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Study Highlights
•	 Approximately	1–3%	of	HCV	patients	experience	DAA	therapy	failure.	We	conducted	a	nationwide	study	using	AI	to	in-

vestigate	the	risk	factors	for	DAA	failure.	The	AI	models	outperformed	the	conventional	logistic	regression	models.	The	AI	
model	showed	that	subjects	with	features	such	as	high	HCV	RNA	levels,	active	hepatocellular	carcinoma,	or	decompen-
sated	liver	cirrhosis	were	prone	to	virological	failure.	Machine	learning	algorithms	facilitate	risk	stratification	in	DAA	failure	
and	provide	additional	information	on	factors	associated	with	DAA	failure.
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INTRODUCTION

Direct-acting	antivirals	(DAA)	have	changed	the	treatment	
landscape	for	patients	infected	with	hepatitis	C	virus	(HCV).	
However,	despite	the	DAA	efficacy	being	up	to	97%	across	all	
HCV	genotypes,	approximately	1–3%	of	HCV	patients	fail	to	
achieve	a	sustained	virological	response	(SVR).1,2	Factors	as-

sociated	with	DAA	failure	generally	include	decompensated	
liver	cirrhosis,	resistance-associated	substitutions	(RASs),	the	
presence	of	hepatocellular	carcinoma	(HCC),	prior	treatment	
failures,	and	poor	drug	adherence.3,4	As	comprehensive	HCV	
elimination	programs	are	advocated	worldwide,	an	increas-
ing	number	of	patients	with	HCV	infection	are	expected	to	
require	DAA	salvage	therapy.	Thus,	all	the	risk	factors	associ-
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ated	with	DAA	failure	must	be	considered	simultaneously	to	
reduce	the	retreatment	burden.
Artificial	intelligence	(AI)	emerged	as	a	powerful	tool	for	

disease	diagnosis	and	risk	assessment	in	healthcare.	Factors	
contributing	to	treatment	failure	vary	among	individuals,	
making	such	heterogeneous	data	and	complex	interactions	
difficult	to	evaluate	through	regression	methods.	Moreover,	
conventional	statistical	methods	can	only	handle	linear	data.	
Alternatively,	machine-learning	(ML)	approaches	can	process	
both	linear	and	nonlinear	information	and	recognize	the	hid-
den	relationships	between	variables	and	outcomes	in	big	
data.5	ML	algorithms	can	be	classified	into	supervised	and	
unsupervised	algorithms.	Supervised	ML	is	suitable	for	han-
dling	annotated	data,	whereas	unsupervised	ML	can	process	
datasets	that	lack	class	labels.	Common	supervised	ML	algo-
rithms	include	decision	trees	(DT),	random	forest	(RF),	eX-
treme	Gradient	Boosting	(XGBoost),	and	artificial	neural	net-
work	 (ANN).6,7	 Thus,	 AI	 provides	 a	 new	 approach	 to	
understanding	diseases	by	 integrating	multidimensional	
data	with	“automatic	learning”.8	Advances	in	AI	have	made	it	
possible	to	serve	as	a	decision-support	tool	and	improve	di-
agnostic	quality	in	healthcare.
We	conducted	a	real-world,	multicenter	study	using	the	

Taiwan	HCV	Registry	(TACR)	database,	aiming	to	explore	the	
risk	factors	associated	with	DAA	failure	using	artificial	intelli-
gence.	We	applied	artificial	intelligence	to	quickly	distinguish	
HCV	patients	prone	to	virological	failure.

MATERIALS AND METHODS

Subjects

The	TACR	Program	is	a	nationwide	HCV-registered	platform	
implemented	by	the	Taiwan	Association	for	the	Study	of	the	
Liver	since	2020.9	The	TACR	conducted	a	real-world,	multi-
center,	prospective	cohort	study	of	DAA	therapy.	A	total	of	
34301	chronic	hepatitis	C	patients	>=18	years	old	who	re-
ceived	DAAs	with	available	SVR12	data	were	enrolled	in	this	
study.	Patients	with	HCV	who	died	during	treatment	or	were	
lost	to	follow-up	within	12	weeks	after	the	completion	of	
therapy	were	excluded	from	our	study.	The	baseline	demo-
graphics	and	virological	characteristics	before	and	after	anti-
viral	therapy	were	recorded	in	the	TACR	database.	The	prima-
ry	outcome	was	the	achievement	of	sustained	virological	

response	(SVR12),	defined	as	undetectable	HCV	RNA	in	the	
serum	after	12	weeks	of	end-of-treatment.	The	choice	of	an-
tiviral	regimens	followed	the	international	HCV	treatment	
guidelines10,11	and	the	reimbursement	criteria	of	the	Taiwan	
National	Health	Insurance	Administration.2	This	study	was	
approved	by	the	Institutional	Review	Board	of	Kaohsiung	
Medical	University	Hospital	and	adhered	to	the	Declaration	
of	Helsinki.	Written	informed	consent	was	obtained	from	all	
the	participants.

Machine learning models

The	subjects	were	randomly	assigned	to	a	70%	training	da-
taset	(n=23,955)	and	a	30%	validation	dataset	(n=10,346).	Fif-
ty-five	host,	virological,	and	on-treatment	features	were	in-
put	 into	 the	ML	models	 (Supplementary	Table	1).	 The	
algorithms	included	DT,	RF,	XGBoost,	and	ANN.	ML	analysis	
was	performed	using	the	rpart,	randomForest,	xgboost,	and	
neural	network	packages	of	R	software	(https://www.r-proj-
ect.org/).	As	some	algorithms	cannot	handle	missing	data,	
missing	data	 (14.3%)	were	 imputed	using	the	k-nearest	
neighbor	method	before	generating	predictions.12	The	best	
model	was	used	for	risk	stratification	of	patients	with	DAA	
treatment	failure.	Patients	were	further	divided	into	sub-
groups	using	deciles	of	predicted	risk	probability	to	allow	for	
more	granular	management	of	high-risk	patients.	
The	performances	of	the	ML	models	were	assessed	using	

the	area	under	the	receiver	operating	characteristic	curve	
(AUROC),	accuracy	of	the	confusion	matrix,	precision-recall	
curve,	and	F1-score.13	A	precision-recall	curve	closer	to	the	
upper-right	corner	 indicates	better	performance.	The	F1-
score	is	the	weighted	average	of	precision	and	recall	and	is	
favorable	under	class	imbalance	in	the	dataset.	The	F1-score	
ranged	from	0	to	1;	the	predictive	model	with	an	F1-score	
closer	to	1	is	considered	better.	The	Delong	test	was	used	to	
compare	the	differences	in	the	AUC	of	the	ROC	curves.14	The	
codes	for	the	ML	models	are	presented	in	the	Supplementary	
Materials.

Statistical analyses

Student’s	t-test	was	used	to	compare	continuous	variables.	
Categorical	variables	were	evaluated	using	the	chi-square	(X2)	
or	Fisher’s	exact	test.	Multivariate	logistic	regression	analysis	
was	performed	to	determine	independent	risk	factors	associ-
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ated	with	treatment	failure.	Data	were	analyzed	using	the	
Statistical	Package	for	the	Social	Sciences	software	(SPSS,	
version	26;	IBM	Co.,	Armonk,	NY,	USA).	Statistical	significance	
was	defined	as	a	two-tailed	P-value	<0.05.

RESULTS

Baseline demographics

The	baseline	demographics	of	the	study	participants	are	
presented	in	Table	1,	with	no	significant	differences	in	age,	
sex,	body	mass	index	(BMI),	biochemical	data,	cirrhosis,	HCV	
genotypes,	viral	 load,	DAA	regimens,	HBV	coinfection,	or	
presence	of	HCC	between	the	training	and	validation	datas-
ets.

Logistic regression analysis of the factors 
associated with DAA treatment failure

The	overall	DAA	failure	rate	was	1.6%.	In	the	univariate	
analysis,	female,	fibrosis-4	index	(FIB-4),	cirrhosis,	decompen-
sation,	presence	of	HCC,	HCV	genotypes,	higher	HCV	viral	
load,	protease	inhibitor-based	DAA	regimens,	treatment	ex-
perience,	less	DAA/ribavirin	adherence,	and	severe	adverse	
effects	significantly	increased	the	risk	of	DAA	treatment	fail-
ure.	In	biochemical	examinations,	lower	albumin,	platelet,	
and	creatinine	levels	significantly	increased	the	probability	of	
non-SVR.	Elevated	aspartate	aminotransferase	(AST),	biliru-
bin,	prothrombin	time,	and	hemoglobin	A1c	(HbA1c)	levels	
significantly	increase	the	likelihood	of	virological	failure.	In	
the	multivariate	analysis,	the	presence	of	cirrhosis	and	HCC,	
higher	HbA1c,	and	less	DAA	adherence	were	independent	
risk	factors	for	DAA	treatment	failure	after	adjustment	for	the	
variables	with	P-value	<0.05	in	the	univariate	analysis	(Table	
2).
We	developed	a	conventional	prediction	model	using	lo-

gistic	regression	as	follows:	

Logistic	regression	(LR)	model=3×Liver	cirrhosis	(yes=1,	
no=0)+4×HCC	(yes=1,	no=0)+1×HbA1c+33×DAA	adherence	
(<20%=5,	20–40%=4,	40–60%=3,	60–80%=2,	>80%=1)	

The	components	of	the	LR	model	were	the	four	indepen-
dent	risk	factors	in	the	multivariate	logistic	regression	analy-

sis.	The	coefficient	for	each	variable	was	derived	from	the	
odds	ratio	of	the	multivariate	logistic	regression	analysis.	The	
cutoff	value	for	discriminating	DAA	failure	was	set	at	40	using	
Youden’s	index	in	the	ROC	curve	analysis.

Performance of the predictive models

In	the	training	dataset,	the	AUROC	was	1.000,	1.000,	0.845,	
0.736,	and	0.588	for	the	XGBoost,	random	forest,	decision	
tree,	artificial	neural	network,	and	logistic	regression	models,	
respectively.	The	accuracy,	precision,	and	recall	rates	of	the	
prediction	were	100%	for	both	XGBoost	and	random	forest.	
The	F1	score	achieved	1.00	in	both	the	XGBoost	and	random	
forest	algorithms	(Fig.	1A,	B,	and	Table	3).
In	the	validation	dataset,	 the	AUROC	was	0.803,	0.756,	

0.644,	0.658,	and	0.616	for	the	XGBoost,	random	forest,	deci-
sion	tree,	artificial	neural	network,	and	logistic	regression	
models,	respectively	(Fig.	1C,	D,	and	Table	3).	The	Delong	test	
revealed	the	performance	of	XGBoost	was	superior	to	the	
random	forest	(P=0.021),	decision	tree	(P=4.4×10-8),	artificial	
neural	network	(P=5.4×10-9),	and	logistic	regression	model	
(P=2.5×10-10)	(Table	4).	The	accuracy,	precision,	recall,	and	F1-
score	of	XGBoost	are	98.3%,	98.4%,	99.9%,	and	0.992,	respec-
tively.

Risk stratification based on the XGBoost 
algorithm

The	overall	HCV	patients	receiving	DAA	treatment	were	
further	stratified	according	to	the	XGBoost	prediction	results.	
XGBoost	provides	a	risk	coefficient	between	0	and	1	for	each	
case.	The	higher	the	coefficient,	the	higher	the	chance	of	
achieving	SVR.	DAA	efficacy	was	divided	into	ten	subgroups	
based	on	risk	coefficient	deciles.	Figure	2	shows	the	predict-
ed	non-SVR	accuracy	for	each	subgroup	using	the	XGBoost	
algorithm.	The	participants	were	stratified	into	high-risk	(de-
cile	1–5),	intermediate-risk	(decile	6–9),	and	low-risk	(decile	
10)	populations	based	on	the	risk	coefficients.	The	DAA	fail-
ure	rate	was	75–100%	in	the	high-risk,	15.8–40.0%	in	the	in-
termediate-risk,	and	0.4%	in	the	low-risk	populations.	The	
DAA	failure	rate	among	the	top	five	deciles	was	substantially	
higher	than	that	at	baseline	(1.6%).	The	accumulative	non-
SVR	rate	was	69.7%	in	the	high-risk	population.	Among	the	
538	subjects	for	whom	DAA	treatment	failed,	375	(69.7%)	
were	successfully	detected	using	the	XGBoost	model	among	
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Table 1. Baseline	demographics

Variable Total Training Validation P-value 

Number	(%) 34,301	(100) 23,955	(70) 10,346	(30)

Age	 61.9±12.7 61.9±12.6 61.9±12.8 0.710

Male	 17,972	(52.4) 12,562	(52.4) 5,410	(52.3) 0.799

BMI	(kg/m2) 24.7±4.04 24.7±4.06 24.7±4.01 0.285

FIB-4 3.31±3.37 3.30±3.37 3.33±3.36 0.438

Cirrhosis 7,051	(20.6) 4,903	(20.5) 2,148	(20.8) 0.542

Decompensated	liver	cirrhosis 932	(2.7) 637	(2.7) 295	(2.9) 0.316

HCC 2,822	(8.2) 1,967	(8.2) 855	(8.3) 0.874

Liver	transplant 84	(0.2) 62	(0.3) 22	(0.2) 0.427

Genotype

		1 16,638	(48.5) 11,577	(48.3) 5,061	(48.9) 0.924

		2 13,298	(38.8) 9,332	(39.0) 3,966	(38.3)

		3 543	(1.6) 381	(1.6) 162	(1.6)

		4 17	(0.0) 13	(0.1) 4	(0.0)

		5 6	(0.0) 5	(0.0) 1	(0.0)

		6 2,478	(7.2) 1,730	(7.2) 748	(7.2)

		Mixed 1,073	(3.1) 748	(3.1) 325	(3.1)

		Unclassified 247	(0.7) 168	(0.7) 79	(0.8)

HCV	RNA	(log	IU/mL) 5.90±1.02 5.90±1.02 5.90±1.02 0.623

HBsAg	(+) 2,381	(7.3) 1,654	(7.3) 727	(7.4) 0.668

AST	(IU/L) 60.7±54.1 60.4±53.9 61.3±54.5 0.165

ALT	(IU/L) 73.0±77.0 72.8±77.7 73.3±75.4 0.635

Albumin	(g/dL) 4.18±0.43 4.18±0.43 4.17±0.43 0.755

Total	bilirubin	(g/dL) 0.83±0.51 0.82±0.51 0.84±0.51 0.078

Platelet	(x103/μL) 181.4±72.1 181.8±72.3 180.5±71.5 0.122

Prothrombin	time	(INR) 1.05±0.31 1.05±0.30 1.05±0.34 0.174

HbA1c	(%) 6.06±1.24 6.1±1.3 6.0±1.2 0.308

DAA	regimens

		Daclatasvir/Asunaprevir 981	(2.9) 682	(2.8) 299	(2.9) 0.986

		Viekirax/Exviera 3,394	(9.9) 2,377	(9.9) 1,017	(9.8)

		Elbasvir/grazoprevir 3,933	(11.5) 2,720	(11.4) 1,213	(11.7)

		Ledipasvir/sofosbuvir 7,592	(22.1) 5,301	(22.1) 2,291	(22.1)

		Sofosbuvir 2,549	(7.4) 1,770	(7.4) 779	(7.5)

		Sofosbuvir/daclatasvir 726	(2.1) 512	(2.1) 214	(2.1)

		Glecaprevir/pibrentasvir 7,568	(22.1) 5,300	(22.1) 2,268	(21.9)

		Sofosbuvir/velpatasvir 7,415	(21.6) 5,196	(21.7) 2,219	(21.5)

		Sofosbuvir/velpatasvir/voxilaprevir 90	(0.3) 60	(0.3) 30	(0.3)

		Others 42	(0.1) 28	(0.1) 14	(0.1)

Ribavirin	(+) 4,346	(12.7) 3,019	(12.6) 1,327	(12.8) 0.572

Treatment	naive 29,540	(86.1) 20,616	(86.1) 8,924	(86.3) 0.663

Values	are	presented	as	number	(%).
BMI,	body	mass	 index;	FIB-4,	 fibrosis	 index-4;	HCC,	hepatocellular	carcinoma;	HBsAg,	hepatitis	B	surface	antigen;	AST,	aspartate	
aminotransferase;	ALT,	alanine	aminotransferase;	HbA1c,	hemoglobin	A1c;	DAA,	direct-acting	antivirals.
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Table 2. Multivariate	logistic	regression	analysis	of	the	factors	associated	with	DAA	treatment	failure

Variable
Univariate Multivariate

SVR Non-SVR P-value adj. OR (95% CI) P-value 

Number	(%) 33,763	(98.4) 538	(1.6)

Age 61.9±12.7 61.6±12.9 0.624

Male	 17,722	(52.5) 250	(46.5) 0.006 0.53	(0.26–1.11) 0.091

BMI	(kg/m2) 24.7±4.0 24.9±4.2 0.381

FIB-4 3.30±3.36 3.94±3.85 1.7×10-4 0.95	(0.85–1.06) 0.331

Cirrhosis 6,870	(20.4) 181	(33.6) 3.8×10-14 2.60	(1.13–5.97) 0.025

Decompensated	LC 907	(2.7) 25	(4.6) 0.006 0.92	(0.31–2.69) 0.877

HCC 2,715	(8.0) 107	(19.9) 3.4×10-23 4.43	(2.17–9.02) 4.2×10-4

Liver	transplant 82	(0.2) 2	(0.4) 0.380

Genotype

		1 16,429	(48.7) 209	(38.8) 1.2×10-15 0.99	(0.74–1.33) 0.949

		2 13,057	(38.7) 241	(44.8)

	3 516	(1.5) 27	(5.0)

		4 14	(0.0) 3	(0.6)

		5 6	(0.0) 0	(0.0)

		6 2,440	(7.2) 38	(7.1)

		Mixed 1,056	(3.1) 17	(3.2)

		Unclassified 244	(0.7) 3	(0.6)

HCV	RNA	(log	IU/mL) 5.90±1.02 6.16±0.87 2.2×10-11 1.48	(0.99–2.20) 0.056

HBsAg	(+) 2345	(7.3) 36	(7.0) 0.785

Albumin	(g/dL) 4.18±0.43 4.07±0.51 4.9×10-7 1.23	(0.57–2.66) 0.592

AST	(IU/L) 60.6±54.1 67.4±54.2 0.004 1.01	(1.00–1.01) 0.068

ALT	(IU/L) 72.9±77.1 76.0±73.6 0.351

Total	bilirubin	(mg/dL) 0.83±0.51 0.90±0.55 0.003 0.90	(0.56–1.43) 0.645

Platelet	(x103/μL) 181.6±72.0 169.4±74.9 9.9×10-5 1.00	(0.99–1.01) 0.889

Prothrombin	time	(INR) 1.05±0.31 1.08±0.44 0.036 0.86	(0.18–4.14) 0.846

Cr	(mg/dL) 1.17±1.54 1.05±1.30 0.028 0.21	(0.04–1.05) 0.058

HbA1c	(%) 6.1±1.2 6.3±1.5 0.012 1.28	(1.05–1.56) 0.014

DAA	regimens

		Daclatasvir/Asunaprevir 936	(2.8) 45	(8.4) 1.4×10-34 0.99	(0.76–1.29) 0.933

		Viekirax/Exviera 3,353	(9.9) 41	(7.6)

		Elbasvir/grazoprevir 3,888	(11.5) 45	(8.4)

		Ledipasvir/sofosbuvir 7,470	(22.1) 122	(22.7)

		Sofosbuvir 2,448	(7.3) 101	(18.8)

		Sofosbuvir/daclatasvir 714	(2.1) 12	(2.2)

		Glecaprevir/pibrentasvir 7,467	(22.1) 101	(18.8)

		Sofosbuvir/velpatasvir 7,344	(21.8) 71	(13.2)

		Sofosbuvir/velpatasvir/	
voxilaprevir

90	(0.3) 0	(0)

		Others 42	(0.1) 0	(0)
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the	top	five	deciles	(Fig.	2).	When	the	cutoff	value	of	the	risk	
coefficient	was	set	at	0.5,	the	accuracy,	sensitivity,	specificity,	
positive	predictive	value,	and	negative	predictive	value	were	
99.5%,	69.7%,	99.9%,	97.4%,	and	99.5%,	respectively	(Supple-
mentary	Table	2).

Importance of predictors

The	relative	importance	of	DAA	failure	predictors	was	eval-
uated	using	the	XGBoost	algorithm	in	all	cases.	The	x-axis	
represents	the	ratio	of	the	number	of	times	a	variable	is	ap-
plied	to	the	total	number	of	trees.	The	top	12	predictors	were	
body	mass	index,	viral	load,	α-fetoprotein,	bilirubin,	platelets,	
FIB-4	index,	creatinine,	ALT,	albumin,	age,	prothrombin	time,	
and	AST	level	(Supplementary	Fig.	1).

SHAP summary plot

Shapley	Additive	exPlanations	(SHAP)	was	used	to	sepa-
rately	measure	the	contributions	to	the	outcome	from	each	
feature.15	Figure	3	shows	the	summary	of	the	XGBoost	model	
explainability	with	SHAP	in	all	cases.	SHAP>0	indicated	a	

higher	probability	of	SVR,	while	SHAP<0	indicated	a	higher	
chance	of	non-SVR.	A	dot	represents	a	sample,	and	the	colors	
represent	feature	values	ranging	from	low	(yellow)	to	high	
(purple).	From	the	color	distribution	of	the	dots,	we	can	de-
duce	the	effect	of	this	feature	on	the	DAA	efficacy.	For	exam-
ple,	 the	purple	dots	 for	HCV	RNA	are	 concentrated	at	
SHAP<0,	 indicating	that	a	higher	viral	 load	increases	the	
probability	of	treatment	failure,	whereas	the	yellow	dots	for	
albumin	are	concentrated	at	SHAP<0,	indicating	that	subjects	
with	low	albumin	levels	are	prone	to	treatment	failure.	 In	
brief,	elevated	viral	load,	α-fetoprotein,	FIB-4	index,	bilirubin,	
and	AST	levels	increase	the	risk	of	DAA	failure.	Subjects	with	
a	lower	body	mass	index,	platelets,	albumin,	and	younger	
age	had	a	lower	probability	of	SVR.
The	detailed	relationships	between	the	features	and	the	

SVR	are	shown	in	Figure	4,	revealing	nonlinear	relationships	
between	the	predictors	and	DAA	efficacy.	For	example,	HCV	
RNA	levels	<106	IU/mL	increased	the	likelihood	of	SVR,	and	
HCV	RNA	>2×106	IU/mL	increased	the	risk	of	virological	fail-
ure.	Approximately,	subjects	aged	<60	years,	with	serum	bili-
rubin	level	>2	g/dL,	albumin	<3.5	g/dL,	and	creatinine	level	
>15	mg/dL	were	prone	to	treatment	failure.	When	AST	ranges	

Variable
Univariate Multivariate

SVR Non-SVR P-value adj. OR (95% CI) P-value 

Treatment	naive 29,113	(86.2) 427	(79.4) 4.6×10-6 0.85	(0.58–2.40) 0.654

DAA	adherence

		>80% 33,656	(99.7) 492	(91.8) 2.0×10-259 33.48	(2.46–456.7) 0.008

		60-80% 44	(0.1) 10	(1.9)

		40-60% 21	(0.1) 7	(1.3)

		20-40% 19	(0.1) 11	(2.1)

		<20% 5	(0.0) 16	(3.0)

Ribavirin	adherence

		>80% 3,910	(93.2) 117	(87.3) 0.004 0.75	(0.43–1.31) 0.313

		60-80% 125	(3.0) 7	(5.2)

		40-60% 77	(1.8) 6	(4.5)

		20-40% 49	(1.2) 0	(0)

		<20% 35	(0.8) 4	(3.0)

Severe	adverse	effects 365	(1.3) 13	(2.9) 0.003 1.10	(0.35–3.48) 0.876

Values	are	presented	as	number	(%).
DAA,	direct-acting	antivirals;	BMI,	body	mass	 index;	LC,	 liver	cirrhosis;	FIB-4,	 fibrosis	 index-4;	HCC,	hepatocellular	carcinoma;	HBsAg,	
hepatitis	B	surface	antigen;	AST,	aspartate	aminotransferase;	ALT,	alanine	aminotransferase;	Cr,	creatinine;	HbA1c,	hemoglobin	A1c;	adj.	
OR,	adjusted	odds	ratio;	CI,	confidence	interval.

Table 2. Continued
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between	200–300	IU/L,	treatment	failure	is	more	likely;	 in	
contrast,	AST	<100	or	AST	>400	IU/L	implies	a	higher	chance	
of	achieving	SVR.

DISCUSSION

The	nationwide	TACR	study	investigated	the	risk	factors	for	
DAA	treatment	failure	in	Taiwanese	patients.	Multivariate	re-
gression	analysis	revealed	that	liver	cirrhosis,	HCC,	poor	DAA	
adherence,	and	high	HbA1c	levels	were	significantly	associat-
ed	with	virologic	failure.	We	developed	an	ML-based	predic-
tive	model	to	identify	potential	treatment	failure	popula-
tions.	The	performance	of	the	XGBoost	model	was	superior	
to	the	other	algorithms	and	the	conventional	logistic	regres-

sion	model.	The	AUROC	of	the	XGBoost	algorithm	is	1.000	
and	0.803	for	the	training	and	validation	datasets,	respec-
tively.	The	AI	predictive	model	successfully	detected	69.7%	of	
the	subjects	who	failed	to	achieve	SVR	among	the	top	five	
decile	subgroups,	thus	implying	that	an	AI-based	model	can	
effectively	strengthen	the	decision-making	process	for	anti-
viral	therapy.
The	AI	model	showed	that	subjects	with	features	of	liver	

cirrhosis	prone	to	decompensation	(i.e.,	higher	FIB-4	index,	
bilirubin,	and	AST	levels;	lower	albumin	and	platelets)	were	
less	likely	to	achieve	SVR.	Elevated	AFP	levels	and	decreased	
BMI	(i.e.,	weight	loss)	are	hallmarks	of	active	HCC	and	predis-
pose	patients	to	treatment	failure.	In	addition,	HCV	patients	
with	a	high	baseline	viral	load	had	more	difficulty	in	clearing	
the	virus	than	those	with	a	low	viral	load.	These	AI	findings	

Figure 1.	Performance	of	the	predictive	models.	Figure	1	shows	the	ROC	curves	and	precision-recall	curves	of	the	eXtreme	Gradient	Boosting	
(XGBoost),	random	forest	(RF),	decision	tree	(DT),	artificial	neural	network	(ANN)	algorithms,	and	logistic	regression	(LR)	models	in	the	training	
dataset	(A,	B)	and	validation	dataset	(C,	D).	A	precision-recall	curve	closer	to	the	upper-right	corner	indicates	better	performance.
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are	consistent	with	those	of	the	multivariate	regression	anal-
ysis.	DAA	adherence	and	HbA1c	were	not	incorporated	into	
the	top	12	predictors	in	the	AI	model,	possibly	owing	to	col-
linearity	between	the	above	factors	and	other	variables.	Co-
morbid	diabetes	in	HCV-infected	patients	is	well-known	to	
increase	the	risk	of	HCC.16,17	A	substantial	proportion	of	de-
compensated	patients	who	do	not	achieve	SVR	may	experi-
ence	adverse	events	or	death-related	early	discontinuation.18	
Body	mass	index	had	J-	or	U-shaped	associations	with	overall	
and	all-cancer	mortality	 rates.	Compared	with	healthy-
weight	individuals,	life	expectancy	is	shorter	in	underweight	
subjects.19,20	Liver	cirrhosis	and	HCC	were	not	classified	as	sig-
nificant	risk	factors	using	the	XGBoost	algorithm.	Liver	cirrho-

sis	vs.	FIB-4	index	or	HCC	vs.	AFP	levels	showed	a	certain	de-
gree	of	collinearity.	 In	contrast,	the	viral	 load	was	not	an	
independent	risk	factor	using	multivariate	logistic	analysis	
but	became	a	significant	predictor	using	the	XGBoost	ap-
proach,	possibly	resulting	from	the	appropriate	cutoff	value	
of	HCV	RNA	not	being	embedded	in	the	regression	model.	
Previous	studies	have	shown	that	the	SVR12	rate	significantly	
decreased	in	the	high	baseline	viral	load	group	compared	to	
that	in	the	low	viral	load	group.	However,	the	optimal	cutoff	
values	for	high	vs.	 low	viral	 loads	vary	across	studies.21,22	
While	pan-genotypic	DAAs	can	be	safely	administered	in	tra-
ditionally	difficult-to-treat	HCV	populations,	managing	pa-
tients	with	active	HCC,	decompensated	liver	cirrhosis,	RASs,	

Table 3. Performance	of	the	predictive	models	for	the	response	of	direct-acting	antivirals

Model AUC (95% CI) P-value Accuracy Precision Recall F1-score

Training	dataset

		XGBoost 1.000	(1.000–1.000) 2.2×10-238 100% 100% 100% 1.000

		Random	Forest 1.000	(1.000–1.000) 2.2×10-238 100% 100% 100% 1.000

		Decision	tree 0.845	(0.825–0.865) 1.1×10-114 98.6% 98.6% 100% 0.993

		Neural	network 0.736	(0.711–0.762) 8.3×10-55 98.5% 98.5% 100% 0.992

		Logistic	regression 0.588	(0.558–0.619) 1.3×10-8 81.6% 98.7% 82.3% 0.898

Validation	dataset

		XGBoost 0.803	(0.769–0.837) 4.9×10-42 98.3% 98.4% 99.9% 0.992

		Random	Forest 0.756	(0.722–0.790) 1.6×10-30 98.4% 98.4% 100% 0.992

		Decision	tree 0.644	(0.594–0.695) 9.8×10-11 98.2% 98.4% 99.8% 0.991

		Neural	network 0.658	(0.616–0.700) 1.6×10-12 98.4% 98.4% 100% 0.992

		Logistic	regression 0.616	(0.571–0.662) 6.2×10-7 82.1% 98.8% 82.8% 0.901

CI,	confidence	interval;	XGBoost,	eXtreme	Gradient	Boosting.

Table 4. Delong	test

P-value  (z-score) Random Forest Decision tree Neural network Logistic regression

Training

XGBoost 1.000	(0.0) <0.0001	(15.5) <0.0001	(19.9) <0.0001	(26.5)

Random	Forest <0.0001	(15.5) <0.0001	(19.9) <0.0001	(26.5)

Decision	tree <0.0001	(8.0) <0.0001	(15.0)

Neural	network <0.0001	(8.7)

Validation

XGBoost 0.021	(2.3) 4.4×10-8	(5.5) 5.4×10-9	(5.8) 2.5×10-10	(6.3)

Random	Forest 3.9×10-5	(4.1) 6.6×10-7	(5.0) 2.5×10-8	(5.6)

Decision	tree 0.643	(–0.5) 0.354	(0.9)

Neural	network 0.102	(1.6)

XGBoost,	eXtreme	Gradient	Boosting.



74

Clinical and Molecular Hepatology
Volume_30 Number_1 January 2024

http://www.e-cmh.orghttps://doi.org/10.3350/cmh.2023.0287

or	prior	DAA	failure	requires	special	attention.3	There	are	
substantial	amounts	of	nonlinear	data	in	clinical	practice	that	
are	difficult	to	evaluate	using	conventional	statistical	meth-
ods.	The	SHAP	dependence	plot	showed	the	relationship	be-
tween	SVR	and	the	predictors	(Fig.	4).	Clinicians	can	realize	
the	optimal	range	of	significant	variables	that	contribute	to	
SVR.	The	AI	predictive	model	can	assist	 in	discriminating	
high-risk	patients	and	alert	clinicians	to	identify	risk	factors	
before	initiating	DAA	therapy.
The	advantages	of	ML	include	flexibility	and	scalability,	

making	it	preferable	for	processing	nonlinear	big	data.5	The	
HCV-TARGET	study	in	the	United	States	and	Europe	(n=6,525)	
applied	multiple	algorithms	(elastic	net,	neural	network,	ran-
dom	forest,	and	gradient	boosting)	to	predict	DAA	treatment	
failure	(C-index=0.64–0.69),	superior	to	the	multivariate	lo-
gistic	regression	model	(C-index=0.51).23	The	HCV-TARGET	
study	revealed	that	the	top	ten	predictors	were	albumin,	liver	
enzymes,	bilirubin,	sex,	HCV	RNA,	sodium,	HCC,	platelet	
count,	and	tobacco	use.	The	TACR	and	HCV-TARGET	studies	

highlighted	the	vital	roles	of	HCC	and	cirrhosis-related	risk	
factors	in	DAA	treatment	failure.	AI	approaches	confirmed	
the	viewpoints	of	traditional	statistics	and	further	improved	
predictive	performance	compared	with	conventional	statisti-
cal	methods.
A	meta-analysis	revealed	that	patients	with	active	HCC	had	

a	significantly	lower	SVR	rate	(73.1%)	than	those	with	inactive	
HCC	(92.6%)	or	those	without	HCC	(93.3%).24	The	REAL-C	
study	enrolled	propensity	score-matched	HCV	patients	and	
confirmed	that	SVR	rates	were	reduced	in	patients	with	ac-
tive	HCC	but	not	those	with	inactive	HCC	(85.5%	vs.	93.7%;	
P=0.03).25	Patients	with	active	HCC	may	experience	more	ad-
verse	effects	and	early	DAA	discontinuation,26	which	partially	
explains	the	suboptimal	DAA	response	in	this	population.	
The	mechanisms	underlying	suboptimal	antiviral	efficacy	in	
patients	with	active	HCC	remain	unclear,	possibly	attributed	
to	the	ineffective	blood	delivery	of	DAA	to	target	sites27	and	
impairment	of	host	immunity	in	HCC	patients.28	HCC	Patients	
with	curative	potential	should	be	treated	aggressively	before	

Figure 2.	DAA	treatment	failure	rate	by	decile	risk	subgroups	assessed	using	the	XGBoost	model	among	overall	cases.	The	overall	HCV	pa-
tients	were	further	divided	into	ten	subgroups	using	the	deciles	of	risk	coefficients	obtained	from	the	XGBoost	model.	Patients	with	risk	coeffi-
cients	ranging	from	0	to	0.1	belong	to	decile	1,	from	0.1	to	0.2	were	decile	2,	…,	and	so	on.	The	bars	represent	the	predictive	non-SVR	accuracy	
in	each	subgroup.	The	red	line	represents	the	accumulated	non-SVR	rate.	DAA,	direct-acting	antivirals;	XGBoost,	eXtreme	Gradient	Boosting;	
HCV,	hepatitis	C	virus;	SVR,	sustained	virological	response.
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DAA	administration	to	ensure	a	greater	chance	of	viral	clear-
ance.	However,	the	optimal	timing	of	DAA	initiation	in	pa-
tients	with	incurable	HCC	remains	controversial.	Viral	eradica-
tion	significantly	reduces	mortality	 in	patients	with	HCC	
receiving	either	curative	or	palliative	HCC	therapy,29	thus	sug-
gesting	that	antiviral	therapy	should	not	hesitate	on	those	
subjects	not	eligible	for	curative	HCC	treatment.30

Previous	studies	have	reported	that	the	SVR	rate	is	lower	in	
HCV	patients	with	decompensated	cirrhosis	than	in	patients	
with	compensated	cirrhosis.9,31	The	probability	of	achieving	
SVR	varies	based	on	the	reserved	liver	function.32	Patients	
with	higher	Model	for	End-Stage	Liver	Disease	(MELD)	scores	
(>20,	Child-Turcotte-Pugh	class	C)	had	lower	SVR	rates,	more	
adverse	effects,	and	a	lower	likelihood	of	liver	function	im-

provement.33-35	For	patients	with	a	MELD	score	≥20,	post-
transplant	HCV	treatment	is	recommended,	unless	the	ex-
pected	waitlist	time	is	more	than	six	months.	Patients	with	
MELD	scores	<15	should	be	treated	promptly.	The	grey	zone	
of	a	MELD	score,	i.e.,	15–19,	requires	tailored	therapy	on	a	
case-by-case	basis.11,36	Our	study	provided	information	to	
identify	patients	with	high	risk	of	treatment	failure.	Selection	
of	proper	DAA	regimens	with	high	efficacy	and	safety	pro-
files	and	enhancing	DAA	adherence	might	help	to	ensure	
treatment	efficacy.9

XGBoost	 is	a	supervised	ML	algorithm	under	a	gradient	
boosting	framework.	The	ensemble	method	combines	mul-
tiple	models	to	produce	more	accurate	predictions.	Gradient	
boosting	is	an	ensemble	technique	that	corrects	mistakes	in	

Figure 3.	SHAP	summary	plot.	The	SHAP	summary	plot	combined	the	feature	importance	and	effects	on	DAA	efficacy	in	all	cases.	The	x-axis	
represents	the	SHAP	value	of	the	feature.	A	SHAP	value	>0	represents	a	positive	correlation	with	SVR,	and	a	SHAP	value	<0	represents	a	nega-
tive	correlation	with	SVR.	The	overlapping	points	jittered	along	the	x-axis	represent	the	samples;	the	colors	represent	feature	values	ranging	
from	low	(yellow)	to	high	(purple).	SHAP,	Shapley	additive	explanations;	DAA,	direct-acting	antivirals;	SVR,	sustained	virological	response;	BMI,	
body	mass	index;	AFP,	α-fetoprotein;	PLT,	platelets;	FIB-4,	fibrosis-4	index;	AST,	aspartate	aminotransferase;	INR,	international	normalized	ratio;	
APRI,	aminotransferase	to	platelet	ratio	index.	
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Figure 4.	SHAP	dependence	plot.	SHAP	dependence	plot	revealed	that	global	model	interpretations	depend	on	the	given	features.	SHAP,	
Shapley	additive	explanations;	HCV,	hepatitis	C	virus;	BMI,	body	mass	index;	AFP,	α-fetoprotein;	PLT,	platelets;	FIB-4,	fibrosis-4	index;	AST,	as-
partate	aminotransferase;	INR,	international	normalized	ratio;	APRI,	aminotransferase	to	platelet	ratio	index.	
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existing	models	by	creating	new	models,	which	are	sequen-
tially	added	until	no	further	improvement	can	be	achieved.37	
This	process	is	called	gradient	boosting	because	it	utilizes	a	
gradient	descent	method	to	minimize	loss	when	creating	
new	models.38	Moreover,	XGBoost	supports	both	regression	
and	classification	tasks.	XGBoost	 indeed	exhibits	an	out-
standing	predictive	ability	compared	to	the	other	algorithms	
in	our	study.
ML	models	are	usually	considered	“black	boxes”	because	

their	prediction	process	is	too	complex	for	humans	to	inter-
pret.	To	overcome	this	problem,	explainable	AI	methods	have	
been	developed	based	on	the	Shapley	methods.39	SHAP	is	
derived	from	the	concept	of	cooperative	game	theory,	which	
can	calculate	the	contribution	of	each	feature	to	the	predic-
tion.	SHAP	provides	 insight	 into	the	 inner	workings	of	a	
“black	box”	by	generating	quantitative	visualizations	of	the	
prediction	process.	SHAP	can	reflect	the	influence	of	the	fea-
tures	in	each	sample	and	show	a	positive	or	negative	impact	
on	the	outcome.15	Through	the	transformation	of	SHAP,	users	
can	better	understand	how	the	model	makes	predictions.	
Moreover,	it	provides	feedback	on	the	key	factors	contribut-
ing	to	the	outcome	and	allows	for	the	identification	of	poten-
tial	biases.	This	transparency	is	crucial	for	convincing	clini-
cians	 to	 rely	on	AI-based	decision	 support	 systems.40	
“Explainable	AI”	may	help	bridge	the	gap	between	the	medi-
cine	and	AI-predictive	models.
The	current	study	has	several	limitations.	Some	patients	

(e.g.,	hepatic	decompensation,	HCC)	may	not	survive	long	
enough	to	obtain	SVR12	data.	This	population	may	have	rela-
tively	unfavorable	prognostic	factors,	leading	to	a	subopti-
mal	treatment	response.	Although	RASs	have	been	con-
firmed	to	be	associated	with	viral	resistance,2,41	RAS	testing	is	
not	recommended	in	routine	clinical	practice.42	Considering	
only	7.0%	of	the	RASs	were	available	in	the	TACR	database,	
this	predictive	model	may	underestimate	the	impact	of	RASs	
on	the	DAA	response.	The	performance	of	the	validation	da-
taset	is	inferior	to	that	of	the	training	dataset.	Potential	over-
fitting	and	heterogeneity	in	the	training	dataset	may	affect	
model	generalizability.	However,	avoiding	overfitting	may	
reduce	the	accuracy	of	ML	models.	In	such	an	imbalanced	
dataset	(non-SVR	rate=1.6%),	we	expect	the	accuracy	of	the	
training	dataset	to	be	at	least	>98.4%.	Under	this	premise,	
the	hyperparameter	tuning	of	each	AI	model	was	relatively	
limited,	making	it	difficult	to	avoid	overfitting.	As	the	gener-
alization	is	suboptimal,	the	present	AI	model	should	be	fur-

ther	modified	before	being	applied	to	other	independent	co-
horts.	A	relatively	small	number	of	DAA	failure	events	may	
limit	the	development	of	a	robust	model.	There	is	no	univer-
sal	approach	to	missing	data	imputation—a	fundamental	
concern	in	real-world	clinical	datasets.	The	input	data	for	the	
AI	analysis	contained	only	clinical	and	virological	data	in	the	
current	study.	A	combination	of	genomics,	proteomics,	and	
metabolomics	may	improve	the	predictive	accuracy	of	the	
validation	datasets	in	the	future.
In	conclusion,	this	nationwide	TACR	study	applied	ML	algo-

rithms	for	risk	stratification	in	DAA	failure.	The	performance	
of	the	AI	model	is	superior	to	that	of	the	conventional	logistic	
regression	model.	The	XGBoost	model	showed	that	subjects	
with	features	such	as	higher	HCV	RNA	levels,	active	HCC,	or	
decompensated	liver	cirrhosis	were	less	likely	to	achieve	SVR.	
This	model	captured	69.7%	of	patients	who	failed	to	achieve	
SVR	among	the	top	five	decile	subgroups.	ML	algorithms	fa-
cilitate	risk	stratification	in	DAA	failure	and	provide	additional	
information	on	factors	associated	with	DAA	failure.
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