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ABSTRACT 

Error-correcting codes (ECCs) employed in the state-of-the-art DNA digital storage (DDS) systems suffer 
from a trade-off between error-correcting capability and the proportion of redundancy. To address this 
issue, in this study, we introduce soft-decision decoding approach into DDS by proposing a DNA-specific 
error prediction model and a series of novel strategies. We demonstrate the effectiveness of our approach 
through a proof-of-concept DDS system based on Reed-Solomon (RS) code, named as Derrick. Derrick 
shows significant improvement in error-correcting capability without involving additional redundancy in 
both in vitro and in silico experiments, using various sequencing technologies such as Illumina, PacBio and 
Oxford Nanopore Technology (ONT). Notably, in vitro experiments using ONT sequencing at a depth of 
7 × reveal that Derrick, compared with the traditional hard-decision decoding strategy, doubles the 
error-correcting capability of RS code, decreases the proportion of matrices with decoding-failure by 
229-fold, and amplifies the potential maximum storage volume by impressive 32 388-fold. Also, Derrick 
surpasses ‘state-of-the-art’ DDS systems by comprehensively considering the information density and the 
minimum sequencing depth required for complete information recovery. Crucially, the soft-decision 
decoding strategy and key steps of Derrick are generalizable to other ECCs’ decoding algorithms. 

Keywords: DNA digital storage (DDS), error-correcting code (ECC), soft-decision decoding, 
error-correcting capability, storage volume 
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Nearly all error-correction methods rely on in- 
formation redundancy to ensure the correctness of 
the restored information, including physical redun- 
dancy and logical redundancy [ 1 , 8 , 9 ]. Traditional 
physical redundancy-based methods explicitly copy 
the DNA molecules for one or more times and ex- 
pect every piece of information to correctly appear 
in the majority of copies while decoding [ 3 , 10 ]. 
Although the physical redundancy is able to solve 
random errors, the systematic errors such as se- 
quence missing caused by polymerase chain reaction 
(PCR) stochastic bias or synthesis bias [ 9 ], as well 
as strand breaks, rearrangements and indels from 

PCR amplification and long-term storage [ 11 ] are 
usually beyond its capability. Therefore, the state-of- 
the-art DDS systems mostly use logical redundancy 
in the form of error-correcting code (ECC) [ 12 ] 
instead. 

©The Author(s) 2023. Published
Commons Attribution License ( h
work is properly cited. 
NTRODUCTION 

s digital data production exponentially grows and
ainstream magnetic, optical and solid-state stor-
ge approaches their density limits [ 1 ], DNA has
een seen as an attractive alternative for archival stor-
ge [ 2 ] due to its advantages in information den-
ity [ 3 , 4 ] and durability [ 5 –7 ]. DNA digital storage
DDS) systems encode information into nucleotide
equences, and then synthesize, replicate and store
NA molecules correspondingly. To restore the
nformation, DDS sequences the DNA molecules,
ssembles the reads (DNA fragments from sequenc-
ng) into consensus and carries out decoding. In the
hole process, there are many steps such as synthe-
is, replication, storage and sequencing which may
nduce random and systematic errors, thus proper
rror-correction strategies need to be used within the

ecoding procedure. 
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ECC calculates and adds the redundancy [ 13 ]
hich contains scattered information from every
nit of the original data block by applying a series
f mathematical transformations when encoding
nd thus is able to detect and correct a limited
umber of errors when decoding by finding a fea-
ible solution in inverse transformation. Previous
tudies have utilized various ECC methods to
mprove error-correcting capability. For instance,
rass et al. applied ECC in the area of DDS for
he first time [ 14 ]. They used Reed-Solomon
RS) code in a concatenated way, which was able
o correct not only single-nucleotide errors, but
lso the loss of oligos. Erlich et al. combined RS
ode with a type of ECC approaching Shannon
apacity theoretically, called Fountain code, for high
nformation density [ 4 ]. Press et al. developed a new
CC system called HEDGES which worked well
or correcting insertion and deletion errors [ 15 ].
lthough these efforts improve the performance of
CC in DDS to some extent, the state-of-the-art
ethods sti l l suffer from a trade-off between error-
orrecting capability and redundancy proportion.
n other words, solving more errors needs a higher
roportion of redundancy which leads to lower in-
ormation density. For example, in the experiments
f Press et al. [ 15 ], an error rate of approximately 1%
orresponds to an information density of 1.2 bits
er nucleotide, while an error rate of approximately
% results in an information density of 1 bit per
ucleotide. 
In this paper, we introduce a novel idea for gen-

rally improving the error-correcting capability of
CC without increasing the proportion of redun-
ancy. More specifically, we exploit the uneven dis-
ribution of errors in DNA sequences and leverage
he error-related key information such as error po-
itions and true values that can be predicted based
n the detected error-enriched patterns in the con-
ensus sequence, and this type of information pro-
ides opportunities for ECC to address blocks with
rror counts that exceed the original capability of
CC. As a proof of concept, we develop a new ECC
ystem called Derrick (de-error-rick), utilizing RS
ode [ 16 ] which is the most commonly used ECC
or DDS by introducing the soft-decision decoding
trategy [ 17 , 18 ] from communication engineering.
ue to the difference between the DNA sequences
nd the binary sequences, the soft-decision decoding
trategies used in communication cannot be applied
n the area of DDS directly. As mentioned by a pre-
 ious rev iew paper [ 1 ], ‘unlike other storage chan-
els, which have only substitution errors, DNA chan-
els can also manifest base insertions and deletions,
hich makes coding more challenging.’ To address
his issue, the error model was designed for describ-
Page 2 of 10 
ing different types of errors including substitutions, 
insertions and deletions, and a series of novel strate- 
gies were proposed in Derrick. 

The performance of Derrick was verified through 
both in silico and in vitro tests. In the in vitro exper-
iments with Oxford Nanopore Technology (ONT) 
sequencing of depths ranging from 4 × to 10 ×, com- 
pared with traditional hard-decision decoding, Der- 
rick improved the number of solvable errors of RS 
code by up to 2-fold, reduced the proportion of 
matrices with decoding-failure by up to 229-fold, 
and increased the storage volumes by up to 91 504- 
fold. With Illumina sequencing, Derrick demon- 
strated the potential to improve maximum storage 
volume to Brontobyte-scale with the same calcula- 
tion method as in previous work [ 15 ]. Addition- 
ally, Derrick surpasses the ‘state-of-the-art’ DDS 
systems in error-correcting capability by compre- 
hensively considering the information density and 
the minimum sequencing depth required for com- 
plete information recovery, although it is just a proof- 
of- concept system. 

RESULTS 

Overview of Derrick algorithm 

First of all, we introduce the principle of soft- 
decision strategy which is the key idea in Derrick 
(Fig. 1 A). In general, RS decoder corrects the errors 
by solving a system of equations [ 19 –21 ], in which
each error is represented as one or more unknown 
variables. More specifically, RS decoder classifies er- 
rors into two types: (1) ‘error’ with both position 
and true value as unknown variables, and (2) ‘era- 
sure’ with position known and only true value as un- 
known variable. In contrast to the traditional hard- 
decision strategy used in existing ECC technologies 
for DDS channel, which treats all errors as ‘error’, 
the soft-decision decoding strategy [ 18 ] reduces the 
number of variables for data blocks by converting ‘er- 
rors’ to ‘erasures’ (each reduces one variable) or re- 
moving ‘errors’ entirely (reducing two variables per 
removal). This is done using the priorly predicted er- 
ror positions and true values based on an error pre- 
diction model, as outlined in Supplementary Note 1 . 
We develop a general prediction model by calculat- 
ing nucleotide confidences from the numbers of sup- 
porting reads during consensus building (Fig. 1 A). 
This model enables the implementation of soft- 
decision decoding to correct data blocks that cannot 
be corrected by hard-decision decoding. 

Although the error positions can easily be pre- 
dicted directly from nucleotide confidences, predict- 
ing true values on DNA sequences with four char- 
acters (A, T, C, G) and multiple error types such as

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad229#supplementary-data
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Figure 1. Schematic diagram of Derrick decoding algorithm and soft-decision decoding strategy with sequence composition 
of synthesized DNA molecules. (A) The Pipeline of Derrick decoding algorithm. The left panel provides a literary description 
of the steps of Derrick algorithm, while the right panel depicts the consensus building, error prediction, soft-decision strategy 
and shifting steps. Initially, the consensus sequence is generated from the aligned reads and the confidence score of each 
nucleotide is calculated. Subsequently, the consensus sequence is cut and reassembled into matrices where the yellow frame 
on the matrix represents an RS block and different colors of the matrix indicate different confidence scores. For each block, 
the algorithm first tries the hard-decision decoding approach. If this fails, it employs the soft-decision decoding strategy, 
selecting the positions with the lowest confidence scores as potential error positions and adding them to the prediction 
set. The prediction set is then used for iterative soft-decision decoding until the block is successfully corrected. After each 
block is decoded, the algorithm adjusts the erroneous subsequences in the matrix based on the realignments between the 
original and corrected sequences to reduce errors in subsequent blocks. (B) Schematic diagram of RS soft-decision decoding 
strategy. Three RS codes, a , b 1 and b 2 , are to be decoded (corrected). A and B are two candidate solutions that the RS codes 
( a , b 1 and b 2 ) may be decoded (corrected) into. The blue and orange circles represent the error-correcting capability of the 
hard-decision strategy for A and B . In Derrick, since a is within the decoding capability of A (inside blue circle), it is corrected 
into A by hard-decision strategy. For b 1 , Derrick carries out soft-decision decoding by gradually increasing the black circle 
representing iteratively searching larger subsets of the prediction set until it (the second black circle) reaches the capability 
(orange circle) of B and is corrected into B . Similarly, b 2 is corrected into A by the soft-decision strategy in Derrick after 
reaching the capability (blue circle) of A . Although A is the closest solution to b 2 , the correct solution is B (the second closest 
solution). Therefore, CRC64 shows the mistake, and the algorithm backtracks and recorrects b 2 to B by continuing to search 
larger subsets of the prediction set (increasing black circle) until it reaches the capability (orange circle) of B to correct b2 
into B . (C) Sequence composition of each synthesized DNA molecule, where ‘nt’ represents nucleotides. 
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ubstitution, insertion and deletion is more challeng-
ng. To bypass this problem, when building consen-
us DNA sequences from sequencing reads, Derrick
enerates comparatively loose and long alignments
y adding as many as possible spaces into reads, con-
erting other types of errors into insertions and en-
bling the easy correction of errors by removal. As il-
ustrated in Fig. 1 A, we then proposed the Derrick al-
orithm for error-correction decoding, which com-
rises a few key points as follows. 
Due to the imperfection of error prediction, the

et of predicted error positions and true values in-
vitably contains false-positives. However, RS de-
oder can judge the correctness of the predictions
articipating in soft-decision process, as any incor-
ect prediction can introduce more errors making
he soft-decision strategy futile and leading to de-
oding failure. Thus, Derrick sorts the predicted
et by erroneous possibility based on confidence
Page 3 of 10 
level, and then uses an iterative algorithm to attempt 
subsets from the smallest to the largest one-by-one 
( Fig. S1 ) until RS correction succeeds or all sub-
sets have been tried (soft-decision strategy failed) 
(details in Supplementary Note 1 ). Larger predic- 
tion sets offer greater chances of reducing enough 
variables to successfully solve blocks with errors ex- 
ceeding RS original capability, but require higher 
computational costs of searching feasible subsets. 
Thus, with this trade-off, Derrick improves the error- 
correcting capability of RS code by sacrificing com- 
putation efficiency to some extent, and is capable of 
solving any data block with any number of errors
with unlimited computational resources. In prac- 
tice, Derrick limits computational time for each data 
block using a threshold and gives up blocks beyond 
this threshold. 

As indels shift the reading frames of the se- 
quences causing errors, not only in the affected 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad229#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad229#supplementary-data
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Table 1. Comparison of Derrick and hard-decision decoding 
by the number of correctable errors on ONT real datasets. 

RS ( n , k ) RS (255, 211) RS (255, 235) RS (255, 241) 

( n −k )/2 22 10 7 
4 × 30 – –
5 × 24 – –
6 × 16 18 14 
7 × 10 17 14 
8 × 7 11 9 
9 × 7 9 8 
10 × 6 8 6 

The ‘(n −k)/2’ row shows the maximum number of correctable errors 
achievable through the hard-decision strategy. Here, ‘n’ and ‘k’ refer to the 
lengths of the entire RScode and the original information contained within, 
respectively; the remaining rows of the table show the maximum number 
of errors corrected in each test, with bold values indicating tests where the 
number of errors exceeds the capability of hard-decision strategy and must 
be resolved using soft-decision strategy. Normal values represent tests with 
the number of errors where the number of errors falls within the hard- 
decision strategy’s capabilities and do not require soft-decision strategy; ‘–’ 
denotes tests where the number of errors exceeds the soft-decision strat- 
egy’s capacity, and the result is, therefore, not considered. 

 

 

 

 

locks but also all downstream blocks, the decod-
ng process of the related matrices may fail due to
he timeouts caused by excessive errors. To elimi-
ate these errors in the downstream blocks, a shift
lgorithm was designed to realign and shift the rows
f the matrix according to the new corrected val-
es after each RS correction ( Supplementary Note 1 ,
ig. S2 ). 
RS decoder corrects blocks with errors by find-

ng a solution to the system of equations that is
losest to the original values in space, even if there
re multiple solutions available [ 22 ]. However, this
ay not always guarantee that the true value is ob-
ained, and some corrected blocks may sti l l be wrong
 23 ] (Fig. 1 B). This issue is not unique to RS de-
oding and applies to other ECCs as well. To ad-
ress this, Derrick uses CRC64 [ 24 , 25 ] code to ver-
fy the correctness of the whole matrix (a matrix
as 62 columns representing 62 continuous blocks
nd 255 rows and each entry contains 4 nucleotides;
ig. 1 A) after all blocks of it have been corrected
y RS decoder. If any error is detected, Derrick uses
reedy strategy-based algorithms (see backward-
earching algorithm and forward-searching algo-
ithm in Supplementary Note 1 ) to backtrack and
ecorrect the blocks. 

erformance of the soft-decision 

ecoding strategy and Derrick algorithm 

o validate and benchmark the Derrick decoding
lgorithm, we conducted both in vitro and in sil-
co tests. Although there are a few public large-scale
DS real datasets available for testing, they are lim-
ted to single sequencing technology or single code
ate. Therefore, we generated a new Megabyte-scale
eal dataset from in vitro experiments consisting of
1 sub-datasets of Illumina sequencing and 16 sub-
atasets of ONT sequencing w ith vary ing code rates
0.83, 0.92 and 0.95) and sequencing depths (from
 × to 10 ×). This dataset is currently the most com-
lete and publicly available DDS real dataset. The
ataset was generated by concatenating DNA se-
uences from an E. coli genome and 18 COVID-19
enomes ( Table S1A), followed by Derrick pre-
rocessing steps such as compression, random-
zation, redundancy addition, index and primer
ddition, synthesizing, sequencing, and subsampling
details in Supplementary Note 2 ). All in vitro exper-
ments were conducted on this real dataset. 
First of all, the error-correcting capability of soft-

ecision decoding is demonstrated by comparing
he number of solvable errors with the traditional
ard-decision one. As shown in Table 1 , the in vitro
xperiments with ONT sequencing show that the
oft-decision strategy was able to solve the blocks be-
Page 4 of 10 
yond the capability of the hard-decision strategy by 
correcting 1 to 8 more errors each. On the two tests
(sequencing depths 6 × and 7 ×, code rate 0.95) with 
the best results, it solved 14 errors which is twice 
that of hard-decision decoding. The performance of 
Derrick is also evaluated on a per-matrix basis, where 
the proportion of failed matrices after each decod- 
ing experiment is recorded and analyzed. Table 2 
shows that, on ONT real data, for the datasets that 
hard-decision decoding failed to decode, Derrick 
either successfully corrected all matrices or reduced 
the proportions of failed ones by 7- to 229-fold. 
For example, with the depth 8 × and a code rate of
0.945 (RS (255, 241)), Derrick reduced the number 
of failed matrices from 35 (43.75%) to 0. Overall, 
Derrick reduced the sequencing depth required for 
successful decoding. AS for Illumina real datasets, 
the decoding results comparisons under various 
conditions, such as different code rates and sequenc- 
ing depths, are given in Table S2 , presenting a similar 
conclusion as ONT real data. In addition, a statistical 
model was constructed to evaluate the performance 
of Derrick by the probability of an uncorrectable 
error (Methods and Supplementary Note 3 ) with 
the same calculation method as previous work [ 15 ]. 
As shown in Fig. 2 A and 2 B, Derrick reduced the
probability of an uncorrectable error of RS code 
by ∼10- to ∼500k-fold on Illumina and ONT 

datasets. The best improvement was achieved on 
an Illumina dataset with sequencing depth 10 ×
and a code rate of 0.83, increasing the maximum 

storage volume from 2.77E + 22 bytes to 1.39E + 28
bytes, achieving Brontobyte-scale. Additionally, 
we conducted a performance comparison between 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad229#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad229#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad229#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad229#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad229#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad229#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad229#supplementary-data
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Table 2. Performance comparison of Derrick decoding with hard-decision decoding by the number of failed matrices on ONT 
real datasets. 

RS(255, 211) (#Matrix = 120) 
RS(255, 235) 
(#Matrix = 1600) RS(255, 241) (#Matrix = 80) 

Depth Hard Derrick Hard Derrick Hard Derrick 

4 × 78 1 – – – –
5 × 15 0 – – – –
6 × 0 0 887 41 – –
7 × 0 0 229 1 71 10 
8 × 0 0 31 0 35 0 
9 × 0 0 1 0 3 0 
10 × 0 0 0 0 0 0 

The ‘#Matrix’ displays the total number of matrices used in each decoding test; the ‘Depth’ column represents the sequencing depths; the ‘Hard’ and 
‘Derrick’ columns indicate the number of failed matrices observed in tests utilizing the hard-decision decoding strategy and Derrick decoding algorithm, 
respectively; ‘–’ denotes tests where the number of errors exceeds the soft-decision strategy’s capacity, and the result is, therefore, not considered. 
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errick and the ‘state-of-the-art’ DDS systems.
owever, due to differences in coding modes, it was
ot feasible to test multiple DDS systems on the
ame dataset. Therefore, we followed the conven-
ions [ 1 , 4 ] in the area of DNA digital storage and
ompared the best performance statistics of different
ystems on their respective testing datasets. Table 3
 l lustrates that, by comprehensively considering the
nformation density and the minimum sequencing
epth required for fully recovering the information,
errick performed almost the best among the DDS
ystems published in recent years, although it is just
 proof-of-concept system. 
To comprehensively evaluate the performance of

errick on a wider variety of data with a wider range
f different code rates and sequencing techniques,
e prepared a larger file library of 11.7 MB in total
or in silico tests, which contained 6 files of different
ypes ( Table S1B ) such as videos, photos and exe-
utable files. The files were merged, encoded with
aried code rates, and then subjected to sequenc-
ng simulation using currently popular sequencing
echniques, including PacBio CLR, ONT and Illu-
ina. More detailed, Illumina and ONT datasets
ere built with RS (255, 211), RS (255, 235) and
S (255, 241), and PacBio CLR datasets were with a
ider range of RS codes, ranging from RS (255, 201)
o RS (255, 241) with an interval of 4. The results of
he simulated datasets demonstrated that, compared
ith hard-decision decoding, Derrick decreased the
robability of an uncorrectable error by tens to tens
f thousands of folds (Fig. 2 C and Fig. S3B ), and re-
uced the numbers of failed matrices from hundreds
o units, in most cases to 0 ( Table S3 –5 ). 

actors related to the performance 

f Derrick algorithm 

he performance of the soft-decision strategy and
errick decoding algorithm strongly depends on
Page 5 of 10 
the accuracy of error prediction. The results show 

that the soft-decision strategy achieved high error- 
prediction accuracy of 76.7% on ONT real datasets 
(Fig. 2 D), 72.3% on Illumina real datasets ( Fig. S4 )
and 86.51% on ONT simulated datasets ( Fig. S3A). 
We also found that the accuracy of error prediction 
is strongly related to the size of prediction set. More
specifically, the sensitivity increases but the precision 
decreases as the prediction size increases (Fig. 2 E). 
One step further, we recommend setting the number 
of predicted errors to be the same as or slightly larger
than the length of redundancy ( n − k , where n and
k are the lengths of whole RS code and the original
information, respectively) ( Table S6 ) in a RS code,
because theoretically n −k is the upper bound of RS
correction capability and at most n − k ‘errors’ need 
to be changed into ‘erasures’. 

Also, to study how the performance of Derrick 
decoding algorithm is related to the time limit of 
each matrix, we show the running time distributions 
of matrices. Supplementary Table 7 shows that, on 
the whole, over 96% of the matrices were completed 
within 10 seconds, with only 1.6% taking more than 
6 0 0 0 seconds. From one perspective, the result sug-
gests that a comparatively short time limit is suffi- 
cient for solving the majority of matrices. But from
another perspective, it also implies that, to improve 
the number of solved matrices, the running time 
limit has to be increased exponentially. One poten- 
tial method to solve these remaining matrices within 
an acceptable time is to increase the RS code size, re-
sulting in a more evenly distributed number of er- 
rors within RS blocks and allowing an appropriate 
time threshold to cover more data blocks. However, 
due to the non-linear growth of RS correction time 
as code size increases, further research is needed to 
verify the feasibility of this idea. 

To demonstrate the importance of CRC64 code 
[ 24 ] checking, we conducted experiments and col- 
lected statistics, presented in Supplementary Table 8 . 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad229#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad229#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad229#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad229#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad229#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad229#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad229#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad229#supplementary-data
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Figure 2. Results of Derrick decoding algorithm and soft-decision strategy via in vitro and in silico experiments. (A) Improvement of Derrick compared 
with hard-decision decoding on in vitro ONT datasets. The horizontal and vertical axis represent the code rate and sequencing depth, respectively. The 
size of the circle represents the folds of improvement which is measured by the ratio of the probability of an uncorrectable error calculated using the 
soft-decision strategy versus that calculated using the hard-decision strategy. The color shading of the circle represents the achievable storage volumes 
of Derrick. (B) Improvement of Derrick compared with hard-decision decoding on in vitro Illumina datasets. The meanings of horizontal axis, vertical 
axis, size and color of the circle are all same as (A). (C) Improvement of the soft-decision strategy compared with the hard-decision one on PacBio CLR 
simulated datasets. The meanings of horizontal axis, vertical axis, size and color of the circle are all same as (A). (D) Error prediction performance of the 
soft-decision strategy on in vitro ONT datasets. The horizontal and vertical axis represent the sequencing depth and the number of errors, respectively. 
The color indicates the average number of successfully predicted errors (represented by the dark color) and the number of errors failed to predict 
(represented by the shallow color) for each block. (E) Comparison of the prediction performance of Derrick with different sizes of the prediction set, 
tested via in vitro ONT experiments. The bar plot of precision shows a tendency of improvement with the increasing size of the prediction set, with the 
y-axis starting from 0.5. Conversely, the bar plot of sensitivity shows a tendency of decrease with the increasing size of the prediction set, with the 
y-axis starting from 0. The ‘#size’ represents the size of the prediction set; ‘RS211.5 × ’ represents RS (255, 211) and sequencing depth 5 ×; ‘RS235.7 ×
’ and ‘RS241.7 × ’ represent similarly as ‘RS211.5 × ’. 
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r  
ur results demonstrate that, in the absence of
RC64 checking, approximately 1.5% of matrices
ould be wrongly-corrected ones unknown by users.
owever, by employing CRC64 checking and back-
racking one or more times within the limited run-
ime (60 0 0 s), we successfully recorrected 51.8%
f these matrices. Additionally, we conducted ex-
eriments on ONT simulated datasets to demon-
trate the importance of the shift algorithm designed
or realigning the sequences ( Table S9 ). Our results
eveal that none of the matrices can be solved by
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Derrick without the shift algorithm, which was 
due to the huge number of errors caused by mis- 
alignments. 

DISCUSSION 

Error-correcting code is indispensable in DDS 
for ensuring data correctness and integrity [ 26 ]. 
State-of-the-art DDS systems use the hard-decision 
decoding strategy, which is restricted to the trade-off
between error-correcting capability and informa- 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad229#supplementary-data


Natl Sci Rev , 2023, Vol. 0, nwad229 

Table 3. Comparison of information density and required sequencing depth to prior work. 

Study 
Data 
encoded Synthesis Error correcting 

Sequencing 
platform 

Physical 
redundancy 

Information 
density 
(bits/bp) 

Church et al. [ 3 ] 650 kB Phosphoramodite High coverage Illumina 30 0 0 × 0 .6 
Goldman et al. [ 10 ] 630 kB Phosphoramodite Multiply copies Illumina 51 × 0 .19 
Grass et al. [ 14 ] 80 kB Phosphoramodite RS + RS Illumina 372 × 0 .86 
Bornholt et al. [ 34 ] 151 kB Phosphoramodite Huffman code Illumina 128 × 0 .57 
Blawat et al. [ 25 ] 22 MB Phosphoramodite RS + BCH + CRC16 Illumina 160 × 0 .89 
Erlich et al. [ 35 ] 2 MB Phosphoramodite Fountain + RS Illumina 10.5 × 1 .19 
Yazdi et al. [ 36 ] 3 kB Phosphoramodite MSA ONT 200 × 1 .71 
Organick et al. [ 8 ] 33 kB Phosphoramodite RS + RS ONT 36 × 0 .81 
Organick et al. [ 8 ] 200 MB Phosphoramodite RS + RS Illumina 5 × 0 .81 
Lee et al. [ 37 ] 96 B Enzymatic RS + BCH ONT 175 × 1 .57 
Chandak et al. [ 38 ] 11 kB Phosphoramodite Convolution + RS ONT 14 × 0 .56 
Meiser et al. [ 6 ] 176 kB Phosphoramodite RS + RS Illumina 200 × 0 .85 
Press et al. [ 15 ] 2 MB Phosphoramodite Hash + RS Illumina 50 × 1 .2 
Weigang et al. [ 39 ] 37.8 kB Phosphoramodite LDPC ONT 16.8 × 1 .19 
Lifu et al. [ 11 ] 6.8 MB Phosphoramodite Fountain + CRC Illumina – 1 .3 
This work 5.2 MB Phosphoramodite RS + CRC Illumina 4 × 1 .37 
This work 5.2 MB Phosphoramodite RS + CRC ONT 8 × 1 .56 

‘–’, denotes not available. 
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ion density. In this study, we propose a novel
oft-decision decoding strategy in DDS, and a
roof-of-concept DDS system, Derrick, on RS code
hich is capable of improving the error-correcting
apability of ECC without reducing the information
ensity by making accurate error predictions. We
erify the performance of the soft-decision strategy
nd Derrick across different types of sequencing
echnologies such as ONT, Illumina and PacBio. The
xperimental results show that Derrick improved the
rror-correcting capability of RS code by up to 2-fold
ver the hard-decision one, and Derrick was able
o recover with 100% accuracy even on low-depth
oisy sequencing data. The results of our statistical
odeling also show that Derrick was able to solve
ore errors than traditional hard-decision decod-

ng, reducing the probability of uncorrectable errors
y several orders of magnitude. Our findings have
mportant implications for the development and op-
imization of DNA digital storage systems, and can
elp to improve the performance of these systems. 
It should be emphasized that soft-decision decod-

ng in DDS cannot be simply adopted from the com-
unication field. Unlike binary sequences in com-
unication, DDS channels are composed of four
haracters (‘A’, ‘T’, ‘C’, ‘G’) and include insertions and
eletions (indels) in addition to substitutions [ 1 ].
hese unique features present significant challenges
or error prediction, particularly for indels which can
hift the reading frame of a sequence, causing errors
ot only in the affected region but also downstream
ffects on the entire sequence. To address these chal-
enges, our algorithms take into account the unique
Page 7 of 10 
complexities of indels in DNA channels involving 
error prediction model, shift algorithm and CRC64 
backtracking. 

Due to the high degree of difficulty of predict- 
ing true values of substitution and deletion errors 
in DNA sequences, Derrick uses a strategy to con- 
vert as many of them as possible to insertions which
are easy to identify and correct afterwards. How- 
ever, as Fig. S5 shows, a small proportion of substi- 
tution and deletion errors sti l l exist and affect the
performance of the current version of algorithms. 
There are two potential solutions. First, DNA syn- 
thesis and sequencing technologies, which are able 
to significantly reduce the proportion of errors other 
than insertions, need to be developed specially for 
DDS. Second, a finer prediction model needs to be 
built so that the true values of substitution and dele-
tion errors can be predicted according to the num- 
ber of supporting reads for each possible nucleotide 
type. However, with a limited read coverage, each 
true value candidate may only be supported by a very
small number of reads, which is not enough for accu-
rate prediction. In addition, this method wi l l signifi-
cantly increase the amount of calculation in the sub- 
set searching step, because the prediction set and the 
number of possible subsets wi l l be both much larger
than before. 

Accurate error prediction is the cornerstone of 
the soft-decision strategy and Derrick decoding al- 
gorithm. Although previous studies have examined 
the characteristics of DDS channels [ 9 , 27 ], none are
generalizable to a different DDS channel, nor have 
they integrated these features with coding and de- 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad229#supplementary-data
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oding. We develop a general prediction model by
alculating nucleotide confidences from the num-
ers of supporting reads during consensus building.
he accuracy of error prediction is demonstrated to
e above 72% using in vitro experiments. In the fu-
ure, studies and observations can be done to find
ore error-related patterns and regulations in DNA
equences so that the error prediction step can be
arried out more accurately and efficiently. More
pecifically, a precise and comparatively small set of
rror predictions and a correct order of them accord-
ng to confidences are able to reduce the running
ime of the subset searching algorithm in Derrick
nd improve the number of data blocks successfully
olved within a limited time. 
Despite high difficulty, it is essential to discuss the

heoretical bound of Derrick’s error-correcting capa-
ility. In contrast to conventional soft-decision de-
oding methods such as GMD [ 28 ] and Chase [ 22 ],
ommonly used in communication technology, Der-
ick not only predicts error positions but also cor-
ects errors. As such, theoretically, if given unlimited
ime, Derrick should be capable of solving an unlim-
ted number of errors, excepting those arising from
RC64 collisions [ 24 ]. Thus, theoretical ly, the fai l-
re rate is equivalent to the CRC64 collision prob-
bility, which is extremely low. However, we argue
hat the collision probability may not be a suitable
easure of capability, as the failing rate under rea-
onable runtime and number of backtrack condi-
ions is likely to be much higher in most scenarios.
herefore, all results in our study were obtained un-
er a reasonable runtime constraint (60 0 0 s). While
roviding a strict theoretical bound may be challeng-
ng, we have constructed a thorough analysis and de-
ived the mathematical expressions that describe the
pper limit of tolerable base error rate of Derrick (see
upplementary Note 3 ). Our derivation provides an
pproximate calculation of the theoretical bound,
ut it has limitations as a key variable is estimated
ased on experimental results rather than described
y theoretical derivation. Future research could ex-
lore more accurate estimation methods to further
efine our understanding of the error-correcting ca-
ability of soft-decision decoding. 
When designing a reliable DDS channel, it is im-

ortant to select an appropriate coding density and
equencing redundancy based on the data volume
nd sequencing technology to ensure the reliable
torage and readout of data. Supplementary Table 4
rovides valuable insights, indicating that for large-
cale data storage, such as Exabyte-scale, lower code
ates (e.g. RS (255, 209)) are more suitable for pro-
ecting data and ensuring accurate recovery using
errick. Conversely, for smaller-scale data storage,
uch as Megabyte-scale, higher code rates (e.g. RS
Page 8 of 10 
(255, 241)) are more appropriate, providing high in- 
formation density while sti l l al lowing for accurate re- 
covery. For ultra-large data volumes, a combination 
of low and high code rates can be selected by first
applying error correction with a lower code rate to 
the overall dataset, and then dividing it into smaller 
DDS channels and using a higher code rate for each 
smaller DDS channel. 

Although Derrick was originally designed for RS 
code, the soft-decision decoding strategy and key 
steps of Derrick, such as error prediction and subset 
searching, can be directly applied to other ECCs with 
algebraic decoding algorithms [ 29 ], such as Foun- 
tain code [ 4 ]. While different ECCs encode data 
in different forms, their hard-decision decoding al- 
gorithms all tolerate limited numbers of errors and 
fail when the numbers exceed this limit. Since the 
soft-decision strategy and related algorithmic steps 
in Derrick aim to reduce the number of errors in the
code, they are independent from the code form and 
can help decoding algorithms of different ECCs suc- 
ceed. In addition to algebraic decoding algorithms, 
there is another category of ECCs with probabilis- 
tic decoding algorithms [ 29 ] which error-corrects to 
a most probable code on the condition of known 
information. For these ECCs, the algorithmic steps 
of Derrick cannot be directly applied. However, the 
principle of soft-decision decoding strategy can sti l l 
be useful for improving their accuracy. More specif- 
ical ly, the probabi listic model can be improved by 
considering the accurately predicted errors and their 
confidences as prior knowledges. 

To conclude, Derrick performs well in both in 
vitro and in silico experiments and shows great po- 
tential to increase the maximum storage volume of 
DDS to Brontobyte-scale, although it is designed 
only for showing the clear advantage of the soft- 
decision strategy over the traditional hard-decision 
one rather than beating the state-of-the-art ECC sys- 
tems which may combine more than one ECC code 
or technology. We believe that state-of-the-art ECC 

systems can be significantly improved by introducing 
our proposed idea, and the soft-decision decoding 
strategy wi l l gradual ly replace the traditional hard- 
decision strategy in future ECC systems. 

METHODS 

Derrick encoding process, sequencing 

and consensus 
Derrick encoding process involves converting the 
files into oligos, including randomization, encoding 
with RS codes and CRC64 codes, adding indices 
and primers, then obtaining the oligos for synthesis. 
In in vitro experiments, an oligo pool comprised of 
22 950 300-nt oligos was synthesized by Twist Bio- 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad229#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad229#supplementary-data
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interests. 
cience company, then carried out Illumina and
NT sequencing [ 30 ]. For ONT sequencing, due
o the significant difference between the read length
nd oligo length (300 bp), three oligos were concate-
ated into a molecule of 1020 bp by Gibson assem-
ly before sequencing. In in silico experiments, the
llumina, PacBio CLR and ONT sequencing reads
ere simulated by software li ke Art_Il lumina [ 31 ]
nd PBSIM2 [ 32 , 33 ]. More details of these steps are
hown in Supplementary Note 2 . 
Finally, the reads were grouped by indices and

he consensus sequences were built by perform-
ng multiple-sequence-alignments for the reads in
he same groups with bsalign ( https://github.com/
uanjue/bsalign ). In addition, the confidence score
f each nucleotide was calculated by the number
f supporting reads from multiple alignments. Af-
erward, the consensus sequences of oligos (rows
f matrices) were used to regenerate the matrices
Fig. 1 A). 

errick decoding algorithm 

errick decoding algorithm, which is the main
ethodological contribution of this paper, corrects
he blocks that original RS hard-decision strategy
ails to correct by introducing a soft-decision strat-
gy with a series of steps as follow. First, the algo-
ithm predicts a set of error positions and the cor-
esponding true values as candidates for each RS
lock. Second, the algorithm takes advantage of the
redicted positions and true values to carry out the
oft-decision strategy, and makes RS correction suc-
eed. Third, after each RS correction, the algorithm
ealigns and shifts the columns of the matrix ac-
ording to the new corrected values to reduce the
rrors in subsequent blocks. Fourth, after finish-
ng all RS blocks of a matrix, the algorithm checks
he overall correctness by CRC64 code, and re-
ursively backtracks the wrong-corrected RS blocks
ith greedy strategy. The principles and more details
f each step are i l lustrated in Supplementary Note 1
nd Supplementary Algorithms 1 –4 show the pseu-
ocodes of Derrick decoding algorithm framework. 

robability of an uncorrectable error 
o compare the performances of soft-decision and
raditional hard-decision strategies, we calculate the
robability of an uncorrectable error ( P UE ) which
epresents the probability that the decoding strategy
ails to correct a RS block. Letting E be the num-
er of errors with known positions and unknown
rue values (‘erasures’) and e be the number of those
ith unknown positions and true values (‘errors’),
he number of unknown variables is E + 2 e . Ac-
ording to RS correction theory, the block fails to
Page 9 of 10 
be corrected when the number of unknown variables 
E + 2 e is larger than n − k , where n and k are the
total length of code and the length of uncoded orig-
inal information, respectively. Thus, the P UE can be 
expressed as P ( E + 2 e > n − k ), where detailed
analysis and mathematical calculation are provided 
in Supplementary Note 3 . 

DATA AND CODE AVAILABILITY 

The data files containing 19 genomes used for in 
vitro tests were obtained from NCBI Nucleotide 
with accession numbers shown in Supplementary 
Table 10. Raw Nanopore sequencing and Illumina 
sequencing reads for in vitro tests had been de- 
posited into the CNCB Genome Sequence Archive 
(GSA) under GSA accession number CRA008036. 
The files used for in silico tests can be obtained
at https://github.com/wushigang2/derrick/tree/ 
main/data _ files _ insilico/ . Derrick source code 
is hosted by GitHub at: https://github.com/ 
wushigang2/derrick. 

SUPPLEMENTARY DATA 

Supplementary data are available at NSR online. 
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