across 
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different fungal lineages, and that premature stop codons have been 
lost during evolution and later reacquired in some cases, supports 
the adaptive model but is incompatible with the neutral model.

Is resolving genetic trade-offs also the adaptive function of or-
ganellar restorative editing? Restorative editing is prevalent in endo-
symbiotic organelles, while the enzymes responsible are encoded in 
the nucleus. Despite longstanding coadaptation, the presence of in-
dependently replicating organellar genomes (e.g., mitochondria and 
chloroplasts) in eukaryotes creates the opportunity for selfish cyto-
nuclear conflict. This conflict can have a substantial impact on 
cellular functions and the optimal expression of life-history traits, 
especially in changing environments (65, 66) (Fig. 6B). To combat 
selfishness and promote coordinated cytonuclear interactions, nu-
clear genomes have developed numerous regulatory factors that enter 
the organelles to regulate their gene expression (67). The spontane-
ous occurrence of RNA editing activity leads to the accumulation 
of mutations in organellar genomes, necessitating correction by 
nuclear-encoded editing enzymes. Restorative editing offers nuclear 

genomes a convenient means to counteract the self-interest of or-
ganellar genomes and optimize cytonuclear interactions, thereby 
maximizing cellular fitness overall. In conclusion, restorative ed-
iting potentially acts as an adaptive mechanism to resolve trade-offs 
stemming from antagonistic pleiotropy or cytonuclear conflict. Ge-
netic trade-offs may represent the primary driving force behind the 
origin and maintenance of diverse RNA editing systems.

MATERIALS AND METHODS
Strain culture conditions
We routinely cultured the F. graminearum wild-type strain PH-1 
and its derived mutants/transformants on potato dextrose agar 
(PDA) plates at 25°C to assay the growth rate and colony mor-
phology for 3 days. To assay the sensitivity to different stresses, we 
cultured the strains on PDA plates supplemented with Congo red 
(150 μg/ml), 0.05% H2O2, 0.7 M NaCl, or 0.01% SDS for 5 days, as 
described in (68). For sexual reproduction, we pressed down 
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aerial hyphae on 6-day-old carrot agar plates (250 g/liter) with 500 
μl of sterile 0.1% Tween 20 and subsequently incubated them under 
black light at 25°C. In outcrosses, we fertilized female strains grown 
on carrot agar plates with 1 ml of conidial suspension (1 × 106 co-
nidia/ml) derived from male strains. We assayed ascospore dis-
charge as described in (69). We measured conidiation in 5-day-old 
liquid carboxymethylcellulose cultures and assayed spore germina-
tion and germ tube growth in liquid YEPD (1% yeast extract, 2% 
peptone, 2% dextrose) medium for 12 hours using freshly harvested 
conidia or ascospores. We examined perithecium formation, cirrhi 
production, and spore firing by an Olympus SZX16 stereoscope. We 
observed the morphology of conidia, germ tubes, ascogenous hy-
phae, asci, and ascospores with an Olympus BX-51 microscope.

Gene deletion and site-directed mutagenesis
We performed gene deletion using the split-marker approach (70) 
as described in (68). We transformed gene deletion constructs into 
PH-1 protoplasts and screened transformants resistant to hygromy-
cin with hygromycin-B (300 μg/ml; H005, MDbio, China), con-
firmed by polymerase chain reaction (PCR) assays. For each PSC 
pseudogene, we identified at least two independent deletion mu-
tants. We performed site-directed mutagenesis in situ as described 
in (32). We generated uneditable and edited alleles of the PSC pseu-
dogenes by replacing the premature stop codon TAG with TAA and 
TGG, respectively, using overlapping PCR. We fused the allelic frag-
ment and the downstream fragment of the target gene to the N- and 
C-terminal regions of the hygromycin-resistance gene (hyg), respec-
tively. We cotransformed the two fused fragments into PH-1 proto-
plasts and identified hygromycin-resistant transformants by PCR. We 
confirmed desired mutations by DNA sequencing and identified 
transformants with no unintended integration of allelic fragments 
by quantitative PCR. All mutant strains and primers used are listed 
in tables S2 and S5, respectively.

RNA-seq analysis
We harvested perithecium samples from carrot agar cultures with at 
least two biological replicates per treatment condition. We extracted 
total RNA using the RNAprep Pure Plant Kit (Tiangen Biotech) and 
enriched poly (A)+ mRNA with oligo (dT) magnetic beads. We con-
structed strand-specific RNA-seq libraries with the NEBNext Ultra 
Directional RNA Library Prep Kit (New England Biolabs) and se-
quenced them by Illumina HiSeq 2500 with the 2 × 150-bp paired-
end read mode at the Novogene Bioinformatics Institute (Beijing). 
For each library, we obtained at least 20 Mb of high-quality reads. 
We downloaded published RNA-seq data from the National Center 
for Biotechnology Information (NCBI) Sequence Read Archive da-
tabase. All the RNA-seq data used in this study are listed in table S6 
together with their accession numbers. We obtained the latest 
genome sequences and gene annotations of PH-1 from FgBase 
(http://fgbase.wheatscab.com/) and those of F. neocosmosporiellum 
from the NCBI genome database. We aligned RNA-seq reads to the 
reference genome using HISAT2 (71) with a two-step model and 
evaluated the quality of read alignments using Qualimap 2 (72). We 
identified A-to-I RNA editing sites as described previously (73). We 
calculated count data of gene expression by featureCounts (74) and 
performed differential gene expression analysis with edgeRun (75) 
using Benjamini and Hochberg’s algorithm to control the false dis-
covery rate (FDR). We considered genes with FDR < 0.05 and |log2 
(fold change)| ≥ 1 as DEGs. We measured gene expression levels 

using transcripts per million (TPM). We performed GO enrichment 
analysis with TBtools (76) using a cutoff for p_adjusted <0.05.

Homology searching and phylogenetic analysis
We identified conserved domains and IDRs in protein sequences using 
NCBI CD-Search (www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) 
and InterProScan (www.ebi.ac.uk/interpro/search/sequence/), re-
spectively. We identified homologs of the PSC pseudogenes in 546 
fungal genomes by tBLASTn using the edited protein sequences and 
detected homologous sequences as queries for iterative searching in 
the NCBI wgs database. We considered only the best hit with e value 
<1 × e−5 in each genome as homologs. We determined gene or-
thologous relationships by reciprocal BLAST searches. We recorded 
amino acid states at the corresponding PSC-editing site in ortho-
logs based on tBLASTn alignments. We identified synonymous 
and nonsynonymous editing sites shared by F. graminearum and 
F. neocosmosporiellum based on the alignments of ortholog pairs.

We downloaded genome sequences of 154 species from the ge-
nus Fusarium from the NCBI Genome database. We predicted the 
19 housekeeping genes used to infer the Fusarium phylogeny (77) 
from each genome using genBlastG1.39 (78). We obtained protein 
sequences of the γ-tubulin gene (79) encoded by species outside of 
Fusarium by tBLASTn searches of the NCBI wgs database. We per-
formed multiple alignments of protein sequences using the Clust-
alW algorithm implemented in MEGA11 (80). Phylogenetic trees 
were constructed using MEGA11 with the neighbor-joining meth-
od. We concatenated alignments of the 19 housekeeping genes into 
one alignment for phylogenetic analysis. Dendrograms illustrating 
relationships between major groups of fungi were drawn according 
to the MycoCosm tree (https://mycocosm.jgi.doe.gov/mycocosm/
home). The phylogenetic tree of different fungal taxa was drawn on 
the basis of both the MycoCosm tree and the γ-tubulin tree. We in-
ferred ancestral states at PSC-editing sites using MEGA11 with the 
maximum parsimony method and the topology of phylogenetic 
trees. For each ancestral editing site, we calculated the frequency of 
nucleotide substitutions as the percentage of descendant species 
containing a non-A nucleotide at that site. Shannon entropy was 
evaluated as H(X) = −∑ xi log2xi, where Χ is a series of frequencies 
of nucleotides at an editing site with four possible values {x1, ⋯, x4} 
for nucleotide sequences.

Statistical analyses
We performed all statistical analyses using R or GraphPad Prism 8. 
Details of each statistical test are included in the figure legends. 
Sample sizes and P values are also included in the figure legends or 
main figures.

Supplementary Materials
The PDF file includes:
Figs. S1 to S10
Legends for tables S1 to S6
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