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1  |  INTRODUC TION

The United Nations has declared 2021– 2030 the “Decade of 
Healthy	Ageing”	to	assist	the	aging	population	in	living	healthier	for	
longer. Identifying reliable aging biomarkers that can be targeted 
by	 longevity-	promoting	 interventions	 is	a	global	priority,	however,	
requires	 sizable	 human	 cohorts	 across	 a	 broad	 range	 of	 ages	 and	
relevant	tissues,	which	is	both	costly	and	time-	consuming.	The	last	
two decades have seen an open science revolution with the creation 
of	free-	access	repositories	overflowing	with	molecular	data	from	all	
levels of gene regulation (e.g., epigenomics, transcriptomics). These 
rich repositories allow for the exploration of aging mechanisms and 
their susceptibility to environmental stressors, even in healthy and/
or	young	 individuals,	 since	age-	related	changes	gradually	 accumu-
late from early life and affect organ systems years before disease 
manifestation (Belsky et al., 2015).

Aging	is	associated	with	a	loss	of	muscle	mass	and	function	that	
leads to increased adverse outcomes including falling injury, func-
tional	decline,	frailty,	earlier	morbidity,	and	mortality	 (Cruz-	Jentoft	
&	Sayer,	2019).	Exercise	training	is	one	of	the	most	affordable	and	
effective ways to promote healthy aging (Cartee et al., 2016), as 
being physically active reduces mortality from all causes, indepen-
dent of levels and changes in several established risk factors (over-
all diet quality, body mass index, medical history, blood pressure, 
triglycerides, and cholesterol; Mok et al., 2019). Cardiorespiratory 

fitness, as estimated by maximal oxygen uptake (VO2max) during an 
exercise test, shows a strong, graded, and inverse association with 
overall	mortality	(Laukkanen	et	al.,	2001). However, we have an in-
complete understanding of the fundamental mechanisms by which 
physical	 activity	 delays	 the	 age-	related	 decline	 in	 skeletal	 muscle	
function.

At	 the	molecular	 level,	 aging	arises	 from	a	 tip	 in	 the	balance	
between	cellular	damage	and	compensatory	mechanisms	(López-	
Otín et al., 2023; Thuault, 2021). Cells undergo constant dam-
age, such as genomic instability, telomere attrition, epigenetic 
alteration, loss of proteostasis, and disabled macroautophagy 
(López-	Otín	et	al.,	2023). This leads to impaired nutrient sensing, 
mitochondrial dysfunction, and cellular senescence, which play 
more nuanced roles in the aging process, as they can be beneficial 
at	a	young	age	(e.g.,	 the	nutrient-	sensing	network	contributes	to	
organ development until young adulthood but can have a detri-
mental	 role	beyond	 this	 stage).	 Low	doses	 such	as	occurs	 in	mi-
tochondrial dysfunction can stimulate beneficial counterreactions 
via mitohormesis, or if spatially confined (e.g., cellular senescence 
suppression	of	oncogenesis	and	improved	wound	healing;	López-	
Otín et al., 2023).	 Eventually,	 the	 accumulated	 damage	 inflicted	
by these primary and antagonistic hallmarks can no longer be 
compensated, leading to stem cell exhaustion, altered intercel-
lular communication, chronic inflammation, and dysbiosis, which 
are ultimately responsible for the physiological decline associated 
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Abstract
Exercise	 training	 prevents	 age-	related	 decline	 in	muscle	 function.	 Targeting	 epige-
netic	aging	is	a	promising	actionable	mechanism	and	late-	life	exercise	mitigates	epi-
genetic aging in rodent muscle. Whether exercise training can decelerate, or reverse 
epigenetic	aging	in	humans	is	unknown.	Here,	we	performed	a	powerful	meta-	analysis	
of the methylome and transcriptome of an unprecedented number of human skeletal 
muscle samples (n = 3176).	We	show	that:	 (1)	 individuals	with	higher	baseline	aero-
bic fitness have younger epigenetic and transcriptomic profiles, (2) exercise training 
leads to significant shifts of epigenetic and transcriptomic patterns toward a younger 
profile,	 and	 (3)	muscle	 disuse	 “ages”	 the	 transcriptome.	Higher	 fitness	 levels	were	
associated with attenuated differential methylation and transcription during aging. 
Furthermore, both epigenetic and transcriptomic profiles shifted toward a younger 
state after exercise training interventions, while the transcriptome shifted toward an 
older state after forced muscle disuse. We demonstrate that exercise training targets 
many	of	 the	age-	related	transcripts	and	DNA	methylation	 loci	 to	maintain	younger	
methylome and transcriptome profiles, specifically in genes related to muscle struc-
ture, metabolism, and mitochondrial function. Our comprehensive analysis will inform 
future studies aiming to identify the best combination of therapeutics and exercise 
regimes	to	optimize	longevity.
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with	aging	(López-	Otín	et	al.,	2023).	The	effect	of	aging	on	DNA	
methylation	(DNAm)	patterns	is	so	profound	that	machine	learn-
ing has spawned highly accurate predictors of both chronological 
and	biological	 age	 (termed	 “epigenetic	 clocks”;	Bell	 et	 al.,	2019). 
We developed an epigenetic clock for human skeletal muscle 
(Voisin et al., 2020) and reported widespread changes in the mus-
cle methylome at genes involved in muscle structure and function 
(Voisin et al., 2021). Downstream of epigenetic processes, changes 
in transcriptional patterns at genes involved in central metabolic 
pathways, and mitochondrial function have also been reported 
in muscle during aging (Su et al., 2015). Regular exercise miti-
gates	the	age-	related	 loss	of	proteostasis	 (Fernando	et	al.,	2019; 
Ubaida-	Mohien	 et	 al.,	 2019), mitochondrial dysfunction (Cartee 
et al., 2016; Short et al., 2005), and stem cell exhaustion (Cartee 
et al., 2016;	Sousa-	Victor	et	al.,	2015) in muscle, but there is cur-
rently	limited	evidence	for	its	effect	on	age-	related	epigenetic	and	
transcriptomic changes.

Several	cross-	sectional	analyses	 found	only	weak	associations	
between	 self-	reported	 physical	 activity	 levels	 and	 epigenetic	 age	
in blood (Quach et al., 2017; Sillanpää et al., 2019, 2021) or skeletal 
muscle (Sillanpää et al., 2019), after adjusting for confounders such 
as	diet.	However,	self-	reported	measures	of	physical	activity	poorly	
reflect actual physical activity levels, particularly in individuals with 
higher body fat and females who typically overestimate energy ex-
penditure (Prince et al., 2008). Furthermore, these studies relied 
solely	on	DNAm	clocks	to	quantify	age-	related	changes	in	epigene-
tic patterns. While aging is associated with widespread changes at 
a plethora of CpG sites, epigenetic age, as measured by epigenetic 
clocks, is a single value that encompasses a very small portion of 
the	aging	methylome	 (typically	a	 few	hundred	age-	related	DNAm	
loci, also called CpGs). Therefore, it offers a very narrow and in-
complete view of the aging methylome, and exercise training may 
affect aging regions that are not captured by epigenetic clocks. 
Interestingly,	a	recent	study	found	evidence	that	late-	life	exercise	
mitigates	age-	related	epigenetic	changes	 in	mouse	gastrocnemius	
muscle (Murach et al., 2022). In this study, the authors did not 
use	clocks	but	investigated	all	DNAm	loci	that	change	with	age	in	
mouse muscle and applied a direct exercise training intervention. 
A	couple	of	human	studies	are	in	line	with	these	results:	resistance	
training	was	shown	to	offset	age-	related	changes	both	 in	 the	nu-
clear (Blocquiaux et al., 2022; Gorski et al., 2023) and mitochon-
drial (Ruple et al., 2021) epigenome. Unfortunately, these studies 
had	 small	 sample	 sizes	 and	 have	 not	 been	 replicated	 to	 date,	 so	
they should be regarded as preliminary (Fanelli et al., 2017). They 
were also restricted to resistance training in males, which does 
not speak for the effect of exercise training in general in males or 
females	 across	 the	 lifespan.	 In	 another,	 large-	scale	meta-	analysis,	
age-	related	 changes	 in	 the	 transcriptome	 showed	 an	 inverse	 cor-
relation with higher cardiorespiratory fitness (CRF; Su et al., 2015). 
However,	these	associations	were	cross-	sectional	and	could	be	con-
founded	by	other	environmental	and	lifestyle	factors	that	co-	occur	
with higher CRF levels (e.g., a better diet). Therefore, there is a great 
need for a comprehensive, integrative, and robust assessment of 

the	effects	of	CRF,	exercise	training,	and	inactivity	on	age-	related	
molecular changes in human muscle.

To address these limitations, we identified relevant published 
datasets from online databases that we combined with our own 
original	 data	 to	 characterize	 the	effect	of	 cardiorespiratory	 (CRF),	
exercise training, and inactivity on human skeletal muscle aging 
across the methylome and transcriptome. We first compiled a list 
of	age-	related	changes	in	1251	samples	across	16	cohorts	(DNAm)	
and	1925	samples	across	21	cohorts	 (mRNA	expression).	We	then	
tested	cross-	sectional	associations	between	aging	molecular	profiles	
and	CRF;	we	hypothesized	that	 individuals	with	higher	CRF	would	
display	 “younger”	 profiles	 than	 expected	 at	 age-	related	CpGs	 and	
mRNAs.	 Then,	 we	 investigated	 directly	 whether	 exercise	 training	
could shift molecular profiles in human skeletal muscle toward a 
younger	 profile,	 using	 high-	resolution	 longitudinal	 data	 collected	
from exercise training studies of various types and durations. Finally, 
we	tested	whether	 inactivity	could	“age”	transcriptomic	profiles	 in	
human skeletal muscle, using longitudinal data from forced immobili-
zation	interventions	in	humans.	This	work	provides	a	comprehensive	
and	integrative	map	of	the	effect	of	physical	activity	on	age-	related	
changes in fundamental processes controlling gene expression in 
human muscle.

2  |  RESULTS

2.1  |  Methodology overview

We describe our study design in Figure 1.
First,	we	 identified	the	DNAm	loci	and	transcripts	that	change	

with age in human skeletal muscle, by systematically mining and 
analyzing	DNAm	and	mRNA	microarray	 data	 from	our	 laboratory,	
online databases, and our collaborators' laboratories. We conducted 
a	random-	effects	epigenome-	wide	association	study	(EWAS)	meta-	
analysis of age across 1251 samples from 16 independent cohorts 
(Table S1),	 and	 a	 random-	effects	 transcriptome-	wide	 association	
study	(TWAS)	meta-	analysis	of	age	across	1925	human	muscle	sam-
ples from 21 independent cohorts (Table S2). To uncover the effect 
of aerobic fitness and exercise training on the aging methylome and 
transcriptome of skeletal muscle, we then restricted our analysis 
to	 the	 identified	 age-	related	 Differentially	 Methylated	 Positions	
(DMPs)	and	Differentially	Expressed	Genes	(DEGs).

We	first	assessed	whether	an	objective	gold-	standard	measure	
of aerobic fitness (VO2max) was associated with younger methy-
lome and transcriptome profiles in skeletal muscle (Figure 1).	At	the	
epigenetic	 level,	we	 conducted	a	 random-	effects	meta-	analysis	 of	
VO2max across 439 samples from five independent cohorts; at the 
transcriptomic	level,	we	conducted	a	random-	effects	meta-	analysis	
of VO2max across 354 samples from five independent cohorts 
(Table 1). There was a reasonably large range of VO2max in each of 
these	cohorts	(SD >5 mL/min/kg,	Table 1), which is essential to de-
tect differences in OMIC aging between individuals with varying 
fitness levels.
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As	cross-	sectional	analyses	can	be	confounded	by	unmeasured	
factors (e.g., lifelong dietary patterns, socioeconomic status), we 
tested directly whether an exercise training program could shift 

OMIC profiles toward a younger state, in an interventional, longitudi-
nal	setting.	We	conducted	a	random-	effects	meta-	analysis	of	DNAm	
changes	 following	 aerobic,	 high-	intensity	 interval,	 or	 resistance	

F I G U R E  1 Study	overview.	First,	we	performed	a	large-	scale	data	mining	exercise	to	gather	all	existing	DNA	methylation	(DNAm)	
and	mRNA	expression	microarray	datasets	from	our	own	lab,	our	network	of	collaborators,	and	open-	access	repositories	(GEO,	dbGAP,	
ArrayExpress).	See	Methods	for	inclusion	criteria	of	datasets.	Step	1:	We	identified	age-	related	changes	in	DNAm	and	mRNA	expression	
in	human	skeletal	muscle	by	meta-	analyzing	1251	samples	across	16	cohorts	(DNAm)	and	1925	samples	across	21	cohorts	(mRNA).	Step	
2:	First,	we	performed	a	cross-	sectional	association	between	DNAm	levels	at	age-	related	CpGs	or	expression	levels	at	age-	related	mRNAs	
and VO2max.	Then,	we	determined	whether	DNAm	levels	at	age-	related	CpGs,	and	expression	levels	at	age-	related	mRNAs	changed	after	
exercise	training,	and	we	assessed	whether	expression	levels	at	age-	related	mRNAs	changed	after	muscle	disuse.	Finally,	we	performed	a	
series of OMIC integrations and pathway analyses to identify the molecular pathways affected by age, VO2max, exercise training, and/or 
muscle disuse across both OMIC layers. Note: we only had OMIC data available at the transcriptomic level following muscle disuse. Note 
2:	summary	statistics	for	the	exercise-		and	disuse-	induced	mRNA	changes	came	from	two	recent	meta-	analyses	(Fanelli	et	al.,	2017; Garcia 
et al., 2022).

TA B L E  1 Characteristics	of	the	cohorts	used	in	the	cross-	sectional	analysis	(association	between	age-	related	CpGs	or	mRNAs	and	
maximal oxygen uptake (VO2max).

Cohort
Number of 
samples

Number of unique 
individuals Age (years) Sex (% male)

VO2max 
(mL/min/kg) Data availability

DNA methylation

Gene	SMART	(Voisin	
et al., 2020, 2021)

234 66 32 ± 8.1 80% 48 ± 9.0 GSE151407,	
GSE171140

Finnish Twin Cohort (Sillanpää 
et al., 2021)

73 73 43 ± 16 38% 36 ± 8.5 Per request

E-	MTAB-	11282	(Garcia	
et al., 2022)

52 13 45 ± 11 38% 23 ± 5.0 E-	MTAB-	11282

EXACT 48 16 33 ± 10 100% 42 ± 7.8 Per request

CAUSE	(Gorski	et	al.,	2023) 32 16 60 ± 5.3 0% 30 ± 6.1 GSE213029

mRNA expression

GSE18732	(Gallagher	
et al., 2010)

117 117 54 ± 11 69% 28 ± 9.6 GSE18732

HERITAGE	(Clarke	et	al.,	2017; 
Takeshita et al., 2021)

82 42 34 ± 14 58% 36 ± 9.0 GSE117070

GSE44818	(Rowlands	
et al., 2015)

72 12 30 ± 7.2 100% 60 ± 6.0 GSE44818

The Malmö Prevention Study 
(De et al., 2010)

43 43 66 ± 1.5 100% 28 ± 6.4 E-	CBIL-	30

MSAT	(Oskolkov	et	al.,	2022) 39 39 36 ± 8.3 100% 52 ± 8.1 Per request
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training across 401 samples from six independent exercise training 
interventions (Figure 1 and Table 2); we also extracted summary sta-
tistics	at	age-	related	DEGs	from	a	published	meta-	analysis	of	tran-
scriptomic	changes	induced	by	exercise	training	(Amar	et	al.,	2021). 
Finally, and to further support the causal effect of exercise training 
in the shift of muscle OMIC patterns toward younger profiles, we 
tested	whether	age-	related	transcriptomic	profiles	were	altered	fol-
lowing a decrease in physical activity; we extracted summary statis-
tics	at	 age-	related	DEGs	 from	a	published	meta-	analysis	 following	
forced	immobilization	protocols	(Pillon	et	al.,	2020).

2.2  |  Skeletal muscle aging alters DNA 
methylation and expression of genes involved in 
muscle structure and metabolism

Age-	related	 changes	 to	 the	 methylome	 are	 widespread	 yet	 small	
(typically ~1% change in methylation per decade of age); out of 
the 595,541 tested CpG sites, we identified 3168 differentially 
methylated	 positions	 (DMPs)	 associated	 with	 age	 at	 FDR <0.005 
(Benjamin et al., 2017; Table S3), 73% of which were hypomethyl-
ated (Figure S1A). This is in concordance with our previous findings 

(Voisin et al., 2021),	 and	 in	 line	with	 recent	 findings	at	 the	 single-	
cell level (Tarkhov et al., 2022). While DMPs were not enriched in 
any particular canonical pathway or expression signatures of genetic 
and chemical perturbations, they were overrepresented in two gene 
ontology terms related to muscle structure (contractile fiber, I band; 
Figure S1B), and in two human phenotype ontologies entirely con-
sistent	with	musculoskeletal	 aging	 (“difficulty	 climbing	 stairs,”	 and	
“muscle	weakness;”	Figure S1B).

Out of the 16,657 tested transcripts, we identified 330 differ-
entially	expressed	genes	 (DEGs)	at	FDR <0.005 (Table S4), 68% of 
which were downregulated with older age (Figure S2A).	While	DEGs	
were not enriched in any particular canonical pathway, they were 
overrepresented in several gene ontology terms related to mito-
chondrial	function	and	energy	production	(ADP	and	ATP	metabolic	
processes, generation of precursor metabolites and energy, en-
ergy derivation by oxidation of organic compounds, mitochondrial 
protein-	containing	complex,	organelle	inner	membrane;	Figure S2B). 
Furthermore, they were also overrepresented in expression signa-
tures of genetic and chemical perturbations	(incl.	genes	up-	regulated	
in differentiating myoblasts upon expression of PPARGC1A; Mootha 
et al., 2003), genes differentially regulated in myoblasts with IGF2BP2 
knockdown (Boudoukha et al., 2010), and genes that comprise the 

TA B L E  2 Participant	characteristics	from	the	cohorts	in	the	interventional	analysis	(changes	in	levels	of	age-	related	CpGs	or	mRNA	after	
exercise training or muscle disuse).

Cohort
Number of 
samples

Number 
of unique 
individuals Age (years)

Sex (% 
male) Intervention Dataset access

DNA methylation

Gene	SMART	(Voisin	
et al., 2020, 2021)

196 66 32 ± 8.1 80% 4 weeks	of	HIIT	repeated	twice	
after	a > 1-	year	washout,	and	
an	additional	8 weeks	of	HIIT

GSE151407,	
GSE171140

E-	MTAB-	11282	(Garcia	
et al., 2022)

52 13 45 ± 11 38% 8 weeks	of	aerobic	training E-	MTAB-	11282

EPIK	(Blocquiaux	
et al., 2022)

48 14 45 ± 22 100% 12 weeks	of	resistance	training	
repeated twice after a 
12-	week	washout	(older	
individuals)	or	2-	week	
immobilization	(younger	
individuals)

Per request

GSE114763	(Seaborne	
et al., 2018)

39 8 29 ± 6 100% 7 weeks	of	resistance	training	
repeated	twice	after	a	7-	week	
washout

GSE114763

EpiTrain	(Lindholm	
et al., 2014)

34 17 27 ± 4 44% 3 months	of	aerobic	training GSE60655

CAUSE	(Gorski	
et al., 2023)

32 16 60 ± 5.3 0% 5 months	of	aerobic	training GSE213029

mRNA expression

ExTraMeta	(Amar	
et al., 2021)

952 476 Meta-	analysis	of	28	
datasets

Exercise	training	of	various	types	
and duration

https://www.
extra meta.
org

MetaMEx	(Pillon	
et al., 2020)

250 125 Meta-	analysis	of	7	datasets Forced	immobilization	of	various	
durations

https://metam 
ex.serve.
scili felab.
se/

http://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=CGP
http://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=CP
http://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=CP
http://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=GO
http://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=GO
http://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=HPO
http://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=CGP
http://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=GO
http://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=CP
http://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=CP
http://www.extrameta.org/
http://www.extrameta.org/
http://www.extrameta.org/
https://metamex.serve.scilifelab.se/
https://metamex.serve.scilifelab.se/
https://metamex.serve.scilifelab.se/
https://metamex.serve.scilifelab.se/
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mitochondria gene module (Wong et al., 2008).	DEGs	were	also	en-
riched in two human phenotype ontologies related to muscle func-
tion	(“exercise	intolerance”,	and	“myoglobinuria”;	Figure S1B).

Finally,	we	estimated	whether	the	age-	related	DNAm	and	mRNA	
changes were possibly driven by changes in cell type composition. 
We	tested	whether	 the	DMPs	and	DEGs	were	overrepresented	 in	
twelve gene sets containing curated cluster markers for cell types 
identified	in	a	single-	cell	sequencing	study	of	human	skeletal	mus-
cle (Rubenstein et al., 2020). We found no significant enrichment of 
DMPs in any of the cell type marker genes (Figure S1C), suggesting 
that	the	age-	related	DNAm	changes	are	not	confounded	by	changes	
in	 cell	 type	 proportions.	 In	 contrast,	 DEGs	 were	 enriched	 for	
genes whose expression differs between type I and type IIa fibers 
(Figure S2C),	with	 a	 change	 in	mRNA	expression	 suggestive	of	 an	
increase in type I fiber % with older age; TPM3, PDLIM1, and MYOZ2 
are all markers of type I fibers and increased in expression with age, 
while PKM, ENO3, and PFKM are all markers of type IIa fibers and 
decreased	 in	 expression	with	 age.	 DEGs	 also	 showed	 a	 trend	 for	
enrichment in marker genes of smooth muscle cells that make up 
the walls of blood vessels (Figure S2C), but it is unclear whether it 
reflected an increase or a decrease in the proportion of smooth mus-
cle cells, as the signal was inconsistent: 17/28 of the marker genes 
increased in expression, and 11/28 decreased in expression.

As	the	DMPs	and	DEGs	were	associated	with	related	yet	distinct	
ontologies, we further examined the overlap between differentially 
methylated	genes	 (DMGs)	and	DEGs.	We	 identified	63	genes	 that	
were altered both at the epigenetic and transcriptional levels during 
aging (Figure S3A and Table S5).	This	overlap	between	age-	related	
changes at the epigenetic and transcriptomic levels was greater than 
expected by chance alone, as DMGs were more likely to also be 

DEGs	 than	non-	DMGs	 (p-	value	 for	over-	representation = 0.00011,	
Figure S3B);	 conversely,	DEGs	were	more	 likely	 to	be	DMGs	 than	
non-	DEGs	(p-	value	for	over-	representation	= 1.7 × 10

−5, Figure S3B).

2.3  |  CRF and exercise training are associated with 
younger epigenetic and transcriptomic profiles in 
human skeletal muscle, in contrast to muscle disuse

We	identified	25	age-	related	DMPs	and	one	age-	related	DEGs	that	
showed a significant association with VO2max	(FDR <0.005, Tables S3 
and S4), but it is likely that we were underpowered to detect more 
associations	at	a	high	level	of	confidence.	A	quantile-	quantile	plot	of	
p-	values	for	the	association	between	VO2max	and	DNAm	or	mRNA	
levels	at	age-	related	DMPs	or	DEGs	showed	a	clear	increase	(infla-
tion) above the diagonal line (Figure S4A,B). This diagonal line indi-
cates the expected p-	value	distribution	under	the	assumption	(null	
hypothesis) that the p-	values	follow	a	uniform	[0,1]	distribution	(i.e.	
that there are no true associations between VO2max	and	DNAm	or	
mRNA	 levels	 at	 age-	related	DMPs	 and	DEGs).	 The	 amount	 of	 de-
parture from this diagonal line correlates with the expected number 
of true associations (van Iterson et al., 2017). We did not identify 
age-	related	DMPs	that	were	significantly	altered	following	exercise	
training	at	FDR <0.005, but with substantially more samples (n = 952	
from 28 datasets) and therefore statistical power at the transcrip-
tional	 level,	we	 found	40	 age-	related	DEGs	 that	were	 altered	 fol-
lowing exercise training (Table S3).	Importantly,	at	age-	related	DMPs	
and	DEGs	most	significantly	associated	with	VO2max or altered fol-
lowing exercise training (the points on the far right of the Q– Q plots), 
VO2max and training were associated with changes that directly 

F I G U R E  2 Aerobic	fitness	and	exercise	training	have	similar	associations	with	muscle	epigenetic	profiles,	which	contrast	with	those	
seen	with	age.	(a)	Pairwise	correlation	(Spearman)	between	the	effect	sizes	of	age,	aerobic	fitness	(VO2max),	and	exercise	training	at	age-	
related	DMPs.	Each	dot	corresponds	to	one	of	the	3168	age-	related	DMPs,	and	the	axes	represent	the	magnitude	of	effect	for	age,	VO2max, 
and	exercise	training.	(b)	Unsupervised	hierarchical	clustering	of	the	effect	sizes	of	age,	VO2max,	and	exercise	training	at	age-	related	DMPs	
(ordered	from	the	most	hypomethylated	to	most	hypermethylated	with	age).	Note	that	the	legend	is	arbitrary	as	effect	sizes	were	scaled	to	
an SD of 1 for age, VO2max, and exercise training to be comparable.

http://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=HPO
http://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=C8
http://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=C8
http://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=C8
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F I G U R E  3 Aerobic	fitness	and	exercise	training	show	similar	associations	with	muscle	transcriptomic	profiles	and	contrast	with	those	
seen	with	age	and	muscle	disuse.	(a)	Pairwise	correlation	(Spearman)	between	the	effect	sizes	of	age,	aerobic	fitness	(VO2max), exercise 
training,	and	muscle	disuse	at	age-	related	DEGs.	Each	dot	corresponds	to	one	of	the	330	age-	related	DEGs,	and	the	axes	represent	the	
magnitude of effect for age, VO2max,	exercise	training,	and	disuse.	(b)	Unsupervised	hierarchical	clustering	of	the	effect	sizes	of	age,	VO2max, 
exercise	training,	and	disuse	at	age-	related	DEGs	(ordered	from	the	most	downregulated	to	most	upregulated	with	age).	Note	that	the	legend	
is	arbitrary	as	effect	sizes	were	scaled	to	an	SD	of	1	for	age,	VO2max, exercise training, and disuse to be comparable. (c) Comparison of the 
magnitude	of	exercise-	induced	changes	in	gene	expression	between	a	hypothetical	20-		and	70-	year-	old.	The	genes	displayed	are	those	
for	which	“age”	was	a	significant	moderator	according	to	the	meta-	regression	conducted	by	Amar	et	al.	(2021)	“Down	DEG” = gene	whose	
expression	decreases	during	normal	aging;	“Up	DEG” = gene	whose	expression	increases	during	normal	aging.	(d)	Multi-	contrast	enrichment	
comparing the effects of age, VO2max,	exercise	training,	and	muscle	disuse	at	age-	related	DEGs.	Genes	related	to	mitochondrial	function	
showed clear indications of downregulation during aging and following muscle disuse while being simultaneously upregulated with higher 
VO2max	and	following	exercise	training.	This	was	visible	across	the	Gene	Ontology,	Canonical	Pathways,	and	Expression	Signature	of	Genetic	
and Chemical Perturbations gene sets.
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countered the effect of age (Figure S4C,D). In other words, DMPs 
or	 DEGs	 whose	 methylation	 or	 expression	 levels	 decreased	 with	
age overwhelmingly increased in methylation or expression with 
higher VO2max	and	following	exercise	training;	DMPs	or	DEGs	whose	
methylation or expression levels increased with age overwhelmingly 
decreased in methylation or expression with higher VO2max and fol-
lowing exercise training. Finally, we observed a very pronounced 
effect of muscle disuse on the aging transcriptome, despite a sub-
stantially	 lower	 sample	 size	 (n = 250	 from	7	 datasets,	Table 2): 68 
age-	related	DEGs	were	significantly	altered	following	forced	immo-
bilization	at	FDR <0.005 (Table S4 and Figure S4E).	DEGs	that	were	
downregulated with age tended to decrease in expression following 
muscle disuse, and vice versa.

The	 contrast	 between	 age-	related	 and	 VO2max-		 and	 exercise-	
related	 changes	 are	 visible	when	 all	 age-	related	DMPs	 and	DEGs	
were taken into account; we noted strong negative correlations 
between the effects of age and VO2max	 across	 all	 age-	related	
DMPs (Figure 2a, Spearman correlation ρ = −0.39,	 p < 2.2 × 10

−16 ,	
Figure 2b),	 and	 across	 all	 age-	related	DEGs	 (Figure 3a, Spearman 
correlation ρ = −0.18,	p = 0.0013, Figure 3b), as well as strong neg-
ative correlations between the effects of age and exercise training 
overall	age-	related	DMPs	(Figure 2a, Spearman correlation ρ = −0.37,	
p < 2.2 × 10

−16)	and	across	all	age-	related	DEGs	(Figure 3a, Spearman 
correlation ρ = −0.38,	p = 6.7 × 10

−12).	The	“pro-	aging”	effect	of	mus-
cle disuse was visible at the scale of the whole aging transcriptome; 
we found a strong positive correlation between the effects of age 
and	 immobilization	overall	age-	related	DEGs	 (Figure 3a, Spearman 
correlation ρ = 0.43,	p < 2.2 × 10

−16).
To further highlight the association between VO2max and muscle 

OMIC	 aging,	we	 performed	 principal	 component	 analysis	 (PCA)	 for	
DMPs	in	the	Gene	SMART	cohort,	and	for	DEGs	in	the	GSE18732	co-
hort.	These	two	cohorts	have	the	largest	sample	size	and	VO2max range 
in our study (Table 2).	 In	 the	Gene	SMART	cohort,	 individuals	 clus-
tered by VO2max levels both on Dimension 1 and Dimension 3 (Pearson 

correlation p = 0.0011 for PC1 and p = 0.0047 for PC3), indicating 
that	individuals	of	similar	fitness	levels	show	similar	patterns	of	DNAm	
at	age-	related	DMPs	 (Figure 4a).	Similarly,	 in	 the	GSE18732	cohort,	
individuals tended to cluster by VO2max levels both on Dimension 1 
and Dimension 3 (Pearson correlation p = 0.05 for PC1 and p = 0.0019 
for PC3), indicating that individuals of similar fitness levels have similar 
mRNA	levels	at	age-	related	DEGs	(Figure 4b).

2.4  |  Older individuals have a blunted response to 
exercise at a small fraction of age- related DEGs

We then explored whether the effects described above were applica-
ble to the entire lifespan (i.e. whether older individuals were as able as 
young	individuals	to	reap	the	“anti-	aging”	benefits	of	exercise	training).	
We	could	not	test	this	hypothesis	at	the	DNAm	level	due	to	the	more	
limited	number	of	 older	 individuals	with	DNAm	data	 in	 the	 studied	
cohorts (Tables 1 and 2), but we investigated this in the transcriptional 
response	to	exercise	 training	as	effect	sizes	came	from	28	different	
cohorts with a wide variability in age range (Table 2). We extracted 
summary	statistics	from	the	original	paper	from	Amar	et	al.	(2021) and 
identified	12	DEGs	(3%	of	all	DEGs)	whose	exercise-	induced	change	
in	expression	levels	depends	on	age.	For	all	12	DEGs,	older	individuals	
showed a blunted response to exercise training (Figure 3c).

2.5  |  Mitochondrial and metabolic 
pathways are simultaneously inhibited by age and 
muscle disuse, and enhanced with greater CRF and by 
exercise training

We compared the associations between age, aerobic fitness, ex-
ercise	 training,	 and	muscle	 disuse	 in	 an	 integrated,	multi-	contrast	
enrichment	 analysis	 that	 uses	 a	 rank-	MANOVA-	based	 statistical	

F I G U R E  4 Principal	component	analysis	of	individuals	from	the	Gene	SMART	cohort	at	age-	related	DMPs,	and	individuals	from	the	
GSE18732	cohort	at	age-	related	DEGs.	We	used	principal	component	analysis	(PCA)	to	reduce	dimensionality	and	show	each	individual	on	
a	two-	dimensional	graph.	Individuals	from	the	Gene	SMART	cohort	(a)	and	from	the	GSE18732	cohort	(b)	are	colored	according	to	their	
baseline VO2max	levels.	Lower	levels	of	VO2max are indicated by smaller circles in lighter colors, while higher levels are indicated by larger 
circles in darker reds. To objectively test the clustering of individuals according to VO2max, we ran Pearson correlations between individual 
coordinates on Dimension 1, Dimension 2, or Dimension 3 and VO2max.
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approach	 (Kaspi	 &	 Ziemann,	 2020). We could only perform this 
multi-	contrast	analysis	at	the	transcriptional	level,	as	this	statistical	
approach	has	not	been	adapted	for	DNAm	data	(i.e.,	it	has	not	been	
optimized	to	take	into	account	the	severe	bias	in	gene-	set	analysis	
applied	to	genome-	wide	methylation	data;	Maksimovic	et	al.,	2021; 
Phipson et al., 2016).	 This	multi-	contrast	 analysis	 identified	mito-
chondrial and metabolic pathways as simultaneously inhibited by 
age and muscle disuse, while enhanced by aerobic fitness and ex-
ercise training (Figure 3d). The effects of VO2max and exercise train-
ing were highly consistent both at the epigenetic and transcriptomic 
levels (Figures 2 and 3). Conversely, the effect of muscle disuse con-
trasted with both VO2max and exercise training (Figures 2 and 3).

3  |  DISCUSSION

We showed, in a large sample (>3200) of human muscles, that higher 
aerobic fitness is associated with younger epigenetic and transcrip-
tomic profiles. In line with this, exercise training shifts the aging 
muscle epigenome and transcriptome toward a younger profile, 
while muscle disuse significantly accelerates transcriptomic aging. 
The	magnitude	of	“anti-	aging”	or	“aging”	effects	was	highly	site-		and	
gene-	dependent,	suggesting	that	exercise	training	can	reverse	spe-
cific OMIC changes occurring during normal aging in human skeletal 
muscle. Transcriptomic integration revealed a pronounced dete-
rioration of mitochondrial function and energy production during 
aging,	which	is	accelerated	by	forced	immobilization	but	restored	by	
exercise training.

Although	there	were	few	age-	related	DMPs	and	DMGs	signifi-
cantly associated with CRF or exercise training, a close inspection of 
all statistical tests performed suggested that this was more likely due 
to a lack of statistical power than an absence of true associations. In 
support of this, we observed a striking similarity between the effect 
sizes	 of	 aerobic	 fitness	 and	 exercise	 training	 on	 the	 aging	muscle	
methylome and transcriptome, which directly contrasted with the ef-
fects	of	age	and	forced	immobilization.	Adults	lose	about	~2.5–	3 mL/
min/kg of VO2max per decade of age (Rapp et al., 2018), partly be-
cause of primary aging (i.e. the inevitable deterioration of cellular 
structure and biological function, independent of disease or harmful 
lifestyle	or	environmental	factors;	Holloszy,	2000), but also due to 
a decline in physical activity levels as we age (Hallal et al., 2012). 
Therefore,	the	anti-	aging	effect	of	exercise	and	the	aging	effect	of	
disuse	are	perhaps	unsurprising,	given	that	some	of	the	age-	related	
signals	captured	in	the	EWAS	and	TWAS	meta-	analysis	of	age	reflect	
a decline in physical activity levels, rather than primary aging per se. 
This exemplifies the complex nature of aging biology and highlights 
the challenge of assessing which factors mutually affect each other 
when causality becomes circular (Cohen et al., 2022; e.g., aging 
leads to a decline in physical activity/fitness levels, and a decline in 
physical activity/fitness levels leads to aging; Booth et al., 2011). In a 
small study of older men, master athletes showed hypomethylation 
in the promoter of genes involved in energy metabolism and mus-
cle structure, compared with men who reported lifelong sedentary 

behaviour (Sailani et al., 2019). However, without a young control 
group,	this	study	could	not	distinguish	the	age-	related	changes	that	
can be counteracted by exercise, from those that remain unaffected 
by even the most extreme exercise regimes. Without adjusting for 
other environmental confounders, it is also unclear whether these 
effects come from the exercise regime or rather from the effects of 
other lifestyle factors that correlate strongly with high physical ac-
tivity levels (e.g., a healthy diet). In our study, the interventional data 
(i.e.	exercise	training	&	muscle	disuse	protocols)	entirely	supported	
the	cross-	sectional	findings	(i.e.	associations	with	CRF),	suggesting	
that the association between CRF and OMIC aging is due to exercise 
training rather than other unmeasured confounding factors.

We	used	a	large-	scale	data	mining	approach	to	achieve	an	un-
precedented	 sample	 size	 (>1200	 epigenetic	 profiles	 and >1900 
transcriptomic	 profiles	 across	 37	 cohorts).	We	 applied	 random-	
effects	meta-	analyses	allowing	the	effects	of	age,	fitness,	exercise,	
and disuse to vary between cohorts while maintaining the speci-
ficity	of	each	dataset	(i.e.,	we	did	not	force	a	normalization	across	
datasets). Our results may therefore be applicable to a broad range 
of individuals (sex, health/training status) and exercise regimes 
(training	type/duration).	However,	the	cohorts	profiled	for	DNAm	
included	a	majority	of	healthy,	young/middle-	aged,	male	individu-
als,	so	we	cannot	confidently	extrapolate	the	DNAm	results	to	all	
populations. It is possible that older, or diseased individuals show 
blunted responses to exercise training, or that specific training 
regimes	(e.g.,	endurance	vs	resistance	training)	lead	to	anti-	aging	
effects that are entirely specific to that training regime. We could 
only test this at the transcriptional level, and we found that a few 
age-	related	DEGs	showed	a	blunted	response	to	exercise	training	
in older individuals.

While	we	observed	the	anti-	aging	effect	of	exercise	training	at	
both the epigenetic and transcriptomic levels, and despite a signif-
icant	overlap	between	DMPs	and	DEGs,	the	molecular	pathways	
affected by age were distinct between the two OMIC layers. It 
may	be	due	to	differences	in	gene	coverage	between	the	DNAm	
and	mRNA	arrays,	or	 it	could	reflect	differences	in	aging	mecha-
nisms at the epigenetic and transcriptomic levels. Nevertheless, 
the integration of all effects at the transcriptomic level clearly 
showed a downregulation of mitochondrial and energy metabo-
lism pathways during aging and following muscle disuse, which 
was restored by aerobic fitness and exercise training. This is in 
line with the known beneficial effect of exercise on mitochondrial 
function (Goh et al., 2021). The integration was not feasible at the 
DNAm	 level	 because	 a	 given	CpG	 can	 be	 annotated	 to	multiple	
genes, and a given gene can harbor multiple CpGs, severely bi-
asing the statistical test for enrichment (Maksimovic et al., 2021; 
Phipson et al., 2016).

A	 major	 challenge	 in	 OMIC	 analysis	 is	 determining	 whether	
changes are due to a modification of the intrinsic profiles of the 
cells, or to a change in the relative proportions of different cell 
types in the sample. We could not directly estimate the propor-
tions of different cell types in our samples, as deconvolution al-
gorithms have currently not been developed for human skeletal 
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muscle,	whether	at	the	methylation	(Zhu	et	al.,	2022) or transcrip-
tional level. We, therefore, tested for an enrichment of DMGs 
and	DEGs	in	genes	whose	expression	differs	between	muscle	cell	
types (Rubenstein et al., 2020). While we found no evidence of 
confounding by cell type in the epigenetic analysis, some of the 
age-	related	 changes	 in	 mRNA	 were	 indicative	 of	 an	 increase	 in	
the proportion of type I fibers (vs type II fibers). This is surprising 
given that age does not affect the relative proportion of different 
fiber	types,	but	rather	the	size	and	distribution	of	fibers	within	the	
muscle (Deschenes, 2004). Furthermore, we observed younger 
OMIC patterns in individuals of higher aerobic fitness levels, yet 
fitter individuals typically harbor greater proportions of type I fi-
bers (Stuart et al., 2013).	Therefore,	it	is	likely	that	the	DNAm	and	
mRNA	 expression	 changes	were	 intrinsic	 to	muscle	 cells,	 rather	
than reflecting a shift in the proportions of different cell types 
within the muscle. To answer this question, future studies should 
investigate the effects of age, aerobic fitness, exercise training, 
and muscle disuse on OMIC profiles within individual cell types 
using	cell	sorting,	or	single-	cell	methods.

We avoided using epigenetic clocks in this analysis for multiple 
reasons. There are only two clocks currently available that could 
be	applied	to	muscle	DNAm	data,	namely	the	Horvath	pan-	tissue	
clock (Horvath, 2013)	and	the	MEAT	clock	we	recently	developed	
for human muscle (Voisin et al., 2020; all other clocks were devel-
oped	for	non-	muscle	tissue).	First,	both	the	pan-	tissue	and	MEAT	
clocks were trained to predict chronological age, which is a poor 
proxy for clinically relevant measures of biological age (this has 
been highlighted by others; Bell et al., 2019; Field et al., 2018; 
Zhang	 et	 al.,	 2019) and is the reason for the development of 
second-	generation	clocks,	such	as	PhenoAge	(Levine	et	al.,	2018) 
and	 GrimAge	 (Lu	 et	 al.,	 2019, 2022), clocks better adapted to 
longitudinal	data	such	as	DunedinPoAm	(Belsky	et	al.,	2020) and 
DunedinPACE	(Belsky	et	al.,	2022), and clocks able to disentangle 
damaging and adaptive changes during aging (Ying et al., 2022). 
There	are	currently	 too	 few	DNAm	datasets	with	corresponding	
measurements of muscle function (e.g., mitochondrial function, 
contractile properties, etc.) to develop an epigenetic clock that 
would	capture	muscle	biological	age.	Second,	the	pan-	tissue	clock	
is poorly calibrated in skeletal muscle, and most of the muscle 
datasets	from	the	present	study	were	used	to	generate	the	MEAT	
clock (Voisin et al., 2020). This means that epigenetic age estima-
tions	using	the	MEAT	clock	would	be	severely	biased	and	unsuit-
able to assess the effects of fitness and exercise on epigenetic 
aging.	Finally,	until	recently	(Higgins-	Chen	et	al.,	2022), epigenetic 
clocks	only	 selected	a	 limited	number	of	CpGs	 to	maximize	pre-
diction accuracy, which means they would discard information at 
many potentially relevant CpGs associated with age. We adopted a 
broader perspective to look at the entire aging methylome and ex-
amine the effect of exercise training on this aging trend. We were 
unable	 to	assess	 the	 functional	effects	of	 the	age-	related	OMIC	
changes on muscle structure, function, and metabolism, so we 
cannot firmly conclude that the effect of exercise training led to 
gains in muscle function or quality. Future studies combining OMIC 

profiles	with	genetic	data	to	implement	Mendelian	Randomization	
analyses (Ying et al., 2022) that would determine whether OMIC 
aging leads to a decline in muscle function and whether the ben-
eficial effects of fitness and exercise training on muscle function 
are mediated by a reversal of OMIC aging.

In conclusion, using an unprecedented number of epigenetic and 
transcriptomic	human	muscle	profiles,	meta-	analyses,	and	OMIC	in-
tegration, we demonstrated the power of exercise training in shifting 
the epigenome and transcriptome toward a younger state. We hope 
that this work will inspire future studies to look deeper at the mech-
anisms underlying this shift of muscle epigenetic and transcriptomic 
patterns toward younger profiles.

4  |  METHODS

This	 study	 was	 a	 large-	scale	 investigation	 of	 the	 effect	 of	 exer-
cise training on the aging muscle methylome and transcriptome 
in humans. We used a wide range of bioinformatics and compu-
tational	 techniques	 (data	 mining,	 epigenome-	wide	 association	
studies,	 transcriptome-	wide	 association	 studies,	 random	 effects	
meta-	analysis,	 overrepresentation	 analysis,	 and	multi-	contrast	 en-
richment	analysis)	to	analyze	and	interpret	large	amounts	of	OMIC	
data	 in	 human	muscle.	 By	 exploiting	 the	 power	 of	 meta-	analysis,	
we	 overcome	 many	 limitations	 of	 “omics”	 research	 in	 humans.	
Specifically,	large	sample	sizes	are	required	to	detect	changes	with	
small	effect	 sizes,	which	 is	 the	case	of	age	 (Su	et	al.,	2015; Voisin 
et al., 2021)	 and	exercise	 (Amar	et	 al.,	2021; Jacques et al., 2019; 
Pillon et al., 2020; Voisin et al., 2015)-	related	 changes	 in	 muscle	
OMIC	profiles.	All	bioinformatics	and	statistical	analyses	were	per-
formed using the R statistical software.

4.1  |  Data mining

4.1.1  |  Description	of	muscle	DNA	methylation	and	
mRNA	expression	datasets

First,	we	gathered	all	 existing	DNAm	and	mRNA	expression	data-
sets from our laboratory and our collaborators’, in conjunction with 
public	 repositories,	 to	assemble	an	exhaustive	database	of	DNAm	
and	mRNA	 expression	 profiles	 in	 muscle	 (Figure 1 and Tables S1 
and S2). We focused exclusively on microarray experiments, as they 
are widely used, scalable (so individual datasets have larger sam-
ple	 sizes),	 and	 they	measure	 the	 same	CpGs	 or	 transcripts	 across	
datasets	 (so	 they	 are	 straightforward	 to	 meta-	analyze).	 We	 col-
lected the methylomes of 1251 human samples from 16 datasets, 
profiled	 on	 the	 Illumina	HumanMethylation	 platform	 (27 K,	 450 K,	
and	EPIC;	Table S1), as well as the transcriptomes of 1926 samples 
from	21	datasets,	profiled	on	Affimetrix,	Illumina,	and	Agilent	plat-
forms (Table S2). For robustness, we only included datasets with >20 
samples,	 with	 an	 age	 SD >5 years	 (age-	associated	 changes	 cannot	
be detected if age is invariant). Cohorts varied in their age range, 
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health status, ethnicity, and potential treatments, so were adjusted 
for	relevant	covariates	in	the	statistical	analysis	to	detect	age-	,	CRF-	,	
exercise-	,	and	disuse-	related	changes	that	are	independent	of	unde-
sirable confounders (see Tables S1 and S2 for the list of confounders 
adjusted in each cohort).

4.1.2  |  Pre-	processing

We	 downloaded	 the	 raw	 IDAT	 files	 and	 pre-	processed	 all	 DNAm	
datasets,	except	for	dataset	GSE50498	for	which	we	were	missing	
batch	information	(we	used	the	already	pre-	processed	matrix	for	this	
dataset).	Details	on	the	pre-	processing	steps	have	been	previously	
published (Voisin et al., 2021), and the preprocessing code is availa-
ble on Sarah Voisin's Github account. First, we obtained β-	values	
defined as Methylated signal

(Unmethylated signal+Methylated signal+ 100)
 . Then, we confirmed the 

sex	of	each	sample	by	using	the	DNAm	signal	from	the	sex	chromo-
somes	 (Aryee	et	 al.,	2014) and removed any sample whose anno-
tated sex did not match the predicted sex (three samples removed 
across 16 datasets). We used the ChAMP pipeline (Tian et al., 2017) 
to preprocess each dataset; we ensured all samples had <10% of 
probes with detection p-	value > 0.01,	and	only	excluded	probes	with	
missing β-	values,	 with	 a	 detection	 p-	value > 0.01,	 or	 with	 a	 bead	
count < 3	in	more	than	5%	of	samples.	We	removed	non-	CG	probes,	
SNP-	related	probes	(Zhou	et	al.,	2017), and probes aligning to multi-
ple locations; for datasets containing males and females, probes lo-
cated on the sex chromosomes were also removed. Then, a β-	mixture	
quantile	normalization	method	was	applied	to	adjust	for	the	Type	I	
and Type II probe designs for methylation profiles generated from 
the	HM450	and	HMEPIC	arrays.	To	identify	technical	and	biological	
sources of variation in each individual dataset, singular value decom-
position	 was	 performed.	 In	 all	 pre-	processed	 datasets,	 both	 the	
plate and the position on the plate were identified as significant 
technical effects. Thus, all β-	values	were	converted	to	M-	values,	and	
the ComBat function from the sva	package	(Leek	et	al.,	2012) was 
used to adjust directly for these technical artifacts.

We	 downloaded	 the	 already	 pre-	processed	 mRNA	 expres-
sion datasets, resolved any gene ID ambiguity (e.g., outdated gene 
names), and averaged the expression of transcripts annotated to the 
same	EntrezID	gene.

4.2  |  Identifying age- related changes in the muscle 
methylome and transcriptome

4.2.1  |  EWAS	and	TWAS	meta-	analysis	of	age

To determine whether exercise training can slow down/reverse 
OMIC aging in human muscle, we first need to know which CpGs 
and	mRNAs	change	during	aging,	in	which	direction,	and	to	what	
extent.	 Therefore,	 we	 first	 conducted	 independent	 EWAS	 or	
TWAS	of	age	in	each	methylation	or	transcription	dataset.	Details	

on	the	EWAS	pipeline	are	available	elsewhere	(Voisin	et	al.,	2021), 
and	TWAS	was	conducted	in	a	similar	manner.	The	code	for	each	
EWAS	 and	 each	 TWAS	 is	 available	 on	Sarah Voisin's Github ac-
count.	Briefly,	we	regressed	the	DNAm	level	for	each	CpG	(or	the	
mRNA	expression	 level	 for	 each	 transcript)	 against	 age,	 and	 ad-
justed	the	models	for	dataset-	specific	covariates	known	to	 influ-
ence	DNAm	or	mRNA	expression	 levels	 (e.g.,	 sex,	ethnicity).	We	
then	conducted	a	random-	effects	meta-	analysis	to	pool	the	sum-
mary	 statistics	 at	 each	 CpG	 and	mRNA	 across	 datasets.	 Not	 all	
CpGs	were	present	in	all	DNAm	datasets,	and	not	all	mRNAs	were	
present in all transcriptional datasets and restricted the analysis 
to	the	595,541	CpG	sites	present	 in	at	 least	10	of	the	16	DNAm	
cohorts, and we restricted the analysis to the 16,657 genes pre-
sent	 in	at	 least	15	of	 the	21	datasets.	Meta-	analysis	was	carried	
out using metafor (Viechtbauer, 2010)	using	“EB”	(Empirical	Bayes)	
as the residual heterogeneity estimator, 0.5 as the step length, 
10,000 iterations, and an accuracy of 1−8 in the algorithm that es-
timates τ2.	 CpGs	 and	mRNAs	 that	 showed	 a	meta-	analysis	 false	
discovery	rate	(FDR) < 0.005	(Benjamin	et	al.,	2017) were consid-
ered	age-	related	and	selected	for	downstream	analyses.

4.2.2  |  Over-	representation	analysis	of	ontologies	
(molecular pathways, human phenotypes)

To gain insights into the cellular and physiological consequences 
of aging on the muscle methylome and transcriptome, we tested 
whether genes belonging to canonical pathways (CP gene set in 
MSigDB), expression signatures of genetic and chemical pertur-
bations (CGP gene set in MsigDB), gene ontology terms (GO gene 
set in MsigDB), and human phenotype ontologies (HPO gene set in 
MsigDB)	were	 over-	represented	 among	 the	 age-	related	CpGs	 and	
mRNAs.	Over-	representation	analysis	(ORA)	was	performed	with	the	
missmethyl package (Phipson et al., 2016; Maksimovic et al., 2021) 
for	DNAm,	using	all	595,541	tested	CpGs	as	the	background;	ORA	
was performed with the clusterProfiler package (Wu et al., 2021) for 
transcription,	using	all	16,657	genes	as	 the	background.	The	ORA	
was restricted to gene sets containing 10– 500 genes to limit type I 
error	rate.	Gene	sets	showing	an	FDR <0.005 (Benjamin et al., 2017) 
were considered significantly overrepresented.

4.2.3  |  Confounding	by	changes	in	muscle	cell	type	
proportions

We	used	the	same	ORA	technique	to	estimate	whether	age-	related	
changes	 in	DNAm	signal	were	potentially	 confounded	by	 changes	
in muscle cell type proportions. We created a gene set containing 
markers	 genes	 for	muscle	 cell	 types	 identified	 in	 a	 recent	 single-	
cell transcriptional study of human muscle (Rubenstein et al., 2020; 
marker genes for muscle endothelial cells, smooth muscle cells, 
pericytes,	 FAP	 cells,	 PCV	 endothelial	 cells,	 satellite	 cells,	 FBN1	
FAP	cells,	NK	cells,	myeloid	cells,	B	cells,	and	T	cells	were	from	the	

https://github.com/sarah-voisin
https://github.com/sarah-voisin
https://github.com/sarah-voisin
http://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=CP
http://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=CGP
http://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=GO
http://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=HPO
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“Rubenstein_skeletal_muscle”	 gene	 set	 in	 MSigDB,	 while	 marker	
genes for type I and type II fibers were downloaded directly from 
the original paper's supplementary table). Cell types showing an 
FDR <0.005 (Benjamin et al., 2017) were considered significantly 
overrepresented.

4.2.4  |  Integration	of	aging	methylome	and	
transcriptome

We	used	the	same	ORA	technique	to	estimate	whether	there	was	
a	 significant	 overlap	 between	 age-	related	 changes	 at	 DNAm	 and	
mRNA	 expression	 levels.	 Age-	related	 differentially	 methylated	
genes	(DMGs)	were	used	as	a	gene	set	in	the	ORA	for	transcription,	
and	age-	related	differentially	expressed	genes	(DEGs)	were	used	as	
a	gene	set	in	the	ORA	for	DNAm.

4.3  |  Estimating the effects of CRF, exercise 
training, and muscle disuse on the aging 
methylome and transcriptome

All	 analyses	 described	 henceforth	 have	 been	 conducted	 on	 the	
age-	associated	 Differentially	 Methylated	 Positions	 (DMPs)	 and	
Differentially	Expressed	genes	(DEGs)	identified	in	Step	1.

4.3.1  |  Cardiorespiratory	fitness

We focused on the muscle datasets for which information on base-
line maximal oxygen uptake (VO2max) was available (Table 1). We 
only included datasets with baseline VO2max	SD >5 mL/min/kg	(CRF-	
associated changes cannot be detected if there is no variability in 
baseline CRF between participant). VO2max, measured during a graded 
exercise	test,	is	considered	the	gold-	standard	measurement	of	CRF.

We	applied	 the	same	EWAS	and	TWAS	meta-	analysis	pipeline	
described	 previously	 but	 regressing	 DNAm	 or	 mRNA	 expression	
levels against VO2max.	We	 then	 performed	meta-	analysis	 for	 each	
aging CpG and transcript across datasets and adjusted for multiple 
testing.	Aging	CpGs	or	mRNAs	that	were	associated	with	VO2max at 
FDR <0.005 (Benjamin et al., 2017) were considered significant.

4.3.2  |  Exercise	training

For	DNAm,	we	focused	on	the	muscle	datasets	that	came	from	ex-
ercise training studies (Table 2). We included all types of exercise 
training	interventions	(aerobic	training,	high-	intensity	interval	train-
ing, resistance training) as our aim was to test whether exercise in 
general could counteract the effect of age on aging OMIC profiles. 
We	applied	the	same	EWAS	meta-	analysis	pipeline	described	previ-
ously	but	looking	at	changes	in	DNAm	levels	after	exercise	training	
(i.e.	regressing	DNAm	levels	against	Timepoint	(PRE/POST	training).	

Then,	we	performed	 the	meta-	analysis	 for	each	aging	CpG	across	
datasets	and	adjusted	for	multiple	testing.	Aging	CpGs	whose	DNAm	
levels	changed	following	exercise	training	at	FDR <0.005 (Benjamin 
et al., 2017) were considered significant.

For	mRNA	expression,	we	extracted	summary	statistics	at	age-	
related	mRNAs	from	a	recently	published	meta-	analysis	of	exercise-	
induced	 transcriptional	 changes	 (Amar	 et	 al.,	 2021). For each 
transcript, we used the summary statistics from the model selected 
by the authors (all data came from the meta_analysis_input.RData 
file uploaded by the authors on their Github page).

4.3.3  | Muscle	disuse

There	were	no	available	muscle	immobilization	studies	that	profiled	
DNAm	patterns	in	human	muscle,	so	we	could	not	estimate	the	ef-
fect	of	muscle	disuse	on	age-	related	DNAm	patterns.

For	mRNA	expression,	we	extracted	summary	statistics	at	age-	
related	mRNAs	 from	 a	 published	meta-	analysis	 of	 disuse-	induced	
transcriptional changes (Pillon et al., 2020). We used summary sta-
tistics sent by the authors upon correspondence with them.

4.4  |  Transcriptomic integration of age, CRF, 
exercise, and disuse

To contrast the effects of age, CRF, exercise training, and mus-
cle	 disuse,	 we	 used	 multi-	contrast	 enrichment	 analysis	 as	 im-
plemented in the mitch	 package	 (Kaspi	 &	 Ziemann,	 2020).	 As	
recommended in the package, we first created a score to repre-
sent the importance of the differential gene expression for each 
transcript and each contrast:

For example, the FEZ2 gene decreased in expression with age at 
a magnitude of log2FC = −0.12	 per	 year	 of	 age	 at	 a	 p-	value	 of	
1.24 × 10

−10. The age score for FEZ2 was therefore 

− 1 × − log10

(

1.24 × 10
−10

)

= − 9.9.

We	 then	 performed	 multi-	contrast	 enrichment	 analysis	 using	
the	same	gene	sets	as	in	the	ORA	analysis	described	above	(canon-
ical pathways, expression signatures of genetic and chemical, gene 
ontology terms, and human phenotype ontologies), using the de-
fault parameters in the mitch_calc() function. Gene sets showing an 
FDR <0.005 were considered significant.

4.5  |  Visualization tools

Pairwise correlation plots using Spearman correlations were graphed 
using the GGally package, heatmaps were graphed using the pheatmap 
package	after	scaling	the	effect	sizes	for	age,	VO2max, exercise and/
or disuse, and forest plots were graphed using the metafor package.

Score = sign
(

log2FC
)

× − log10(pvalue)

https://github.com/MoTrPAC/motrpac_public_data_analysis
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