
royalsocietypublishing.org/journal/rsos
Research
Cite this article: Harrison LE, Flegg JA, Tobin R,
Lubis IND, Noviyanti R, Grigg MJ, Shearer FM,

Price DJ. 2024 A multi-criteria framework

for disease surveillance site selection: case study

for Plasmodium knowlesi malaria in Indonesia. R.

Soc. Open Sci. 11: 230641.
https://doi.org/10.1098/rsos.230641
Received: 22 May 2023

Accepted: 11 December 2023
Subject Category:
Ecology, conservation and global change biology

Subject Areas:
computational biology/health and disease and

epidemiology

Keywords:
geospatial modelling, disease surveillance, site

selection, Plasmodium knowlesi malaria, multi-

criteria decision-making
© 2024 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.
Author for correspondence:
Lucinda E. Harrison

e-mail: lucy.harrison.research@gmail.com

†These authors contributed equally.

Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.c.

6996704.
A multi-criteria framework
for disease surveillance site
selection: case study for
Plasmodium knowlesi malaria
in Indonesia
Lucinda E. Harrison1, Jennifer A. Flegg1, Ruarai Tobin2,

Inke N. D. Lubis3, Rintis Noviyanti4, Matthew J. Grigg5,

Freya M. Shearer2,† and David J. Price2,6,†

1School of Mathematics and Statistics, and 2Melbourne School of Population and Global
Health, The University of Melbourne, Melbourne, Australia
3Department of Paediatrics, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
4Eijkman Institute for Infection and Molecular Biology, Jakarta, Indonesia
5Menzies School of Health Research and Charles Darwin University, Darwin, Australia
6University of Melbourne, at the Doherty Institute for Infection and Immunity, Melbourne,
Australia

LEH, 0000-0002-0590-1444; JAF, 0000-0002-8809-726X;
RT, 0000-0002-5202-240X; FMS, 0000-0001-9600-3473;
DJP, 0000-0003-0076-3123

Disease surveillance aims to collect data at different times or
locations, to assist public health authorities to respond
appropriately. Surveillance of the simian malaria parasite,
Plasmodium knowlesi, is sparse in some endemic areas and the
spatial extent of transmission is uncertain. Zoonotic
transmission of Plasmodium knowlesi has been demonstrated
throughout Southeast Asia and represents a major hurdle to
regional malaria elimination efforts. Given an arbitrary
spatial prediction of relative disease risk, we develop a
flexible framework for surveillance site selection, drawing
on principles from multi-criteria decision-making. To
demonstrate the utility of our framework, we apply it to
the case study of Plasmodium knowlesi malaria surveillance
site selection in western Indonesia. We demonstrate
how statistical predictions of relative disease risk can be
quantitatively incorporated into public health decision-
making, with specific application to active human
surveillance of zoonotic malaria. This approach can be used
in other contexts to extend the utility of modelling outputs.
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1. Introduction

Disease surveillance aims to collect data at different times or locations, to improve our understanding of
the spatial and/or temporal distribution of a disease [1–3]. Surveillance data assist public health
authorities to distribute control measures, vaccines and medical resources where and when they are
needed [2,4]. Disease surveillance is typically limited by budget, time and resources [5–7]. Surveillance
activities should therefore be optimized subject to specific stakeholder priorities.

In a spatial context, the targeted allocation of public health resources should incorporate knowledge
of the spatial distribution of the disease [2]. There is high uncertainty in many such estimated
distributions: sampling bias [8], diagnostic or geographical limitations in an underlying case dataset
[9], poor understanding around modes of disease transmission or specific reservoir or vector species
[10], and model covariate choice all contribute to uncertainty in a final model estimate. In an ideal
setting, surveillance would have complete coverage over a study area, although this is rarely an
option—instead, we must consider the best way to distribute surveillance resources, given uncertainty
[1,11]. We should consider what exactly ‘best’ means to our specific surveillance context. In other
words, we should form a sampling objective.

All disease surveillance should be carried out with a clearly defined set of objectives. There are
many possible goals of surveillance: for example, we may aim to identify infections so that
appropriate treatment can be administered, or to improve our overall understanding of a disease’s
spatial distribution [11] or transmission dynamics [12], to allow monitoring and/or to predict future
changes. The immediate priorities of surveillance may complement or compete with longer-term
motivations. Priorities also depend on the disease context—the aims of surveillance in a disease
outbreak setting [5] may be contradictory to those of endemic disease surveillance [11]. Given one or
more objectives, there may be constraints on surveillance, for example, relating to cost and workforce
[13]. The range of stakeholders with an invested interest in surveillance may be broad, each with their
own specific priorities.

Existing methods of optimized site selection in ecology and epidemiology have often been constructed
around specific sampling objectives [7,13–15]. Ferrier et al. [14] and Grist et al. [13] describe site selection
workflows involving spatial distribution models related to turnover in species diversity and Plasmodium
falciparum anti-malarial drug resistance, respectively. Longbottom et al. [7] develop a site selection
method which includes an estimated spatial distribution of disease as a constraint, rather than as part of
a quantitative objective, with the model output used to define the area where the population is at risk of
disease. Each of these methods assumes a clear, specific objective. However, in many possible use cases—
particularly when multiple stakeholders are involved—a single sampling objective may not be clear.

Multi-criteria decision analysis (MCDA) is an established approach that formalizes an objective into an
explicit function of decision criteria [16]. In a spatial setting, decision criteria can be represented by data
layers. Criteria which may be relevant to human disease surveillance include the estimated disease
distribution, site accessibility or human population density [13]. These criteria may be iterated as
decision-makers receive new information or change their priorities. MCDA combines multiple criteria
into a single decision surface: optimization corresponds to selecting the solution with the single highest
objective value. The creation of a decision surface before optimization means that the full consequences
of trade-offs made may not be fully understood by the decision-maker [17]. The method is therefore
sensitive to individual decisions without the implications of each being clear to the decision-maker.

There are several examples of frameworks which incorporate spatial predictions of disease
distributions into public health decision-making (e.g. [7,13]), although these consider single objectives
for specific decision problems. Flexibility to consider multiple dynamic and conflicting decision-maker
preferences is a key advantage of a multi-criteria approach. In this paper, we develop a novel
decision-making framework to quantify disease surveillance objectives and select sites that optimize
those objectives. This framework quantitatively includes an estimated geospatial disease distribution
into the decision-making process. We demonstrate the framework’s utility by applying it to site
selection for human surveillance of Plasmodium knowlesi malaria in western Indonesia.

This paper is structured as follows: we first describe methods of site selection, drawing upon MCDA.
We then introduce the case study of Plasmodium knowlesi malaria surveillance (§2.3) and demonstrate an
application of the methods (§3). Finally, we discuss the strengths and limitations of the methods
described in the context of the case study and the broader context of surveillance site selection
problems (§4). The reader can reproduce our results using our RShiny application (https://
lucyharrison.shinyapps.io/pk_multicrit_shiny/). Code and data are made available at https://github.
com/lu-harr/pk_multicriteria_framework.

https://lucyharrison.shinyapps.io/pk_multicrit_shiny/
https://lucyharrison.shinyapps.io/pk_multicrit_shiny/
https://github.com/lu-harr/pk_multicriteria_framework
https://github.com/lu-harr/pk_multicriteria_framework
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2. Methods

2.1. Objective and constraints
The method outlined here is inspired by weighted overlay analysis and spatial MCDA [16,18]. We define
a set of decision alternatives, x, that we wish to sample from. In our case study, each pixel in the study
area is a potential surveillance site, so that the set of potential sites in x can be arranged in a grid. Decision
criteria are variables that are relevant to site selection: if x is a grid, each decision criterion is a data layer.
For example, if some minimum number of resident humans are required at a candidate surveillance site,
human population density is a relevant decision criterion layer. An objective surface can be formed by
applying overlay operations to decision criteria, for example, using a weighted sum or weighted
product [16,19,20]. The ultimate objective surface assigns a value to each pixel in the study area based
on its utility to sampling, i.e. the objective is maximized. We form our objective surface, FðxÞ from the
predictions of a statistical model of disease risk

FðxiÞ ¼ f ðmðxiÞ, sðxiÞ, z1i , . . . , zni Þ, ð2:1Þ
where F(xi) is the objective value at location xi, μ(xi) and σ(xi) are the model prediction mean and standard
deviation of the pixel xi in the study area, and fz1i , . . . , zni g are further priorities to be included in the
objective surface. In the case study (§2.3), we use the relative risk of disease as estimated, with
uncertainty, from a bootstrapped boosted regression tree described by Shearer et al. [9] (where μ(xi)
and σ(xi) are the mean and standard deviation of the bootstrapped model predictions at pixel xi; see
electronic supplementary material, §S2). Standard deviation, σ(xi), is used rather than variance to
ensure the variability does not dominate the mean and instead scales with the number of bootstraps.
However, any geospatial statistical model, or measure of the spatial distribution of a disease, can be
substituted in place.

2.1.1. Site catchment: characterizing decision alternatives

We consider the selection of sites from a grid of decision alternatives. The objective value of each
alternative is independent of the value of proximal sites, excluding spatial autocorrelation in objective
or constraint surfaces. However, the objective value of proximal sites is likely to be relevant to
decision-making. For example, it is possible that a human case recorded in a particular pixel was
exposed to the disease in a different pixel, and it is more likely that the case was exposed in an
adjacent pixel than a distant one. We characterize a site ‘catchment’: the area around a site that is
relevant to a site’s objective value. For example, we could include all pixels within some radius of the
selected pixel into its catchment (figure 1). The covariate value of all pixels within a site’s catchment
can then be summarized to create an argument of the objective function (equation (2.1)). In §3, the
objective value of a pixel given a 10 km catchment is the mean of the initial objective surface at all
pixels in the catchment. The use of a hard buffer is a simple way to link the objective values of
proximal sites but is only one example of several possible approaches. Catchment definition may
relate to the range of a host or vector species and need not be circular—for example, it may factor in a
measure of host movement or accessibility.

2.1.2. Uncertainty- and precision-weighted objectives

The selected surveillance objective, a function of modelling outputs as in equation (2.1), should align
with the specific aims of a surveillance programme. In this paper, we explore two example objectives

F1ðxiÞ ¼ mðxiÞ � sðxiÞ ð2:2Þ
and

F2ðxiÞ ¼ mðxiÞ � 1
sðxiÞ , ð2:3Þ

designated the ‘uncertainty-weighted’ and ‘precision-weighted’ objectives, respectively. These objectives
focus only on model prediction mean and standard deviation, with no further zji (equation (2.1)).
The uncertainty-weighted objective (equation (2.2)) assigns the highest value of F1( · ) to sites with
high prediction mean and high uncertainty. In the context of disease surveillance, this prioritizes sites
where modelled transmission risk suggests a higher likelihood of identifying an infection, but where the



10 km catchment

Figure 1. A 10 km catchment for a pixel in a 5 × 5 km2 grid. The radius of the catchment is 10 km from the centroid of the pixel
(black cross). Other pixels are included into the catchment (blue) if the majority of their area lies inside the circular boundary.
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model is also uncertain. This objective aims to select sites where we will ‘learn’ the most about
disease presence, or where inclusion in future model fitting will most reduce model uncertainty.
For example, in a disease introduction setting, there may be areas where it is known that the disease is
present or absent with high confidence. Stakeholders may then prioritize surveillance in areas where
uncertainty is high, but modelling (or other approaches to risk assessment) suggests the disease could
be present.

The precision-weighted objective (equation (2.3)) assigns the highest value of F2( · ) to sites with high
prediction mean and low uncertainty (equivalent to the ‘signal-to-noise ratio’ [21,22] or the inverse of the
‘coefficient of variation’ [23]). This objective targets sites where the model is most confident that an
infection will be identified. For example, in a setting where resources for treatment are limited,
surveillance may be prioritized in areas where positive detections of the pathogen are likely.
2.1.3. Constraining the objective

As well as criterion layers directly related to the distribution of disease, criterion layers capturing other
surveillance aims may be included in the objective function as further factors, zj (equation (2.1)). There
are often practical limitations on surveillance; examples of useful factors include a layer to delineate areas
occupied by the population at risk of the disease [7,9], or a layer of site accessibility or human population
density, to down-weight areas in the broader sampling region where human surveillance is less feasible
[13]. There may also be environmental criteria for site selection, such as proximity to a watercourse,
primary forest or croplands. Grist et al. [13] consider ‘thresholds’ of model uncertainty, a factor
already included in their objective, to prioritize sites where uncertainty is above a certain level. Where
the aim is to separate the full set of sites in the study area into those that are feasible for surveillance
and those that are infeasible, a criterion layer may be considered as a constraint.

Each constraint can be introduced into the objective via the application of a constraint function (or
utility function [16]), C( · ), to a criterion layer, zj. The criterion layer is scaled according to the
decision-maker’s preference. The resulting constraint layers then scale the objective surface (equation
(2.1)) as a further m factors

FðxiÞ ¼ FaðxiÞ � C1ðz1i Þ � C2ðz2i Þ � � � � � Cmðzmi Þ, ð2:4Þ
where Fað�Þ corresponds to the uncertainty-weighted objective, F1( · ), or the precision-weighted objective,
F2( · ).

Malczewski [16] distinguishes two classes of decision constraint: ‘Boolean’ and ‘target’ (electronic
supplementary material, figure S1). Under a Boolean constraint, sites are feasible or infeasible for
selection based on their corresponding value in a criterion layer being less than (or greater than) a
threshold (i.e. a one-way exclusion). Under a targeted constraint, sites are feasible or infeasible based
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on their position within an acceptable range (i.e. a two-way exclusion with two threshold values). An

example constraint function for a Boolean constraint may be

CðziÞ ¼ 1, zi � k
0, zi , k

�
: ð2:5Þ

Similarly, for a targeted constraint, the value of a constraint function is determined by the presence of
zji within a target interval:

CðziÞ ¼ 1, zi [ ½klow, khigh�
0, zi � ½klow, khigh�

�
: ð2:6Þ

Alternatively, if the decision-maker does not wish to entirely exclude all sites via a threshold, to avoid
large differences in objective value from small differences in criterion value, a ‘softer’ constraint function
can be applied (electronic supplementary material, figure S1).

A relevant constraint to the selection of P. knowlesi malaria surveillance sites is that of site accessibility. An
accessibility surface is derived from the friction surface of global travel time published by Weiss et al. [24]
(electronic supplementary material, §S3). Another relevant constraint to the case study is that of proportional
forest cover. Both the wildlife reservoir species and mosquito vector species are historically forest-dwelling
[25]: stakeholders may seek to exclude sites which do not contain forest or forest-edge habitats for reasons of
environmental suitability. An aggregated forest surface is derived from the Intact Forest Landscapes dataset
published by Potapov et al. [26] (electronic supplementary material, §S3). In this application, both site
accessibility and forest cover are examples of Boolean constraints, as sites below some threshold of these
features are those that are unsuitable for surveillance (electronic supplementary material, figure S3).
2.2. Selection of sites
Having created a final, constrained, objective surface, we now consider the process of site selection. The
most straightforward method of site selection given an objective surface is to simply select the sites with
highest objective value, as demonstrated by Grist et al. [13]. Under both the uncertainty-weighted and
precision-weighted objectives described in equations (2.2) and (2.3) (and the objective suggested by
Grist et al. [13]), the objective value of successively selected sites is independent of the set of sites
previously selected. However, there are some practical constraints for which the objective value at a
site should depend on other sites selected. For example, we could constrain the distance between sites
to be greater than a specific threshold, to spread sites out in the study area. A site’s objective value
would then depend on whether another site is selected within the threshold distance. For example, if
the sites with the first- and second-highest objective values in the study area are within the threshold
distance of each other, the site with the second-highest objective value is excluded from selection. In
this case, the optimal solution cannot be found by selecting sites one at a time.

When the number of sites to be selected and the sampling frame are prohibitively large, approximate
methods of optimal site selection are required. A greedy site selection algorithm, which selects sites
one at a time, recalculating the objective after each selection, is outlined in algorithm 1 [27]. Another
approximate solution is to sample only a portion of the set of possible site combinations and compare
their aggregated objective values, as is demonstrated by Longbottom et al. [7].

In this work, there is no feedback of surveillance data to decision criteria (i.e. modelling outputs)
between the selection of sites—the use of new information from each successive site would make
optimization adaptive [28]. Instead, the recalculation of the objective, given the set of selected sites,
involves changing interactions between decision criteria and constraints. Algorithm 1 could be applied
in an adaptive setting: modelling steps would be repeated as data is recorded at sites and the values
of decision criteria would change for each new site to be selected.
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Figure 2. Framework for Plasmodium knowlesi malaria case study. Existing case data and gridded environmental data are inputs to
a model of relative P. knowlesi malaria risk [9]. The objective surface, a function of model predictions, is combined with a set of
constraints through stakeholder consultation to select sites for surveillance (purple question marks). During surveillance, P. knowlesi
malaria is either recorded at a site (red cross), or is not (blue circle). Surveillance data can be added to the case dataset to update
the geospatial model.
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2.3. Case study: human surveillance of Plasmodium knowlesi malaria in Indonesia
In this paper, we consider the application of a generalizable framework for site selection to human
surveillance of Plasmodium knowlesi malaria (figure 2). Zoonotic P. knowlesi is now the most common
cause of human malaria in Malaysia [29]. The parasite is increasingly reported elsewhere in the
Southeast Asia region, including in western Indonesia [12,30]. Unlike other human Plasmodium
species, P. knowlesi is transmitted to humans via mosquitoes from several macaque species that are
endemic to Southeast Asia: Macaca nemestrina, M. fascicularis and M. leonina [31]. Anopheline
mosquitoes of the Leucosphyrus group act as vectors [31]. The parasite is commonly misidentified by
microscopy as either P. malariae or P. falciparum [32]; a more resource-intensive molecular assay is
required to accurately identify P. knowlesi. Testing equipment is expensive and is not available in
many endemic areas [12]. Together with a large suspected proportion of unreported or asymptomatic
cases [11], this has resulted in a substantial degree of spatial bias in the existing P. knowlesi malaria
case dataset. The spatial extent of human infection, particularly outside of Malaysia, is not well
understood [9,25]. It is therefore critical to prioritize the spatial allocation of febrile illness sampling
effort, with samples generally sent to a central laboratory with appropriate testing capacity.

Deforestation has been identified to affect the distributions and behaviour of both macaque host and
mosquito vector species, by fragmenting or destroying macaque habitat and providing breeding sites for
vectors [25,33]. The replacement of primary forest with oil palm plantation, and other agricultural
expansion, creates an environment of increased risk: macaques, vectors and humans are brought into
close proximity [25,34]. Men of working age in forest or farm-based occupations have been identified
to be at increased risk of P. knowlesi malaria infection [34,35].

Previous P. knowlesi malaria human surveillance efforts in Indonesia have been organized with only
limited infection records [9,12]. As a result, study sites have been selected based on observations of other
variables related to transmission, including the presence of alternative macaque host species, data of
broader human malaria endemicity [12] and appraisals of logistical suitability.

There are several existing spatial distribution models of P. knowlesi malaria risk [9,36,37]. While other
models predict P. knowlesi malaria risk on a district or state level, a key distinction of the model
described by Shearer et al. [9] is a map with a resolution of approximately 5 × 5 km2 of relative
predicted risk throughout the Southeast Asia region [9] (electronic supplementary material, §S2). Given
the high degree of uncertainty in the known spatial distribution of P. knowlesi malaria, we use this map
to support the selection of sites for planned surveillance of P. knowlesi malaria in humans in
consultation with project stakeholders (see figure 2 for framework overview). Sites will be selected
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concurrently—surveillance data from the highest ranked selected sites will not be available to shape
decisions on later sites. However, the framework presented is flexible to changing stakeholder objectives
and we expect that risk models and objectives will be updated, subject to case data recorded at selected
study sites, and as disease surveillance continues into the future (as shown in figure 2).

A description of the model published by Shearer et al. [9] is included in electronic supplementary
material, §S2. Briefly, the model is a boosted regression tree trained on a dataset of geolocated
P. knowlesi malaria cases in Malaysia, Brunei and Singapore. Model covariates include surfaces of land
cover, human presence and macaque host species and mosquito vector species distribution [31]. The
model is fit to 500 bootstrapped versions of the initial training dataset to produce 500 prediction
surfaces at a resolution of approximately 5 × 5 km2. These prediction surfaces are aggregated for use
in site selection (i.e. to evaluate the mean and variance in predicted relative risk). All training and
covariate data referred to in this paper are identical to those discussed in Shearer et al. [9]. Minor
adjustments to the model code (https://github.com/fshearer/pk_parasite) were made in response to
software deprecation. Further detail is provided in electronic supplementary material, §S2.

2.3.1. Communication of method

To aid in the communication of the quantitative method for site selection and to increase its utility, an
application was created using R’s Shiny package [38] (https://lucyharrison.shinyapps.io/pk_
multicrit_shiny/). This application allows project stakeholders to interact with the objective surface
and constraints, to better understand the trade-offs of individual decisions, including the choice of
constraint surfaces and thresholds. The priority of this work is to supply stakeholders with
quantitative support in the planning stage of a study—the communication of the recommendations of
the site selection framework is therefore a key outcome. Panels from figures 3 and 4 can be generated
in the application. Code for the application is available at https://github.com/lu-harr/pk_
multicriteria_framework.
3. Results
3.1. Unconstrained site selection
We first explore the application of both uncertainty-weighted (equation (2.2)) and precision-weighted
(equation (2.3)) sampling objectives to the surveillance of P. knowlesi malaria in the regions of Sumatra

https://github.com/fshearer/pk_parasite
https://lucyharrison.shinyapps.io/pk_multicrit_shiny/
https://lucyharrison.shinyapps.io/pk_multicrit_shiny/
https://github.com/lu-harr/pk_multicriteria_framework
https://github.com/lu-harr/pk_multicriteria_framework


(a) (b)

(c) (d)

(e) ( f )

uncertainty-weighted

di
st

an
ce

 b
et

w
ee

n
si

te
s 

(5
0 

km
)

fo
re

st
ac

ce
ss

ib
ili

ty

precision-weighted

objective valueexcluded sites
site selected in the absence of constraint

low high

Figure 4. Uncertainty-weighted (a,c,e) and precision-weighted (b,d,f ) objective surfaces, with the following constraints applied:
(a,b) accessibility (electronic supplementary material, figure S3A); (c,d ) forest (electronic supplementary material, figure S3B);
(e,f ) distance between sites, applied using greedy site selection (algorithm 1), so that areas within 50 km of each successively
selected site are excluded. Excluded areas are shaded in blue. Sites selected given the constraint (orange), and sites selected in
the absence of constraint (blue; figure 3a,b) are included.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.11:230641
8

and Kalimantan in western Indonesia (figure 3a,b), given the predictions of the existing geospatial model
of P. knowlesimalaria risk [9]. The 10 pixels with the highest objective value are labelled for each objective
surface in figure 3a,b.

Under the uncertainty-weighted objective, the first 10 sites selected are all in northeastern Kalimantan
(figure 3a). The uncertainty surface is relatively high in this region, particularly in areas bordering
Malaysian Borneo (electronic supplementary material, figure S2B), where forest is largely intact
(electronic supplementary material, figure S3B). By contrast, many of the first 10 sites selected under
the precision-weighted objective are in western Kalimantan (figure 3b). The mean surface contains
generally higher values in this area and uncertainty is generally lower (electronic supplementary
material, figure S2).

Both the uncertainty- and precision-weighted objectives demonstrated in figure 3 rely on a balance
between model prediction mean and standard deviation. Electronic supplementary material, figure
S4A demonstrates the effects of mean and standard deviation on the uncertainty-weighted objective: a
site with high mean and low standard deviation may have equal objective value to a site with low
mean and high standard deviation. Therefore, equal priority will be assigned to a site where the
model is uncertain but the underlying relative risk may be high, and a site where the model is
confident that the underlying relative risk is high. In any case, these sites have lower objective value
than sites with both high mean and high uncertainty—in the case study, we select only a small
fraction of the full set of sites, so sites which optimize both decision criteria are selected. Electronic
supplementary material, figure S4B demonstrates a similar trade-off under the precision-weighted
objective: as the standard deviation decreases towards zero, its influence on objective value increases
by orders of magnitude, to the extent that sites with low mean and extremely low standard deviation
may be ranked above sites with high mean and only moderately low standard deviation. High mean
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predicted disease risk may implicitly be a more important criterion than low uncertainty, although this

preference is not explicitly included in the objective function in equation (2.3). This objective is less suited
to applications where uncertainty in predicted risk is relatively low. Ultimately, the application of the
precision-weighted objective to P. knowlesi malaria surveillance site selection is motivated by the high
degree of uncertainty in model predictions of P. knowlesi malaria relative risk. The relationships
between constituent factors of the objective should be reviewed to ensure that the situations it aims to
identify are appropriately captured.

3.1.1. Unconstrained site selection given site catchments

The selection of sites under the uncertainty- and precision-weighted objectives given 10 km radius
catchments (figure 1) is demonstrated in figure 3c,d. The objective value used to select sites is the
mean of the objective values of all sites in a given catchment: this increases the spatial autocorrelation,
or ‘blurring’, in the objective surface. Under the uncertainty-weighted objective (figure 3c), this ‘blur’
is reflected in the large number of island sites selected. Islands generally have high values in the
uncertainty surface, the catchments of island pixels are generally smaller (e.g. sites 2 and 3 in figure 3c
have catchments of only two pixels each) and the shape of the uncertainty-weighted objective
distribution is such that there is a low number of high-objective pixels (electronic supplementary
material, figure S4). Under the precision-weighted objective, the ‘blur’ is visible in that the eight sites
with the highest objective values are direct neighbours, none of which are selected when objective
value does not depend on decision criteria at adjacent sites (figure 3b).

3.2. Constrained site selection
Figure 4 shows the application of three distinct constraints to the objectives explored in figure 3. An
example of a Boolean constraint on site accessibility (equation (2.5)) is applied to the uncertainty- and
precision-weighted objectives in figure 4a,b. The 20% of sites with the lowest site accessibility are
excluded from selection (see electronic supplementary material, §S3 and figure S3A). The area most
excluded by this constraint is north-central Kalimantan—this region contains large areas of intact
forest. Sites excluded from selection by this constraint are likely to be more costly to access than
others in the study area, so may be less feasible for surveillance. The change to the set of sites
selected when the site accessibility constraint is imposed are reflected in figure 4a,b. All selected sites
that are excluded under the uncertainty-weighted objective are in north-central Kalimantan, the area
most penalized by the urban accessibility constraint.

A second Boolean constraint, on proportional forest cover at a site, is applied in figure 4c,d. Like the
accessibility constraint, the 20% of sites with lowest forest cover are excluded from selection. Southern
and central Sumatra are the areas most affected, as well as coastal areas in Kalimantan. Under the
uncertainty-weighted objective, four of the 10 best sites (figure 3a) are excluded when forest is
constrained; these are all in coastal east Kalimantan (figure 4c). The set of sites selected under the
precision-weighted objective (figure 3b) does not change when the forest constraint is imposed (figure 4d).

A final constraint, on minimum distance between selected sites, is also applied in figure 4e and f : a
50 km ‘exclusion zone’ is applied around each selected site (i.e. sites within this zone are removed from
the set of candidate sites as each new site is selected). This constraint is relevant to policy as surveillance
at sites which are proximal limits the coverage of a study. More generally, sampling at two proximal sites
may lead to interference in results. When the minimum distance constraint is applied, the objective value
of each site is dependent on the locations of other selected sites, in contrast to the site accessibility and
forest cover constraints described in §2.1.3. As the number of combinations of possible site selections is
prohibitive, we apply a greedy search algorithm (algorithm 1) to find a constrained set of sites for both
the uncertainty- and precision-weighted objectives in figure 4e,f. Two sites from the unconstrained sets
are excluded under both objectives. To demonstrate the application of constraints to site catchments,
figure 4 is replicated for 10 km radius catchments in electronic supplementary material, figure S5.
4. Discussion
In this paper, we outline a framework that quantitatively incorporates the predictions of a geospatial
statistical model of relative disease risk into public health decision support. We demonstrate the utility
of this framework for site selection for surveillance of the zoonotic malaria parasite, P. knowlesi, in
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western Indonesia. The framework, which is generalizable to other pathogens, models, objectives and

geospatial decision problems, is the primary novel contribution of this work. Its communicability to
project stakeholders and its ability to be subsequently developed, given feedback, is a key strength of
our approach.

The MCDA-inspired method described involves decision-making (i.e. the selection of objective factors
and constraints) before optimization [17]. This simplifies the optimization process, as only one objective
function is considered during site selection, although the set of selected sites is highly sensitive to the
preferences of the decision-maker. This is a sensible attribute of the framework, as we aim to provide a
quantitative method to support site selection under a specific set of surveillance goals. However, it is
highly likely that surveillance goals will change over the lifetime of a surveillance programme. It is for
this reason that we emphasize the flexible nature of the framework (figure 2) and the intention that
surveillance data be eventually fed back into modelling and consultation steps as a programme evolves.
The use of interactive applications and the presentation of alternative choices allow the decision-maker
to better understand the trade-offs involved in each individual decision.

A group of public health colleagues has provided feedback and further isolated the specific sampling
scenario and aims of planned P. knowlesi malaria surveillance. Our colleagues expressed a preference for
the precision-weighted objective surface—this objective prioritizes sites where a case is likely to be
detected. This objective is selected due to the high degree of uncertainty in the current spatial disease
distribution and the limited number of sites available for selection. While formal validation of the
framework is not currently planned, the data produced by surveillance activities will feed back into
the case dataset that informs the geospatial distribution model, which will shape future decision-
making for disease surveillance. Indeed, this iterative approach, in consultation with public health
decision-makers, is an important aspect of ongoing surveillance activities (as outlined in figure 2).
However, the time frame over which data are collated and able to be incorporated into the model,
such that updated surveillance designs can be evaluated, is important (within a transmission season,
between seasons, after multiple seasons etc.). While beyond the scope of this study, the approach
described here for a single design evaluation could simply be extended to consider multiple iterations
as new data are made available, as public health priorities shift, and in the presence of new constraints.

The method described in this work represents an initial step in the use of quantitative methods for
P. knowlesi malaria surveillance site selection in western Indonesia. Unlike existing site selection
workflows that incorporate the outputs of geospatial models [13,14], the framework presented here
involves a sampling objective that can be tailored to specific project aims. The motivation for this work is
to allow geospatial models of disease risk to be quantitatively included into public health decision-making.

The methodology we present here is generalizable to other decision problems. Rather than being
motivated by a specific objective, this framework includes the selection of an objective and constraints,
and the quantitative incorporation of geospatial information relevant to the selected objective into the
site selection process. In public health and epidemiological research, quantitative analysis is often
employed after data has been collected. Our method is intended to drive study planning, to reduce
sampling bias and to improve the quality of the data that serves as input to downstream analysis. The
Shiny app presented with this publication translates the framework into a format that allows decision-
makers to interact with the trade-offs involved in their decisions. The framework extends the utility of
geospatial disease models to directly include their predictions and associated uncertainty in
operational decision-making.
Author summary
Plasmodium knowlesi malaria is transmitted to humans from monkeys via mosquitoes across Southeast
Asia. We can predict where the risk of disease is high using environmental data related to monkey
and mosquito habitat. We prioritize areas to look for the disease, based on these predictions and
accounting for uncertainty.
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Data accessibility. Data and relevant code for this research work are stored in GitHub: https://github.com/lu-harr/pk_
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