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ABSTRACT 

Clean air actions (CAAs) in China have been linked to considerable benefits in public health. However, 
whether the beneficial effects of CAAs are equally distributed geographically is unknown. Using 
high-resolution maps of the distributions of major air pollutants (fine particulate matter [PM 2.5 ] and ozone 
[O 3 ]) and population, we aimed to track spatiotemporal changes in health impacts from, and geographic 
inequality embedded in, the reduced exposures to PM 2.5 and O 3 from 2013 to 2020. We used a method 
established by the Global Burden of Diseases Study. By analyzing the changes in loss of life expectancy 
(LLE) attributable to PM 2.5 and O 3 , we calculated the gain of life expectancy (GLE) to quantify the health 
benefits of the air-quality improvement. Finally, we assessed the geographic inequality embedded in the 
GLE using the Gini index (GI). Based on risk assessments of PM 2.5 and O 3 , during the first stage of CAAs 
(2013 to 2017), the mean GLE was 1.87 months. Half of the sum of the GLE was disproportionally 
distributed in about one quarter of the population exposed (GI 0.44). During the second stage of CAAs 
(2017 to 2020), the mean GLE increased to 3.94 months and geographic inequality decreased (GI 0.18). 
According to our assessments, CAAs were enhanced, from the first to second stages, in terms of not only 
preventing premature mortality but also ameliorating health inequalities. The enhancements were related to 
increased sensitivity to the health effects of air pollution and synergic control of PM 2.5 and O 3 levels. Our 
findings wi l l contribute to optimizing future CAAs. 

Keywords: clean air action, public health, inequality, fine particulate matter, ozone 
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monitoring systems [ 4 ]. During this stage, a na- 
tionwide monitoring network has also been estab- 
lished, which provided key inputs for accurate assess- 
ments on exposure to air pollutants and their health 
impacts. The second stage (2018 to 2020) aimed 
to further improve air quality nationwide. Tailored 
measures (e.g. reducing emissions of volatile organic 
compounds [VOCs]) targeting multiple air pollu- 
tants, including PM 2.5 and O 3 , were implemented 
[ 5 ]. Overall, CAAs have markedly reduced air pollu- 
tion levels in China, thereby significantly enhancing 
public health. From 2013 to 2020, a 48% decrease in 
PM 2.5 concentration was associated with a 21% re- 
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NTRODUCTION 

lean air actions (CAAs) in China from 2013 to
020 improved air quality [ 1 –3 ], and may have pre-
ented premature mortality caused by air pollution
xposure. In the first stage of CAA implementation
2013 to 2017), the focus was on reducing primary
missions of fine particulate matter (PM 2.5 ) in the
eijing-Tianjin-Hebei region (BTH), the Yangtze
iver Delta (YRD), the Pearl River Delta (PRD) and
ther regions. The key measures during this stage
ncluded controlling industrial emissions, promot-
ng the use of clean energy sources, improving vehi-

le emissions standards, and optimizing air-quality 
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uction in attributable deaths (1.75 [95% confidence
nter val 1.6 4–1 .85] mi l lion in 2013 to 1.39 [95%
onfidence interval 1.27–1.51] mi l lion in 2020) [ 3 ].
AAs were associated with improvements in mul-
iple health indicators, including lung function [ 6 ],
ung-cancer incidence [ 7 ] and survival rate [ 8 ], kid-
ey function [ 9 ], blood lipids [ 10 ], physical func-
ions [ 11 ], household medical expenditure [ 12 ], and
ental health [ 13 –15 ]. However, increases in O 3 
oncentrations, particularly during the first stage, in-
reased mortality in populous eastern China [ 16 ]. 
The health benefits of air pollution control

hould be maximized, and the environmental in-
qualities minimized as well. Although interpreta-
ion on environmental inequality can be complex
for more details, please see the discussion sec-
ion), in this study, we utilized the terminology to
escribe the phenomenon that a large fraction of
xposed population, disease burden, or another ad-
itive measure of environmental impact is dispro-
ortionally attributable to a small identifiable sub-
roup. In high-income countries, actions targeting
oward environmental equality, such as the Justice40
nitiative in the United States (US), have been taken
o identify disadvantaged communities, and to pri-
ritize them for public policies on air pollution con-
rol and climate mitigation [ 17 ]. There is consider-
ble inequality embedded in exposure to, and the
ealth effects of, ambient air pollution, particularly
n low- and middle-income countries (LMICs) [ 18 ].
or instance, in China, exposure to nitrogen dioxide
NO 2 ) and PM 2.5 tends to scale with increasing so-
ioeconomic status [ 19 ]. However, few studies have
valuated this trend. In our previous study, we as-
essed attributable deaths linked to long-term expo-
ure to NO 2 , and the geographic inequality therein.
he distribution of NO 2 -related deaths was dispro-
ortional, with the top 20% high-risk individuals
ontributing 85.7% of attributable deaths [ 20 ]. In
ddition to the attributable burden of air pollution
xposure, policymakers and the public are also inter-
sted in the relevant inequality. For instance, PM 2.5 
xposure in the US exhibits inequalities among races
nd income levels. In addition, from 20 0 0 to 2016,
he fraction of the population exposed to PM 2.5 
 8 μg/m 

3 decreased from 89% to 41% as the de-
ree of inequality between racial groups gradually
ncreased. Therefore, the health benefit of a reduc-
ion in air pollution may not be distributed equally
 21 ], and warrants a study to quantitively examine
hether a strategy of environmental management in-
reases or decreases such inequalities, particularly
mong the LMICs, such as China. 
Environmental inequality can have several

auses, and intervening in some of those could be
rohibitively costly. For instance, individuals living
Page 2 of 11 
close to desert areas are more frequently affected by 
exposure to dust particles; migration is the ultimate 
solution to this but may be unaffordable. Therefore, 
investigations of the distributions of the absolute 
health effects of air pollution exposure [ 20 ] may 
overestimate environmental health inequality. It 
would be useful to assess how temporal changes in 
air pollution-related disease burden (also known 
as relative disease burden) are differentially geo- 
graphically distributed. Additionally, to establish air 
pollution-control targets at the population level and 
to optimize their health benefits [ 22 ], stakeholders 
are interested in the geographic inequality (also 
known as spatial inequality or spatial disparity) 
caused by regional differences in, for instance, 
population characteristics. However, no study has 
assessed the geographic inequalities of the health 
benefits caused by CAAs. 

In this study, we developed a health metric (gain 
of life expectancy (GLE)) to monitor the health ben- 
efits associated w ith CAA s based on classical risk 
assessments, and evaluated the geographic inequal- 
ity embedded in the metric using Lorenz curves and 
the Gini index (GI). The Lorenz curve visualizes cu- 
mulative distribution of the health benefits against 
the corresponding population distribution, and GI 
is a summary statistic of the curve. The risk assess- 
ments focused on the long-term exposures to PM 2.5 
and O 3 , which had been used as additive risk factors
in previous studies [ 23 –25 ]. We utilized the metric
of attributable deaths or years of life lost (YLL) to 
measure the sum of health impact from air pollution 
exposure among different subgroups, distinguished 
by sex, age, residence, and spatiotemporal coordi- 
nate. YLL was further transformed into loss of life 
expectancy (LLE) to be indicative for the health im- 
pact per capita. We investigated the magnitude and 
inequalities in health benefits during the two stages 
of the CAAs, from 2013 to 2020. 

RESULTS 

PM 2.5 and O 3 exposure 

The population-weighted concentration of PM 2.5 
decreased from 68.98 μg/m 

3 to 47.13 μg/m 

3 in the 
first stage of the CAAs and to 35.77 μg/m 

3 after the
second stage (Fig. 1 ). The proportion of adults ex- 
posed to a polluted level of PM 2.5 (greater than the 
national ambient air quality standard, i.e. 35 μg/m 

3 , 
equal to the first WHO interim target) decreased 
from 95.86% to 76.77% and 46.83% after the first 
and second stages, respectively. The gridded map of 
trends from 2013 to 2020 indicated geographic het- 
erogeneity in the effect of CAAs on PM 2.5 exposure 
( Supplementary Fig. S1 ). 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad263#supplementary-data
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Figure 1. PM 2.5 (a) and O 3 (b) exposures in China from 2013 to 2020. The black lines and circles (referring to right y -axis) show nationwide population- 
weighted average exposure, and the colored bars (referring to left y -axis) show percentages of population exposed to pollution above levels recom- 
mended by the World Health Organization (WHO). We also present the least-square trends in exposure by grid in Supplementary Fig. S1 . 
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The values for O 3 increased from 111.4 μg/m 

3 to
21.1 μg/m 

3 in the first stage and decreased slightly
o 114.9 μg/m 

3 after the second stage. The pro-
ortion of adults exposed to a polluted level of O 3 
howed a similar temporal trend. A gridded map of
rends showed that hotspots of O 3 growth spanned
or th and nor thwest China ( Supplementary Fig.
1 ), suggesting considerable geographic inequality
n the effect of CAAs on O 3 exposure. 

ttributable burden of mortality 
igure 2 shows the population distribution by expo-
ure level or health impact of air pollutants in 2013,
017, and 2020. In 2013, 1.31 (95% confidence inter-
al [CI]: 1.26–1.39) mi l lion attributable deaths and
8.87 (95% CI: 27.88–30.71) mi l lion YLLs were as-
ociated to PM 2.5 exposure. These values decreased
o 1.23 (95% CI: 1.14–1.26) and 26.97 (95% CI:
4.90–27.60) in 2017 and to 1.06 (95% CI: 1.00–
 .12) and 22.62 (95% CI: 21.41–23.92) in 2020, re-
pectively. Compared to PM 2.5 , O 3 exposure made
 smaller contribution to the burden of mortality.
n 2013, 0.102 (95% CI: 0.100–0.103) mi l lion at-
ributable deaths and 1.76 (95% CI: 1.72–1.77) mil-
ion YLLs were associated to O 3 exposure. These val-
es increased to 0.124 (95% CI: 0.121–0.125) and
.10 (95% CI: 2.05–2.17) in 2017 and decreased to
.116 (95% CI: 0.113–0.116) and 1.93 (95% CI: 1.88–
 .94) in 2020, respectively. For PM 2.5 and O 3 , the
urden on males was heavier than on females, that
n the elderly was heavier than on the young, and
hat on urban residents was heavier than on rural res-
dents. 

ealth benefits 
he burden of mortality was dominated by PM 2.5 
xposure, which had LLEs of 1.86 (95% CI: 1.80–
Page 3 of 11 
1 .98), 1 .69 (95% CI: 1 .56–1 .72), and 1 .38 (95% CI:
1.30–1.46) in 2013, 2017, and 2020, respectively. 
Based on only the PM 2.5 -associated disease burden, 
the first and second stages of CAAs contributed to 
GLEs of 2.11 and 3.68 months, respectively. Com- 
bining the health effects of PM 2.5 and O 3 exposure, 
the GLE was estimated to be 1.87 months for the first 
stage and 3.94 months for the second stage of CAAs.

Figures 3 and S3 show the distributions of GLE 

associated with CAAs. During the first stage, GLE 

was distributed unevenly, being low in the north and 
high in the south. Although the PM 2.5 concentra- 
tions in the North China Plain and Fenwei Plain 
(NCP-FP) decreased markedly during the first stage, 
the GLE of joint exposure to PM 2.5 and O 3 was low
for two reasons. First, the increment in O 3 exposure 
offset the health benefits caused by PM 2.5 reduction. 
Second, due to the sublinear curvature of the rela-
tionship between PM 2.5 and mortality, the marginal 
effect on health of the same reduction from base- 
line of high-concentration exposure was smaller than 
that for low-concentration exposure. By contrast, 
during the second stage, GLE was evenly distributed 
geographically. Throughout CAAs, GLE was high in 
the YRD and Sichuan Basin. Similarly, because of the 
synergic control of PM 2.5 and O 3 and the improved 
baseline air quality, the GLE was higher in the second 
than the first stage, although the reduction in PM 2.5 
concentration in the second stage (11.36 μg/m 

3 ) 
was smaller than in the first stage (21.85 μg/m 

3 ). 
Analyses by prov ince y ielded similar results 

(Fig. 4 ). The provincial average GLEs did not reflect
changes in exposure to PM 2.5 . For O 3 , which was
linked to mortality by a uniform function for adults 
of all ages, the provincial average GLEs were propor-
tional to the corresponding changes in exposure. The 
GLE during CAAs was codetermined by changes 
in air pollutants and demographic characteristics, 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad263#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad263#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad263#supplementary-data
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Figure 2. Distributions of exposure to and the health effects of PM 2.5 (a) and O 3 (b) by sex, age, and area of residence 
among Chinese adults in 2013, 2017, and 2020. For more distributions standardized by sex, age, and residence, please see 
Supplementary Fig. S2 . 
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s well as their nonlinear interactions. The average
aseline mortality rate, standardized by the 2013 de-
ographic structure, was reduced from 7.6 per 10 0 0
dults in 2013 to 6.9 in 2020, meaning that the popu-
ation became less vulnerable due to improvements
n many aspects such as healthcare and medical
ccessibility. The decreased vulnerability would
hrink the health benefits of CAAs. In contrast,
Page 4 of 11 
without standardization by demographic structure, 
the raw baseline mortality rate was increased to 
7.8 per 10 0 0 adults in 2020. The different trend in
mortality rate during 2013–2020 after standardiza- 
tion showed the changes in demographic structure, 
particularly population aging ( Supplementary
Fig. S2 ). Briefly speaking, the rapidly aging 
population in China increased the sensitivity to 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad263#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad263#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad263#supplementary-data
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Figure 3. Gain of life expectancy (GLE) caused by CAAs, 2013 to 2020. (a) Temporal trend in GLE, determined by changes in loss of life expectancy 
attributable to PM 2.5 and O 3 exposure. (b) Distributions of GLE by level of air-quality improvement, codetermined by PM 2.5 and O 3 reductions. The 
detailed geographic distributions of GLE are documented in Supplementary Fig. S3 . 
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ir pollution, and thus would amplify the health
enefits of CAAs. 

eographic inequality embedded 

n health benefits 
se of different air pollution-control targets and
heir interactions with spatially varying demo-
raphic characteristics resulted in a complex geo-
raphic pattern in CAA-mediated health benefits
Fig. 2 ). During the first stage, half of the health
enefits was evident in 25% of the population (GI
.44). This increased to 37.5% during the second
tage (GI 0.18). The degree of inequality embedded
n the reduced PM 2.5 concentration was stable (Fig.
 ). In other words, the decreased inequality in health
enefits could be partially attributable to control of
 3 pollution. Furthermore, as shown in Fig. 2 , the
urden of diseases was disproportionally distributed
etween different age groups. As expected, a large
raction of attributable deaths was highly clustered
mong the elderly, who are recognized as being
usceptible to cardiorespiratory diseases. Given the
rend of population aging in China ( Supplementary
ig. S2 ), the increased sensitivity to the beneficial
ffects of air pollution reduction can also partially
xplain the decreased geographic inequality. 

ISCUSSION 

o the best of our knowledge, this is the first assess-
ent of the effect of CAAs on health benefits and
ealth equality. Compared to the first stage of the
AAs, the second stage had a smaller reduction in
M 2.5 exposure but a greater benefit in health, which
as distributed more equally. Therefore, CAAs not
nly reduced attributable deaths but also improved
elevant health equality. Our findings wi l l faci litate
Page 5 of 11 
the optimization of air pollution-control policies to 
better protect public health. 

Sensitivity to the health effects 
of air pollution 

The health benefits of CAAs were codetermined by 
air pollution control and human sensitivity. In this 
study, human sensitivity was captured by baseline 
mortality, age structure, and baseline exposure level. 
Subgroups with higher baseline mortality, advanced 
age, and lower PM 2.5 exposure were more sensi- 
tive to air quality changes. High sensitivity could 
enhance the health benefits caused by air pollu- 
tion reduction, explaining the greater health bene- 
fits in the second stage of the CAAs. Therefore, Chi-
nese adults are increasingly sensitive to air pollution 
exposure. 

Other factors contribute to sensitivity to the 
health effects of air pollution. First, chemical profiles 
modify the toxicity of PM 2.5 , thereby modulating 
the health effects. For instance, desert dust, bio- 
fuel burning, and open fires were the three largest 
contributors to PM 2.5 -related deaths in children 
under 5 years of age [ 26 ]. Similar results have been
reported for birthweight reductions attributable to 
PM 2.5 [ 27 ]. Second, sociodemographic factors can 
affect susceptibility or vulnerability to the adverse 
effects of PM 2.5 and O 3 . Bell et al . systematically
reviewed epidemiological evidence on susceptibility 
to morbidity or mortality related to short-term 

O 3 exposure. Elderly individuals were significantly 
more susceptible to O 3 exposure (excess risk 1.27%, 
95% CI: 0.76–1.78) than young people (0.60%, 95% 

CI: 0.40–0.80). Individuals of low socioeconomic 
status (such as unemployed/low occupational 
status, ethnic/racial minorities, low educational 
level, and poverty) are potentially susceptible to 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad263#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad263#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwad263#supplementary-data
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Figure 4. Gain of life expectancy during CAAs by province, 2013 to 2020. (a) and (b) Improvements in air quality and health for PM 2.5 and O 3 , respectively. 
(c) Total gain of life expectancy attributable to PM 2.5 and O 3 reductions in combination. 
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 3 exposure [ 28 ]. Findings on susceptibility to
he short-term health effects of PM 2.5 are similar
 29 ]. Third, behavioral factors can also modify the
ssociation between ambient exposure and a health
utcome by affecting personal exposure patterns
uch as respiration rate. For instance, active commut-
ng enhances, and physical activity attenuates, the
ssociation between PM 2.5 exposure and cerebrovas-
ular disease. By ignoring such factors, we might
ave underestimated the magnitude of geographic
nequality. 
Additionally, we might have underestimated

eographic inequality by ignoring adverse effects on
ewborns and children, who are sensitive to air pol-
ution. Gestational PM 2.5 or O 3 exposure increases
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the risk for pregnancy loss [ 30 –32 ], but there is little
evidence on this risk in China. According to a previ- 
ous study, each 10 μg/m 

3 increment of PM 2.5 expo- 
sure during pregnancy increases the risk for sti l lbirth 
by 10% (95% CI: 7–13) [ 31 ]. In China, PM 2.5 and O 3 
adversely affect birth outcomes, leading to preterm 

birth and low birthweight outcomes [ 33 –36 ]. For 
example, in a study, each 10 μg/m 

3 increment of ges- 
tational PM 2.5 exposure was associated with a 26.2% 

(95% CI: 8.7–46.5) increased risk for preterm birth 
[ 33 ]. In another study, each 10 μg/m 

3 increment 
of gestational O 3 exposure increased the risk for 
term low birthweight by 3% (95% CI: 0.1–5.2) [ 36 ].
Moreover, acute exposure to PM 2.5 could increase 
the risk of mortality in children under 5 years of 
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Figure 5. Magnitudes of geographic inequality embedded in the health benefits at the two stages of CAAs. (a) Improvement in PM 2.5 exposure (top 
panel) and Gini indexes for their geographic inequalities (bottom panel). (b) PM 2.5 -attributable health benefits (top) and its inequality (bottom). (c) Health 
benefits (top) and its inequality (bottom) attributable to PM 2.5 and O 3 in combination. (d) Lorenz curves underlying the Gini indexes in (c). 
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ge in China, with a greater effect in neonates [ 37 ].
owever, the lack of gridded data on the baseline
revalence of sti l lbirth, low-birthweight livebirth, or
reterm birth enabled us to estimate the disease bur-
en attributable to PM 2.5 and O 3 among adults only.

olicy implications 
he high degree of inequality in the first stage of the
AAs may be explained by the slight improvement
n health across some regions, such as NCP-FP. In
he second stage, one focus was control ling O 3 pol lu-
ion by synergically reducing emissions of VOCs and
itrogen oxides (NO x ), which enhanced the health
enefits. In contrast, the lack of VOC control, partic-
larly in urban areas, the reduction in NOx concen-
ration [ 38 ] contributed to an increased O 3 exposure
uring the first stage, due to VOC-limited regimes
 39 ]. It is worth mentioning that some studies have
roven a positive interaction between the health ef-
ect of PM 2.5 and that of O 3 [ 40 ]. The PM 2.5 -O 3 in-
eraction is also known as the synergic health effect.
iven that, the burdens of diseases separately esti-
ated for PM 2.5 and O 3 are not additive, and the
urrent method might even underestimate the health
enefits brought by the synergic emission control for
M 2.5 and O 3 . Furthermore, it is worth mentioning
hat the synergic strategies could change source sec-
ors and chemical compositions of the PM 2.5 mix-
ure. For instance, the fraction of VOC in PM 2.5 mix-
ure and VOC-related sources (e.g. diesel vehicular
xhaust) wi l l be reduced, in order to synergically
ontrol for O 3 . However, the current risk assessment
pproach ignored inequal toxicities between differ-
nt PM 2.5 components, and thus couldn’t evaluate
he health impacts from the synergic emission con-
rols, accurately. 
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Additionally, with the in-depth reduction in 
PM 2.5 pollution, residents in heavily polluted areas, 
such as NCP-FP, became sensitive to the resulting 
beneficial effects. Furthermore, the second stage 
focused on three key regions likely contributing to 
the reduced geographic inequality (NCP, FP, and 
YRD). In terms of maximizing the health benefits or 
minimizing the inequality therein, the second stage 
of CAAs outperformed the first stage. Therefore, 
optimized strategies including the synergic control 
of PM 2.5 and O 3 , and in-depth reduction in air
pollution, should be considered for future air quality 
management. 

Although the CAAs in China can promote equal- 
ity, warranted are further additional investigations 
and policies specifically targeted to minimizing 
environmental injustice. In high-income countries, 
such strategies have been put into action. For in- 
stance, the recent Integrated Science Assessment for 
particulate matter and its supplement, the scientific 
reports to support the proposal to strengthen the 
annual PM 2.5 standard in the US from 12 μg/m 

3 to
9–10 μg/m 

3 , had identified disadvantaged subpop- 
ulations by socioeconomic status and race ( https: 
//w w w.federalregister.gov/d/2020-01223 and 
https://w w w.federalregister.gov/d/2022-07938 ). 
The US Environmental Protection Agency also 
proposed to modify the PM 2.5 monitoring network 
design criteria to include an environmental jus- 
tice factor. The Justice40 Initiative developed the 
Climate and Economic Justice Screening Tool (CE- 
JST) to identify disadvantaged communities and to 
allocate future resources for environmental improve- 
ment. Although studies have found CEJST could not 
effectively reduce inequalities embedded in air pollu- 
tion exposure [ 17 ], studies of quantitative inequality 
assessment, like ours, wi l l contribute to develop an
optimized tool, and to design justice policies. 

https://www.federalregister.gov/d/2020-01223
https://www.federalregister.gov/d/2022-07938
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omplexities underlying environmental 
nequality 
mproving environmental equality is an aim of en-
ironmental governance. There is growing interest
n the distribution of the effects of environmental
olicies [ 41 , 42 ]. However, the concepts of equality
re often interpreted and operationalized differently.
s a result, multiple dimensions or indicators of in-
quality are needed to evaluate air pollution-control
olicies [ 43 ]. 
To achieve equal distribution of clean air, it has

een assumed that all individuals should be exposed
o an equal level of air pollution. Therefore, expo-
ure levels by subpopulations, such as multiple eth-
ic groups, need to be examined. For instance, a pre-
ious study combined US demographic and PM 2.5 
ata from 2004 to 2016, and examined whether mi-
ority (Black, Asian, and Hispanic or Latino) areas
ad higher levels of PM 2.5 [ 21 ]. Second, to achieve
quality in terms of individual health, it has been
ssumed that the disease burden attributable to air
ollution should be equally borne by all individuals.
herefore, health inequalities, such as the effect of air
ollution on mortality and hospitalization, need to
e examined. For example, Fann et al . evaluated the
ffects of air pollution-control strategies on the in-
qualities of mortality and the risk for hospitalization
ue to asthma [ 44 ]. Xue et al . studied the inequal-
ties in the distributions of attributable deaths and
LLs caused by NO 2 exposure in China from 2013
o 2020 [ 20 ]. Third, equality can also be interpreted
o mean that the exposure level or health effects of air
ollution should be proportional to socioeconomic
tatus. This is based on the criterion of equality in
romoting the welfare of socially disadvantaged or
ulnerable groups. For example, Tomar et al . exam-
ned whether lower socioeconomic status groups ex-
erience more premature deaths due to PM 2.5 expo-
ure in India [ 45 ]. Finally, inequality has also been
tilized to describe that different source sectors dis-
roportionally contributed to the burden of air pol-
ution, due to the unequal toxicities for different
hemical components [ 46 ]. However, to reveal such
nequality, source- or component-specific air pollu-
ion concentrations and customized joint-exposure-
esponse functions [ 47 ] are warranted, which is be-
ond the capability of commonly-utilized risk assess-
ent approaches. 
Policies with a focus on the abovementioned in-

qualities are critical for promoting environmental
quality and justice. Although the CAAs improved
ir quality and alleviated the associated health bur-
ens, the distribution of health benefits had not been
xamined, before this study. We evaluated the geo-
raphic inequality of the CAAs, which assumed that
Page 8 of 11 
the health benefits of an air pollution-control pol- 
icy are equally shared by all individuals. Our findings 
provide insights into the equitable geographic dis- 
tribution of clean air and health benefits. However, 
we did not consider detailed demographic and so- 
ciological characteristics or assess health benefits in 
vulnerable groups. Therefore, further investigation is 
needed. 

CONCLUSION 

The health effects of the second stage of CAAs were 
greater than the first stage, in terms of both in- 
creased efficacy and decreased inequality. Our find- 
ings suggest that continuously improving air quality 
throughout China wi l l benefit public health. 

METHODS 

Environmental and population data 

PM 2.5 and O 3 concentration (1 × 1 km resolution) 
data were taken from previous studies [ 48 , 49 ],
which combined multiple datasets using machine- 
learning algorithms (random forest, extremely 
randomized trees, and extreme gradient boosting). 
The inputs were satellite atmospheric measure- 
ments, meteorological fields, chemical-transport 
model simulations, and other geographical vari- 
ables. The models for predicting daily levels of 
PM 2.5 and O 3 in China were evaluated by cross- 
validation based on monitoring data, and their 
overall performances were good ( R 

2 0.92 and 0.89 
for long-term concentrations of PM 2.5 and O 3 , 
respectively) [ 48 , 49 ]. 

We analyzed the effects of PM 2.5 and O 3 on 
health, considering factors such as sex, age, and place 
of residence. Therefore, population maps based on 
sex and age were combined with urbanization maps. 
We used WorldPop ( https://w w w.worldpop.org/ ) 
data to obtain information on sex and age, which 
were combined and aggregated into a regular 1 ×
1 km grid over China. Population data were esti- 
mated by combining spatial population datasets with 
national age and sex data, as described previously 
[ 50 , 51 ]. An urbanization map of China was obtained 
from satellite images of impervious surfaces using 
a product developed by Gong et al. [ 52 ]. We com-
bined those maps to develop a series of gridded maps 
for each subpopulation based on sex, age, and ur- 
ban/rural residence. For details of data processing, 
see a previous study [ 20 ]. 

Assessment of mortality burden 

We applied the method developed by the 2019 GBD 

Study to assess the mortality burden attributable to 

https://www.worldpop.org/
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ong-term ambient air pollution exposure among all
hinese adults ( > 25 years old) from 2013 to 2020.
he risk assessments for long-term PM 2.5 and O 3 
xposures were performed within a 1 × 1 km grid
y subpopulations of sex, age, and residence (urban
r rural), and were parametrized using the following
quations: 

D s,t,k = AF (C s,t ) × B s,k × P s,t,k , 

AF (C s,t ) = 1 − 1 ÷ RR s,t,k , 

RR s,t,k = MR - BR T k (C s,t ) 

÷MR - BR T k ( TMREL ) , (1)

here subscripts s , t , and k denote the indexes for
patial grid, calendar year, and sex-age-residence sub-
opulations, respectively; D s, t, k represents the at-
ributable deaths among the k th subpopulation in
he s th grid cell during the t th year; C, B, and P are
he three inputs, i.e. annual concentration of PM 2.5 
r O 3 , baseline mortality rate, and population size,
espectively; AF is the attributable fraction; RR is
he relative risk; MR-BRT is the nonlinear exposure-
esponse function; and TMREL is the theorical min-
mum risk exposure level. The Meta-regression–
ayesian, Regularized Trimmed (MR-BRT) tool es-
imates the function that links a risk factor to mor-
ality risk. The MR-BRT and TMREL parameters
ere obtained from the 2019 GBD Study [ 23 ].
he MR-BRT considers six cause-specific deaths at-
ributable to PM 2.5 exposure—ischemic heart dis-
ase, stroke, lung cancer, chronic obstructive pul-
onary disease (COPD), lower-respiratory-tract in-
ection, and type-2 diabetes for age-specific adults—
nd considers COPD-caused deaths for long-term
 3 exposure. The long-term concentration (C s, t )
as set as the 12-month average PM 2.5 , or the peak-
eason value of O 3 . We referred to the recent air
uality guidelines of the World Health Organiza-
ion to evaluate long-term O 3 exposure [ 53 ]. We ob-
ained the daily 8 h average from the gridded esti-
ates and calculated the monthly averages. Then the
eak-season value was calculated as the maximum
-month moving average, based on the monthly av-
rage concentrations. The premature deaths associ-
ted with peak-season O 3 concentrations have been
eported [ 54 ]. We also obtained gridded estimates
f baseline total mortality rates by combining the
ata in the annual reports of the National Disease
urvei l lance Program and the gridded maps for sex-
ge-residence subpopulations. The gridded mortality
stimates were validated against the county-level val-
es in the census data. We used the mortality causes
rofile from the GBD Study [ 23 ] to obtain disease-
pecific baseline estimates. 
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Assessment of health benefits by gain 

of life expectancy 
We transformed the number of attributable mortali- 
ties to loss of life expectancy (LLE), a disease burden 
metric that is scalable and computationally additive. 
LLE can be estimated using the following equation: 

LL E s,t = LE 0 × YL L s,t ÷ P s,t , 

P s,t = 

∑ 

k 
P s,t,k , 

YL L s,t = 

∑ 

k 
D s,t,k × LE k , (2) 

where LE k denotes the theorical life expectancy at a 
given age for the k th subpopulation and YLL s, t repre-
sents years of life lost. The LLE at birth can be viewed
as the re-scaled average of the YLL given a specific
age-structure and has been used in previous works 
[ 20 , 55 ]. To quantify health benefits, we derived an
indicator, gain of life expectancy (GLE): 

GL E s = LL E s,t= y 1 − LL E s,t= y 2 

= LE 0 ( YL L s,t= y 1 ÷ P s,t= y 1 

−YL L s,t= y 2 ÷ P s,t= y 2 ) 

= LE 0 [(P s,t= y 1 ÷ P s,t= y 2 ) YL L s,t= y 1 

−YL L s,t= y 2 ≡ YL G s ] ÷ P s,t= y 2 

= LE 0 × YL G s ÷ P s,t= y 2 , (3) 

where y 1 and y 2 are the temporal indexes for the be-
ginning and ending years of air pollution control, re- 
spectively (e.g. for the first stage of CAAs, y 1 = 2013
and y 2 = 2017), and YLG denotes years of life gain,
which measures the reduction in YLL with adjust- 
ment for population size. 

Assessment of inequality 
We viewed the CAA-associated GLE as a type of 
health income , and used the classical econometric 
method to evaluate the relevant inequality. We 
created a Lorenz curve to assess the geographic 
inequality embedded in the health benefits (GLE s ) 
caused by a reduction in PM 2.5 ex posure, O 3 ex po-
sure, or their combination, during a given stage of 
air pollution control. The Lorenz curve, a graphical 
representation of income distribution that plots 
the cumulative share of total income held by a 
given percentage of the population, is expected 
to be a diagonal line, indicating absolute equality. 
Correspondingly, to generate health Lorenz curves, 
income was replaced by the health benefits metric 
(i.e. GLE). The coordinates ( x i , y i ) of points on
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ealth Lorenz curves can be expressed as: 

x i = 

∑ 

s ∈ �(i ) 
( GL E s × P s,t= y 2 ) 

÷
∑ 

s 
( GL E s × P s,t= y 2 ) 

= 

∑ 

s ∈ �(i ) 
YL G s ÷

∑ 

s 
YL G s , 

y i = 

∑ 

s ∈ �(i ) 
P s,t= y 2 ÷

∑ 

s 
P s,t= y 2 

�(i ) : ∀ s, GL E s < c i (4)

here �( i ) denotes the subset of the population
ith a GLE below a given constant level ( c i ). We
alculated the GI to measure the deviation from the
iagonal line, where a greater value indicates a more
isproportionate distribution of health benefits. 
Analyses were performed in R (version 4.2.2).
e used the Monte Carlo approach to evaluate the
ncertainties embedded in the mortality-burden
etrics, and calculated the empirical CIs. Due to
omputational complexity, we were unable to calcu-
ate uncertainties for the Lorenz curves and GIs. 
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