
Disease- and stage-specific alterations of the oral and 
fecal microbiota in Alzheimer’s disease
Alba Trocia,1, Sarah Philippen b,1, Philipp Rausch a,1, Julius Raveb, Gina Weylandb, Katharina Niemannb, Katharina Jessenb,  
Lars-Patrick Schmill c, Schekeb Aludin c, Andre Frankea, Daniela Bergb, Corinna Bang a,1 and Thorsten Bartsch b,*1

aInstitute of Clinical Molecular Biology, Kiel University, Kiel, Germany
bDepartment of Neurology, Memory Disorders and Plasticity Group, University Hospital Schleswig-Holstein, Kiel 24105, Germany
cDepartment of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
*To whom correspondence should be addressed: Email: t.bartsch@neurologie.uni-kiel.de
1A.T., S.P., P.R., C.B., and T.B. contributed equally to this work.
Edited By: Christopher Dupont

Abstract
Microbial communities in the intestinal tract are suggested to impact the ethiopathogenesis of Alzheimer’s disease (AD). The human 
microbiome might modulate neuroinflammatory processes and contribute to neurodegeneration in AD. However, the microbial 
compositions in patients with AD at different stages of the disease are still not fully characterized. We used 16S rRNA analyses to 
investigate the oral and fecal microbiota in patients with AD and mild cognitive impairment (MCI; n = 84), at-risk individuals (APOE4 
carriers; n = 17), and healthy controls (n = 50) and investigated the relationship of microbial communities and disease-specific markers 
via multivariate- and network-based approaches. We found a slightly decreased diversity in the fecal microbiota of patients with AD 
(average Chao1 diversity for AD = 212 [SD = 66]; for controls = 215 [SD = 55]) and identified differences in bacterial abundances 
including Bacteroidetes, Ruminococcus, Sutterella, and Porphyromonadaceae. The diversity in the oral microbiota was increased in patients 
with AD and at-risk individuals (average Chao1 diversity for AD = 174 [SD = 60], for at-risk group = 195 [SD = 49]). Gram-negative 
proinflammatory bacteria including Haemophilus, Neisseria, Actinobacillus, and Porphyromonas were dominant oral bacteria in patients 
with AD and MCI and the abundance correlated with the cerebrospinal fluid biomarker. Taken together, we observed a strong shift in 
the fecal and the oral communities of patients with AD already prominent in prodromal and, in case of the oral microbiota, in at-risk 
stages. This indicates stage-dependent alterations in oral and fecal microbiota in AD which may contribute to the pathogenesis via a 
facilitated intestinal and systemic inflammation leading to neuroinflammation and neurodegeneration.
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Significance Statement

Alterations in the taxonomic pattern of the intestinal microbiome are suggested to impact the pathogenesis of Alzheimer’s disease 
(AD). However, the intestinal microbiome is not fully characterized in different stages of the disease. Our study reveals significant al-
terations in the oral and fecal microbiota of individuals with AD and mild cognitive impairment, as well as at-risk individuals. The 
findings suggest a potential link between intestinal microbial communities and neuroinflammation, which may contribute to the 
pathogenesis of AD. The results provide insight into the microbial compositions of individuals at different stages of the disease 
and could lead to the development of novel therapeutic strategies targeting the gut–brain axis in AD.
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Introduction
Alzheimer’s disease (AD) is a neurodegenerative disorder charac-
terized by progressive cognitive and behavioral impairment lead-
ing to dementia (1). The main clinical hallmarks of patients with 
AD include the development of memory loss, deficits in spatial 
orientation, attention deficits, emotional disturbance, and person-
ality changes (2). The underlying AD pathology is characterized by 
the deposition of extracellular amyloid-β (Aβ) plaques and intracel-
lular neurofibrillary tangles composed of hyperphosphorylated 
tau (tau) protein (3), however, inflammatory processes have been 
shown to significantly contribute to neurodegeneration (4).

In AD, neurodegenerative processes start decades before clinic-
al symptoms emerge (5, 6), resulting in a preclinical stage of AD. 
Therefore, early detection of biomarkers and clinical symptoms 
is essential to identify affected individuals in prodromal, premani-
festation, or early disease stages. The most prevalent genetic risk 
factor for late-onset AD in western population is the APOE4 allele, 
which encodes a mutated form of the apolipoprotein E (7). In add-
ition to the genetic risk factors, several acquired factors, such as 
cerebrovascular diseases, diabetes, hypertension, obesity, and 
other lifestyle diseases increase the risk of developing AD (8–10). 
In the premanifestation period of the already ongoing 
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neurodegenerative processes, individuals at risk often display a 
prodromal syndrome defined as mild cognitive impairment 
(MCI). MCI is characterized by objective cognitive decline without 
impairment of daily life functionality; however, typical AD 
biomarkers can already be detected in the cerebrospinal fluid 
(CSF) (11).

Due to the time course of neurodegenerative processes, envir-
onmental factors that may influence disease trajectory early on 
are of high importance. There is increasing evidence that the hu-
man microbiome influences the development and modulation of 
AD probably via bidirectional communication between the gut 
and the brain, referred to as the gut–brain axis. Based on experi-
mental research on the microbiome–gut–brain interaction, it is 
hypothesized that a microbial dysbiosis in the gut may lead to 
an intestinal barrier dysfunction facilitating intestinal inflamma-
tion (12, 13). This intestinal inflammation in turn is thought to re-
sult in systemic inflammatory processes which can either 
indirectly, or directly affect the brain. The indirect pathway in-
cludes the release of inflammatory substances (e.g. cytokines 
and activated immune cells) that can cross the blood–brain bar-
rier and increase its permeability (14, 15). On the other side, bac-
terial compounds themselves can directly migrate to the brain 
through the compromised blood–brain barrier (4). In the brain, 
all these agents promote neuroinflammatory processes, which, 
in the context of AD, contribute to the neurodegenerative process 
(4, 13, 16).

The human microbiota is composed of trillions of different mi-
croorganisms colonizing the human body, in particular the hu-
man gastrointestinal tract (17). Within this complex ecosystem, 
microbes are involved in key functions for human health includ-
ing energy extraction, biosynthesis of vitamins, protection against 
pathogen overgrowth, and education of the immune system (18). 
Changes in these complex communities have been associated 
with the development of different inflammatory diseases (19) 
and in recent years, alterations of the intestinal microbiome 
were also identified in neurological disorders, such as multiple 
sclerosis, autism spectrum disorder, Parkinson’s disease, and 
AD (13, 16, 20, 21).

In the context of AD, studies on the gut microbiome have re-
ported a reduced diversity in patients with AD but differed widely 
in the kind of disease-associated microbial taxa, in part due to 
geographically distinct study populations (reviewed in Kowalski 
and Mulak (22)). Investigations of the oral microbiome of patients 
with AD, which are strikingly rare, revealed higher species diver-
sity and a higher abundance of biofilm-associated bacteria, like 
Porphyromonas and Treponema (23, 24). Notably, Porphyromonas gin-
givalis, an oral pathogen associated with Periodontitis, is fre-
quently found in patients with AD (25–27), and bacterial 
compounds as lipopolysaccharides (LPSs) have even been de-
tected in the brains of patients with AD (28). The microbiome 
in prodromal and preclinical stages of AD has so far rarely been 
investigated. Researchers reported for example higher abun-
dance of Proteobacteria and reduced abundance of Firmicutes in pa-
tients with MCI in contrast to healthy controls (29, 30). Moreover, 
the APOE4 status appears to have an influence on the gut micro-
biome in patients with AD as well as Apolipoprotein E (APOE) 
transgenic mice, particularly regarding butyrate-producing 
microbes (31).

Although there is increasing evidence of an altered microbial 
composition in patients with AD that might be related to the 
pathophysiology of the disease, to date the knowledge about the 
stage-dependent composition of the fecal and the oral micro-
biome in the course of AD is sparse. In this study, we performed 

bacterial 16S ribosomal RNA (rRNA) gene sequencing of the fecal 
and oral microbiota in individuals with a clinical diagnosis of 
AD or MCI as well as participants at-risk, as characterized by the 
presence of an APOE4 allele, in comparison with a cohort of age- 
matched healthy controls. In addition, we examined the relation-
ship between the microbial composition in the fecal and the oral 
cavity with disease stages and AD pathology, as reflected by CSF 
biomarkers, and imaging and clinical cognitive biomarkers.

Results
Study design and participant characteristics
Community analyses of the fecal and oral microbiota were per-
formed on fecal samples and oral swabs collected from partici-
pants with AD, MCI, at-risk group, and healthy controls. 
Controls were age and sex matched to AD and MCI participants 
but not age matched with participants at-risk; therefore, we in-
cluded age as a covariate in all subsequent analysis. The at-risk 
cohort was significantly younger than the remaining groups but 
did not show differences in education or body mass index (BMI). 
CSF biomarker and cognitive scores were only available for the pa-
tient group, indicating no significant differences in biomarker lev-
el for patients with MCI and AD, but a worse performance in 
cognitive testing in patients with AD. Concerning dietary and life-
style habits, as well as comorbidity prevalence, all groups did not 
significantly differ (Table 1).

Composition of the fecal and oral microbiota of 
healthy controls and AD-related patient groups
In total, 22,510 amplicon sequence variants (ASVs) were identified 
in the data. After removing ASVs with a total abundance of <50 
reads in all samples, the resulting 5,430 ASVs for AD, MCI, at-risk 
group, and control groups were classified into 185 genera, 76 fam-
ilies, 50 orders, 24 classes, and 11 phyla.

The composition of the fecal microbiota across all 151 partici-
pants was dominated by Firmicutes and Bacteroidetes, which 
made up 47.2 and 34.3% of the total abundance, respectively. 
Members of the Actinobacteria (0.91%), Verrucomicrobia 
(1.01%), and Proteobacteria (15%) were the less dominant phyla 
in the fecal microbiome (Fig. 1A). The oral microbiota was only 
available for a subset of the donors/patients (n = 71), dominated 
by Firmicutes (45%) and Proteobacteria (26%). Members of the 
Actinobacteria (12.1%), Bacteroidetes (11.4%), and Fusobacteria 
(4.8%) were the least abundant bacterial phyla in the community 
(Fig. 2A).

AD-associated changes in the fecal and oral 
microbiota
The composition of the fecal and oral microbiota was character-
ized using ecological measures including richness and evenness 
of microbial composition (alpha diversity) and beta-diversity 
(the similarity or difference in composition between participants). 
We employed Chao1 species richness (32) and Shannon index (33) 
to investigate the number of species as well as the evenness of the 
bacterial communities, while we used the net relatedness index 
(NRI) and the nearest taxon index (NTI) (34, 35) to evaluate phylo-
genetic patterns across the whole depth of the phylogenetic com-
munity tree or only among closely related species, respectively.

The fecal microbiota of patients with AD was compared 
with microbiota profiles from controls. Alpha diversity was 
slightly, but not significantly decreased in patients with AD 
compared with controls (average Chao1 diversity for AD = 212 
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[SD = 66]; average Chao1 diversity for controls = 215 [SD = 55]; 
lm-test PChao1 = 0.77; average Shannon diversity for AD = 4.2 
[SD = 0.6]; average Shannon diversity for controls = 4.1 [SD = 0.4]; 
lm-test PShannon = 0.78, NAD = 63, NContr. = 44; Fig. 1B). However, 
we observed significant compositional differences in the 
microbiota between AD and controls (PERMANOVA, Bray–Curtis: 
F1,105 = 1.83, R2 = 0.012, P = 0.002; Fig. 1C and Table S1). 
Differential abundance (DA) analysis of taxa at the ASV level re-
vealed that the fecal microbiota of patients with AD showed signifi-
cantly altered abundances of 76 ASVs relative to the control group, 
with 33 ASVs more abundant and 43 ASVs less abundant in AD 
(Fig. 1C and Table S2). In particular, patients with AD displayed a 
significantly higher abundance of ASVs belonging to the genera 
Bacteroidetes, Sutterella, and Porphyromonadaceae and a lower abun-
dance of ASVs in the Lachnospiraceae, Roseburia, Coprobacter, and 
Ruminococcus in the fecal communities (Fig. 1D and Table S2). 
Patients with MCI had significantly higher abundances of the gen-
era Bacteroidetes, Parabacteroides, and Akkermansia and lower abun-
dance of Dialister and Butyricimonas compared with healthy 

controls. Members of the at-risk group (APOE4+) displayed signifi-
cantly higher abundances of Barnesiella and a lower abundance of 
Dialister and Oscillibacter compared with healthy controls.

The oral microbiota of patients with AD was slightly more di-
verse than in healthy controls, although not significant (average 
Chao1 diversity for AD = 174 [SD = 60]; average Chao1 diversity 
for controls = 144 [SD = 50]; lm-test PChao1 = 0.08; average 
Shannon diversity for AD = 3.9 [SD = 0.58]; average Shannon diver-
sity for controls = 3.7 [SD = 0.67]; lm-test PShannon = 0.49, NAD = 43, 
NContr. = 17, Fig. 2B). Similarly, no significant compositional differ-
ences were observed between the patients with AD group and 
controls (PERMANOVA, Bray–Curtis: F1,58 = 0.9380, R2 = 0.01566, 
P = 0.64, Fig. 2C and Table S1). However, DA analysis revealed 32 
ASVs more abundant and 7 ASVs less abundant in AD (Fig. 1C 
and Table S2). Patients with AD were characterized by a higher 
abundance of ASVs belonging to the genera Porphyromonas, 
Fusobacterium, Veillonella, Actinobacillus, and Neisseria, while Rothia 
and Gemella were reduced. Patients with MCI had a higher abun-
dance of ASVs in the genera Neisseria and Veillonella and lower 

Table 1. Participant characteristics.

Characteristics Controls At-risk MCI AD
(n = 50, fecal = 44,  
oral = 17)

(n = 17, fecal = 17,  
oral = 8)

(n = 17, fecal = 14,  
oral = 7)

(n = 67, fecal = 58,  
oral = 39)

Age (mean ± SD) 73.82 ± 9.21 63.59 ± 14.3** 75.18 ± 7.6 76.1 ± 7.7
Sex (female, %) 27 (54.0%) 10 (58.82%) 4 (23.53%) 29 (43.28%)
Education (yrs, mean ± SD) 13.17 ± 2.74 13.94 ± 2.44 12.88 ± 3.02 12.57 ± 2.46
BMI (kg/m2, mean ± SD) 25.71 ± 6.63 27.96 ± 6.11 25.59 ± 2.36 25.2 ± 3.75
Disease-specific marker

Disease severity NA NA NA
Mild (Ncases (%)) 23 (34.33)
Moderate (Ncases (%)) 28 (41.79)
Severe (Ncases (%)) 16 (23.88)
APO E4/3 (Ncases (%)) 0 14 (82.35) 1 (5.88) 0
APO E4/4 (Ncases (%)) 0 3 (17.65% 1 (5.88) 0
Antidementives (Ncases (%)) 0 0 3 (17.65) 6 (8.96)
MoCA z-score (mean ± SD) NA NA −1.18 ± 1.68 −2.47 ± 1.34
MMSE z-score (mean ± SD) NA NA −1.85 ± 2.1 −2.45 ± 2.28
Cognition score (mean ± SD) NA NA −1.14 ± 1.43 −2.22 ± 1.61#

MTA-score (mean ± SD) NA NA 1.83 ± 1.0 2.01 ± 0.97
CSF parameters

p-tau/Aβ1–42 (mean ± SD) NA NA 0.36 ± 0.87 0.21 ± 0.25
Tau (pg/mL, mean ± SD) NA NA 504.29 ± 318.1 658.68 ± 373.75
p-tau (pg/mL, mean ± SD) NA NA 199.73 ± 497.38 105.8 ± 144.48
Aβ1–42 (pg/mL, mean ± SD) NA NA 576.86 ± 233.87 569.35 ± 294.35
Aβ-Ratio1–40/1–42 (mean ± SD) NA NA 0.62 ± 0.2 0.75 ± 0.11

Blood parameters
Leukocytes (×109/L, mean ± SD) NA NA 5.71 ± 2.73 6.75 ± 2.23
CRP (mg/l, mean ± SD) NA NA 2.31 ± 2.41 4.54 ± 8.68

Dietary and lifestyle habits (Ncases (%)) N = 48 N = 16 N = 11 N = 52
Vegetarian 0 0 0 3 (5.77)
Vegan 1 (2.08) 0 0 0
Currently smoking 0 1 (6.25) 1 (9.09) 0
Probiotic consumption 2 (4.17) 2 (12.5) 1 (9.09) 5 (9.62)
Antibiotic consumption (last 6 months) 16 (33.33) 5 (31.25) 1 (9.09) 7 (13.46)*
Gastrointestinal complaints 0 3 (18.75) 0 3 (5.77)

Comorbidities (Ncases (%))
Depression 4 (8.33) 1 (6.25) 2 (18.18) 5 (9.62)
Coronary heart disease 7 (14.58) 1 (6.25) 2 (18.18) 10 (19.23)
Diabetes 6 (12.5) 1 (6.25) 2 (18.18) 4 (7.69)
Metabolic syndrome 0 1 (6.25) 0 1 (1.92)
Hypertension 29 (60.52%) 8 (50) 8 (72.73) 31 (59.62)
Inflammatory bowel disease 1 (2.08%) 0 0 2 (3.85)
Hypercholesterolemia 13 (27.08%) 9 (56.25) 2 (18.18) 18 (34.62)

*P < 0.05 and **P < 0.01 compared with controls; #P <0.05 compared with MCI group using student’s t-test or Mann–Whitney U-test (in case of violating parametric test 
requirements) for continuous variables as well as Fisher’s exact test in case of categorical data. Unless indicated differently no significant differences were observed 
between cohorts. MCI, mild cognitive impairment; AD, Alzheimer’s disease; SD, standard deviation; BMI, body mass index; APO, apolipoprotein; MMSE, mini-mental 
state examination; MoCA, Montreal cognitive assessment; CSF, cerebrospinal fluid; p-tau, phospho-tau; Aβ, Amyloid-β; MTA-score, medial temporal atrophy score; 
CPR, C-reactive protein.
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abundance of Streptococcus ASVs compared with healthy controls. 
Participants from the at-risk group had a higher abundance of 
Rothia and Prevotella (Figs. 2A and 2D).

To find taxa that change with disease severity (controls and at- 
risk = 0, MCI = 1, AD = 2; fecal: N(0) = 63, N(1) = 15, N(2) = 63; oral: 
N(0) = 25, N(1) = 7, N(2) = 43), we employed trend analyses and 
identified various taxa nominally significantly associated with 
disease severity. Although no taxon was significant after correc-
tion for multiple testing, we could observe 50 negatively and 43 
positively disease severity associated taxa in the fecal micro-
biome, like, e.g. Akkermansia and Dialister decreasing with severity 
and e.g. Roseburia increasing (see Fig. S1A and Table S3). In the oral 
communities, we observed 26 negatively and 30 positively associ-
ated taxa. Among others, Solobacterium uncl., Tannerella forsythia, 
and Leptotrichia buccalis displayed a positive trend in relation to dis-
ease severity, while e.g. Actinobacillus uncl., Granulicatella elegans, 
and Veillonella species decrease in the oral communities (see 
Fig. S1B and Table S3). Overall, these results broadly overlap 
with the DA analyses, but additionally show an increase in oral 
periodontal pathogens with disease severity and a decrease in 
beneficial fecal bacteria like Akkermansia with progressing 
pathology.

A closer look at the potential bacterial interactions via coabun-
dance network analyses allowed us to identify central bacterial 
taxa in the fecal and oral microbial communities which may be 
cornerstones for community and host homeostasis. We identified 
several fecal bacteria associated with healthy individuals (indica-
tor species analysis: Ppermuted ≤ 0.05; Table S4) or with commonly 
known probiotic characteristics among the most important taxa 
in the fecal community network (e.g. ASVs belonging to 
Bacteroides, Oscillibacter, Ruminococcaceae, and Faecalibacterium; Fig. 
3A-D). However, mainly members of the Firmicutes appear to be 
significantly central in the fecal network of which Romboutsia, 
Lachnospiraceae, Holdemania, and Oscillibacter are highly important 
in the correlation networks (e.g. node betweenness, node degree, 
and PageRank index), while also associated to disease characteris-
tics (Tables S4 and S5, Figs. 3E, S2, and S3). Disease-associated 
bacteria (MCI/disease) play a central role in the oral community 
network as well. Particularly Solobacterium moorei (ASV 1831), 
Fusobacterium uncl. (ASV 279), and Porphyromonas uncl. (ASV 379) 
are opportunistic pathogens of the oral microbiota and character-
istic of diseased individuals (Fig. 3F). Interestingly, Veillonella (ASV 
73) is consistently central and associated with healthy individuals 
(Tables S4 and S5, Figs. 3F, S2, and S3).

Fig. 1. Alteration of fecal microbiota among groups. A) Stacked bar plots of average relative abundance at the phylum and family taxonomic levels. Top 6 
phyla (representing 99.6% of all sequence reads) and top 14 families (representing 90.6% of all sequence reads) are shown. B) Alpha diversity 
measurements (Chao1 and Shannon index) as well as phylogenetic measurements (unweighted NRI and NTI) for patients with AD and MCI and at-risk 
group versus healthy controls (Chao1 AD = 211, Chao1 control = 215, Chao1 MCI = 219, Chao1 at-risk = 233; Shannon AD = 4.2, Shannon control = 4.1, 
Shannon MCI = 4.1, Shannon at-risk = 4.3). C) NMDS plot of Bray–Curtis dissimilarities (NMDS, stress value = 0.23) displays sample-wise differences in 
community composition between health conditions (coloration with respect to group membership, group centroids indicated by large symbols). Marginal 
boxplots display the grouped distribution of individuals/samples along the respective dimension of the NMDS plot analysis of relative sample ASV 
composition. D) Differential abundance analysis identified 33 ASVs that were increased and 43 ASVs that were decreased in AD relative to control 
participants (PFDR < 0.05) as well as 24 ASVs increased and 16 ASVs decreased in patients with MCI relative to control participants. Each point represents 
an ASV. ASVs to the right of the zero line are more abundant and ASVs to the left of the zero line are less abundant in AD and MCI compared with control 
groups. Abbreviations: MCI, mild cognitive impairment; AD, Alzheimer’s disease.
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To compare the datasets between the fecal and oral samples in-
cluded in AD, MCI, and healthy control participants, a Procrustes 
analysis was performed using the Bray–Curtis distances among 
fecal and oral samples. The nonmetric multidimensional scaling 
(NMDS) plots display samples of individuals present in the fecal 
and oral dataset (Fig. S4) displaying the correlation and rotation 
of both community topographies. Samples of the same individual 
are connected by a line and show an overall significant correlation 
between both community configurations (ASV based: P < 0.0010, 
m212 = 0.2038, r = 0.8923, n = 56, Procrustes). Interestingly, the 
highest similarity between community topographies (smallest 
average residuals) was observed in patients with AD (PContr./AD =  
0.058, pairwise t-test; contr.: 0.0652 ± 0.0148, MCI: 0.0634 ±  
0.0127, AD: 0.0562 ± 0.0125; at-risk: 0.0586 ± 0.0108; mean ± SD; 
see Fig. S4), which translates to more similar community patterns 
and dynamics in the fecal and oral community among patients 
with AD. Although community dynamics are correlated between 
the oral and fecal communities (KEGG Orthology [KO] based: P <  
0.0010, m212 = 0.8397, r = 0.4004, n = 56; Procrustes), particularly 
in AD, communities differ strongly in their taxonomic and func-
tional composition (see Fig. S5; Kyoto Encyclopedia of Genes and 
Genomes).

Correlation of fecal and oral microbiota with 
scores of AD pathology
We examined the relationship between the relative abundance of 
ASVs and levels of CSF biomarkers, general inflammatory blood 

parameters, neurocognitive assessment, and image scores in all 
patients with AD and MCI. CSF biomarkers included Aβ42 and 
phosphorylated tau (p-tau). CSF Aβ42 is an indicator of amyloid 
burden, with lower levels in the CSF reflecting greater amyloid de-
position in the brain; p-tau is a marker of neurofibrillary tangles, 
with higher levels reflecting greater neurodegenerative tangle 
pathology in the brain; the ratio of p-tau/Aβ42 incorporates both 
aspects of pathology, with higher values implying a higher AD se-
verity (10). As a blood marker for general systemic inflammation, 
we used C-reactive protein (CRP).

We used a general neurocognitive score (called “cognition”) 
unifying z-scores from different screening tools (Montreal cogni-
tive assessment [MoCA], mini-mental state examination 
[MMSE], and Mattis dementia rating scale [MRDS]) as well as the 
medial temporal atrophy (MTA) score for evaluating the MTA 
(ranging from 0 to 4, see Methods).

Fecal and oral microbiota diversity and single taxa of the oral 
and fecal microbiota correlated in several instances with CSF bio-
markers, neurocognitive z-scores, and the MTA score (Table S6). 
Linear regression tests revealed several significant associations be-
tween scores and single taxa, after adjusting for confounding fac-
tors, like age, and sex. The fecal microbiota in particular, showed a 
positive relationship of ASVs belonging to Ruminococcus and 
Pascolacubacterium with CSF p-tau/Aβ42 while members of the 
Lachnospiraceae, Collinsella, and Escherichia/Shigella were positively as-
sociated with CRP levels. In addition, an increased abundance of 
ASVs belonging to Blautia and Clostridiales was associated with lower 
values of the neurocognitive severity score cognition (Fig. 4A).

Fig. 2. Alteration of oral microbiota in patients with AD. A) Stacked bar plots of average relative abundance at the phylum and family taxonomic levels. 
Top 6 phyla (representing 99.3% of all sequence reads) and top 14 families (representing 87% of all sequence reads) are shown. B) Alpha diversity 
measurements for patients with AD and MCI and at-risk group versus healthy controls (Chao1 AD = 174, Chao1 control = 144, Chao1 MCI = 144, Chao1 
at-risk = 195; Shannon AD = 3.9, Shannon control = 3.7, Shannon MCI = 3.6, Shannon at-risk = 4.1). C) NMDS plot of Bray–Curtis dissimilarities (NMDS, 
stress value = 0.22) displays sample-wise differences in community composition between health conditions (coloration with respect to group 
membership, group centroids indicated by large symbols). Marginal boxplots display the grouped distribution of individuals/samples along the respective 
dimensions of the NMDS plot. (D) Differential abundance analysis identified 32 ASVs that were increased and 7 ASVs that were decreased in AD relative to 
control participants (PFDR < 0.05) as well as 2 ASVs increased and 1 ASV decreased in patients with MCI relative to control participants. Each point 
represents an ASV. ASVs to the right of the zero line are more abundant and ASVs to the left of the zero line are less abundant in AD and MCI compared 
with control groups. MCI, mild cognitive impairment; AD, Alzheimer’s disease.
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Fig. 3. Correlation networks of A) fecal and B) oral microbial communities display positive and negative relationships between ASVs (nodes colored by 
phylum membership). C) and D) display only the positions of ASVs characteristic for the different health conditions in the either fecal or oral community, 
as determined by indicator species analysis (36). Network permutation allowed us to assess the significance of network positions/centralities (more 
central as expected by chance) via one-sided Z-tests against the distribution of 10,000 randomized networks (highlighted in red, PFDR ≤ 0.05). Bacterial 
associations to health conditions or disease severity (Int.) were determined by indicator species analyses and marked in the barplots for E) fecal and F) 
oral communities. Bar colors correspond to phylum membership of the respective ASV. Network layouts are based on the force-directed layout algorithm 
by Fruchterman and Reingold.
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Among genera that were more abundant in patients with AD 
and MCI (Bacteroides, Ruminococcus, Butyricimonas, Paraprevotella, 
and Sutterella), we observed a positive relationship between 
ASV abundance and AD and MCI pathology (increasing amyloid 
burden), as implied by positive correlations (t-value >0) with 
CSF p-tau/Aβ42 ratios. In contrast, ASVs and genera that are 
less abundant in patients with AD and MCI (e.g. Alistipes, 
Parasutterella, Barnesiella uncl., and Erysipelotrichaceae), displayed 
a negative relationship (t-value <0) to AD and MCI pathology 
(decreasing amyloid burden, CSF p-tau/Aβ42; Fig. 4A).

Oral bacteria displayed significant positive associations (t-value 
>0) between ASV abundances, particularly Porphyromonas, 
Haemophilus, and Capnocytophaga, and CSF p-tau/Aβ42 (increasing 
amyloid burden), as well as positive associations of ASVs belonging 
to the genus Campylobacter and CSF p-tau (increasing neurofibril-
lary tangles, Fig. 4B). In addition, the abundances of several ASVs 
belonging to the genera Streptococcus and Capnocytophaga were 
negatively associated (t-value <0) with the neurocognitive score, 
which implies influences of the microbial communities on regula-
tory cognitive processes in the central nervous system.

Among AD- and MCI-associated oral bacteria (Haemophilus, 
Veillonella, Prevotella, and Actinobacillus), we observed a positive 
relationship between bacterial abundance and increasing AD 
and MCI pathology, which was indicated by positive correla-
tions between bacterial abundance and CSF p-tau/Aβ42 (t-value 
>0). Among bacteria that are less abundant in patients with AD 
and MCI (i.e. Actinomyces and Streptococcus), we observed a nega-
tive relationship between bacterial abundance and AD path-
ology (t-value <0, Fig. 4B).

Microbial functional differences present between 
healthy individuals and patients with AD
To understand the functional consequences of AD and MCI on the 
microbiota, we imputed functions based on ASV abundances via 
PiCRUSt2. By investigating the imputed functional spectra, we identi-
fied significant, community-wide functional differences between 
healthy and diseased fecal communities (healthy [controls, at-risk]/ 
diseased [MCI, AD]: F1,139 = 4.8695, P = 0.0073, R2 = 0.0339, Bray– 
Curtis distance, NContr. = 44, NAD = 63, NMCI = 15, Nat-risk = 19, 
PERMANOVA), which also carried down to differences between the 
different pathological states (controls/AD/MCI/at-risk: F3,137  =  
2.2744, P = 0.0294, R2 = 0.04744, Bray–Curtis distance, PERMANOVA). 
However, the strongest differences were present between healthy in-
dividuals and patients with AD (F1,105 = 6.3991, P = 0.0022, R2 = 0.0574, 
Bray–Curtis distance, PERMANOVA; Fig. S6 and Table S7). In the 
smaller oral sample cohort, we found no systematic functional 
community differences with respect to the underlying health 
conditions and diagnoses (controls/AD/MCI/at-risk: F3,71 = 0.9880, 
P = 0.4192, R2 = 0.0401, healthy (controls, at-risk)/diseased (MCI, 
AD): F1,73 = 0.1918, P = 0.9928, R2 = 0.0026, Bray–Curtis distance, 
NContr. = 17, NAD = 43, NMCI = 7, Nat-risk = 8, PERMANOVA; Fig. S6 and 
Table S7).

Interestingly, investigating the communities for individual 
functional differences, we identified several genes and pathways 
differentially abundant among individuals (oral functions: 248, fe-
cal functions: 129, PFDR ≤ 0,01; see Fig. S6, Tables S8 and S9), while 
differentially abundant functions can only be detected in oral 
samples when healthy individuals (controls and at-risk) are con-
trasted with diseased patients (AD and MCI; oral: 328, fecal: 0, 

Fig. 4. Heatmap of relationships between ASV abundance and biomarkers levels, severity scores, and image scores. A) 37 most strongly correlated ASV 
from the fecal microbiota (highest t-value from linear modeling) were shown. B) 33 most strongly correlated ASVs from the oral microbiota (highest 
t-value from linear modeling) were shown. Asterisks denote significant associations (PFDR < 0.05) between taxa and AD scores. Results are from fitting a 
multiple regression model to the severity measure which included all covariates (disease status, age, and sex), in addition to each single taxon (centered 
log ratio transformed [CLR]). Red color inside the heatmap (darker cells in the Biomarker columns) indicates a positive correlation between scores and 
ASV abundance and the blue color (darker cells in the Scores columns) indicates a negative correlation between scores and ASV abundance. Color bars on 
the right of each plot indicate phylum for each ASV and the group (AD/MCI or controls) in which each ASV is more abundant. MCI, mild cognitive 
impairment; AD, Alzheimer’s disease, CRP, C-reactive protein; MTA, mediotemporal atrophy score; p-tau, phospho-tau; Aβ1–42, Amyloid-β1–42.
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PFDR ≤ 0.01, Table S10). Enrichment analysis, focusing on Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways further re-
vealed differential functional representation between healthy 
and diseased communities. We observed significant enrichment 
of functions involved in amino acid metabolism in healthy oral 
communities (e.g. “Arginine and proline metabolism” and 
“Phenylalanine metabolism”), while diseased communities dis-
played a consistent overrepresentation of functions involved in 
“Sulfur metabolism” and “Taurine and hypotaurine metabolism” 
(PFDR ≤ 0.05, Table S11). Fecal communities did not show many 
overlapping differential enrichments among health conditions. 
Interestingly, among other differentially abundant functions, we 
detected components of the Curli amyloid protein to be more 
abundant in orla community of healthy controls compared with 
patients with AD, as well as healthy vs. diseased individuals, 
like csgB (“minor curlin subunit”), csgE (“curli production assem-
bly/transport component”), csgF (“curli production assembly/ 
transport component”), and csgG (“curli production assembly/ 
transport component CsgG”; Tables S9 and S10). This protein as-
semblage plays an important role in biofilm formation, and its 
role in inflammatory processes is currently debated (37).

Discussion
Microbiota in the human gastrointestinal tract are suggested to 
impact the development and progression of AD (38, 39). Here, 
we studied the relationship between AD, MCI, and high-risk geno-
types in the oral and fecal microbiota.

We found a distinct microbial composition of the fecal and the 
oral microbiota from patients (AD and MCI) to age-matched con-
trols as well as to participants at-risk. We further demonstrated 
that levels of differentially abundant genera correlate with CSF bi-
omarkers of AD pathology and showed that the community pat-
terns and dynamics in the fecal and oral community are more 
similar among patients with AD in contrast to healthy controls.

Alterations in fecal microbiota in AD and MCI
In general, the slightly decreased diversity in the fecal microbiome 
parallels results from other studies investigating alterations in fe-
cal microbiome in patients with AD (29, 40). Although the majority 
of the studies in patients with AD report a decreased diversity in 
the fecal microbiome (reviewed in Kowalski and Mulak (22)), the 
differently abundant genera widely differ. In this study, we ob-
served a slightly decreased abundance of the phylum 
Bacteroidetes in patients with AD which is not only in accordance 
with previously reported findings (41) but also conflicts with other 
reports (29, 40, 42). However, increased abundances were detected 
in several genera within Bacteroidetes, including the genus 
Bacteroides which were also more abundant in MCI in comparison 
with the control group and the at-risk group (see Fig. S7). An in-
creased abundance of Bacteroides has previously been reported in 
patients with AD (40).

Within the Bacteroidetes phylum, we further observed a 
significantly increased abundance of unclassified genus 
Porphyromonadaceae in patients with AD in contrast to healthy con-
trols and in contrast to the at-risk group. Porphyromonadaceae are 
gram-negative bacteria and are enriched in the feces of patients 
with colorectal cancer, liver diseases (43), and cirrhosis, a disease 
associated with cognitive impairment due to hepatic encephalop-
athy (44). Interestingly, the abundance of Porphyromonadacea 
seems to correlate with a lower cognitive level, even unrelated 
to the diagnosis of cirrhosis (45). Here, the higher abundance of 

this species in patients with cognitive decline suggests that 
Porphyromonadaceae might indeed be involved in the modulation 
of cognitive performance, though this has to be confirmed in fu-
ture studies.

In addition, we observed a general decreased abundance of the 
phylum Proteobacteria in patients with AD, while we detected an 
increased abundance of the genus Sutterella (Proteobacteria). 
Sutterella has been shown to be drastically increased in patients 
with autism spectrum disorder (46), which is associated with AD 
(47), and also shares pathophysiological hallmarks (48, 49).

Most of the species within the phyla Bacteroidetes and 
Proteobacteria are gram-negative and contain proinflammatory 
LPSs in their outer membrane promoting inflammatory processes 
(50, 51). Porphyromonas gingivalis LPS for example drives inflamma-
tion through activation of Toll-like receptors and cytokines 
(52, 53). Higher circulating levels of LPS have been associated 
with increased Aβ deposition in elderly patients with cognitive 
complaints (54) and were found to colocalize amyloid and tau de-
position in the brain of patients with AD (55). This indicates a high-
er abundance of intestinal gram-negative bacteria to potentially 
promote/facilitate neuroinflammatory processes due to direct 
interaction with the pathological proteins Aβ and tau in the brain 
of patients with AD.

Furthermore, abundance of the phylum Firmicutes was in-
creased in patients with AD. However, within Firmicutes, a reduc-
tion was seen in the family Lachnospiraceae and the genus 
Roseburia, which all harbor species that produce the metabolite 
butyrate, and their decrease have been previously associated 
with AD (42, 56) and also Parkinson (57) although the general 
role of microbiota-derived short-chain fatty acids (SCFAs) in AD 
is discussed controversially (58). Besides, Ruminococcus was in-
creased in feces of patients with AD of the present study and the 
higher abundance was associated with low neurocognitive per-
formance. Ruminococcus was suggested to predict lower levels of 
brain N-acetylaspartate, a biochemical indicator of neuronal 
health, and is decreased in neuron metabolic disturbance (57).

The correlative analysis revealed that genera identified as more 
abundant in AD were associated with greater AD pathology while 
genera identified as less abundant in AD were associated with less 
AD pathology. In particular, we observed associations in patients 
with AD between higher abundance of Bacteroides, Ruminococcus, 
Butyricimonas, and Acidaminococcus with a greater AD pathology in-
dicated by a higher CSF p-tau/Aβ1–42 ratio. On the other hand, 
Lachnospiraceae and Veillonella showed strong correlations in 
healthy participants, with greater abundance of these bacteria as-
sociated with less AD pathology suggesting these bacterial taxa 
may be protective against development or progression of AD path-
ology. Although the differentially abundant taxa differ between 
studies, associations with differentially abundant taxa and AD 
pathology measured by CSF biomarker have previously been 
shown (40).

Coabundance network analyses allowed us to identify central 
bacterial taxa in the fecal and oral microbial communities which 
may be important for community and host homeostasis. We iden-
tified several fecal bacteria associated with healthy controls, be-
longing among others to the genera Bacteroides, Akkermansia, and 
Oscillibacter/Ruminococcaceae. Akkermansia muciniphila or its compo-
nents appear to show a universal importance for host well-being 
and its reduction, as shown in DA and trend analyses, has already 
been reported for several diseases (55, 59). However, mainly mem-
bers of the Firmicutes appear to be significantly central in the com-
munity networks, including several SCFA producers like 
Faecalibacterium (60) or other potentially beneficial bacteria (e.g. 
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Parabacteroides) (61). In particular, ASVs belonging to Romboutsia, 
Lachnospiraceae, and Oscillibacter are highly important/influential 
in the correlation networks in general, while also associated 
with disease characteristics. Thus, members of these bacteria 
might play important roles in driving pathological dynamics in 
the fecal communities.

Alterations in oral microbiota in AD and MCI
Whereas the stool microbiota has gained much interest in chronic 
neuroimmune diseases during the last years, a growing attention 
has been given to the oral microbiota. The oral microbiota is consid-
ered to play a key role in the development and progression of chronic 
inflammatory dental diseases such as Periodontitis (62). Studies have 
shown an association between periodontal diseases and AD, possibly 
facilitated by the oral microbiota (24). The oral microbiota may be 
able to promote neuroinflammation via direct effects, like migration 
of bacterial substances (e.g. LPS or bacterial amyloid) to the brain, or 
via indirect effects like compromising the blood–brain barrier which 
promotes the passage of inflammatory agents (24).

In this study, we found an increased alpha diversity in the oral 
microbiota of patients with AD, in parallel with previous findings 
(23, 26, 27). In detail, we found a significantly higher abundance of 
species involved in periodontal disease among patients with AD or 
correlated with disease severity, including gram-negative bacteria 
within the Porphyromonas genus, Leptotrichia genus, and Tannerella 
(member of “red complex”), whose higher abundance has been 
previously reported to be associated with AD (26, 27). In particular, 
P. gingivalis is dominantly involved in the pathogenesis of peri-
odontitis (24, 62) and epidemiological studies have proven a rela-
tionship to AD (25). Indicating a potential direct interaction of 
P. gingivalis with the AD pathology, postmortem studies revealed 
the presence of P. gingivalis LPS as well as P. gingivalis DNA and 
protease gingipain in the brains of patients with AD but not in con-
trol patients (28, 63). On a mechanistic level, lipid A structural 
modifications of P. gingivalis LPS have been shown to induce in-
flammation via Toll-like receptor pathways as well as expression 
of cytokines (52, 53).

Furthermore, we observed a significantly higher abundance of 
members of the Proteobacteria, especially Haemophilus, Neisseria, and 
Actinobacillus (Actinobacteria) in oral samples of patients with AD 
and MCI. Whereas all of these species are known to be part of the 
oral microbial flora (64), the higher proportion of those gram- 
negative bacteria in patients with AD is noteworthy. All of those gen-
era have related species causing severe diseases in humans (65). 
Particularly, a significant increase in abundance of Haemophilus ge-
nus has been observed in a previous study in patients with 
Multiple Sclerosis a neuroinflammatory disease (66).

Moreover, correlative analysis revealed that the increased 
abundance of Haemophilus, Porphyromonas, Prevotella, and 
Capnocytophaga was associated with a greater AD pathology meas-
ured by CSF p-tau/Aβ1–42 ratio, whereas the higher abundance of 
Rothia, Olsenella, and Actinomyces found in healthy controls were 
associated with less AD pathology. However, additional data on 
the oral microbiota of patients with AD in general are necessary 
to understand the overall role of these bacteria in disease mani-
festation and progression.

Network analyses revealed Solobacterium moorei, Fusobacterium, 
and Porphyromonas to be opportunistic pathogens of the oral 
microbiota in highly central and important network positions. 
Solobacterium moorei (originally known as Bulleidia moorei) is a 
main elicitor of haltosis due to its capacity to convert cystein to 
H2S (67). Interestingly S. moorei appears to be only capable to 

produce volatile sulfur compounds from mucin proteins in the 
presence of an exogenous protease (e.g. Arg-gingipain produced 
by P. gingivalis) (68), while Porphyromonas uncl. and Fusobacterium 
nucleatum (two potential pathogens) display direct positive 
correlations with S. moorei in the oral community network (see 
Fig. S8).

In accordance with what we found in the fecal microbiota, 
gram-negative bacteria were dominant in the oral microbiota of 
patients with AD and MCI and even associated with a higher bur-
den of pathological Aβ and tau. These findings suggest that gram- 
negative periodontal pathogens or their components (e.g. LPS) 
may interact directly with pathological processes, particularly fa-
cilitating neuroinflammation as part of the neurodegenerative 
cascade in AD (4). However, the role of Aβ in the context of micro-
bial interaction is discussed controversially as it has been shown 
to be bactericidal and its deposition and accumulation as a re-
sponse to bacterial invasion could be misguided (69).

Disease stage–dependent alterations of 
microbiota
In contrast to the disease cohorts, the at-risk group did not show 
significant changes in alpha or beta-diversity of the fecal micro-
biota, but within the phylum Bacteroidetes, we could identify 
the genus Paraprevotella and Barnesiella to be more abundant in 
APOE4 carriers in contrast to healthy controls. The intestinal mi-
crobiome in the APOE4 carriers has not been intensively investi-
gated in humans so far. Associations with a reduced abundance 
of Firmicutes as well as a higher abundance of Proteobacteria 
were reported (31, 70). With regard to the oral microbiota, we 
found a significantly increased diversity in APOE4 carriers which 
parallels our findings in patients with AD. In particular, in the at- 
risk cohort, members of the Streptococcus genus were increasingly 
abundant in contrast to healthy controls. Although these species 
are part of the physiological oral flora, some strains are associated 
with caries (71). Furthermore, we found Streptococcus to be corre-
lated with low neurocognitive performance in our patients sug-
gesting a role in brain function modulation.

Taken together, two aspects are noteworthy: First, the altera-
tions of the intestinal microbiota that we observed in patients 
with AD are only partly found in patients with MCI (e.g. higher 
abundance of Bacteroidetes) and not present in the at-risk group 
of APOE4 carriers. Second, an increased diversity of the oral 
microbiota was found in patients with AD and APOE4 carriers.

These aspects suggest that there might be a specific disease 
stage–dependent interaction between microbial composition 
and pathological processes in AD. MCI and AD are considered as 
a continuum of the same pathology, but the “tipping point,” is 
where the long-lasting pathological processes lead to the clinical 
manifestation of cognitive decline, and the influencing factors 
are still not fully understood. The microbiota in the gastrointes-
tinal tract is considered as influencing factors. Our findings indi-
cate that the tipping point might be at the stage of MCI, where 
the first AD-like alterations in the fecal microbiota including 
mostly gram-negative species among the phylum Bacteroidetes 
became apparent. The increased diversity in the oral microbiota 
might eventually display an early marker for AD as it is detectable 
in the at-risk and AD cohort, although we could not identify a 
similar composition of abundant species. Two limitations need 
to be considered here: The presence of the APOE4 allele as a rela-
tive risk factor does not perfectly predict the development of AD 
(72, 73), thus the definition of APOE4 carriers as an at-risk group 
for AD does cover only one specific risk factor. In addition, the 
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younger age of the at-risk group has been considered if possible, 
but may still have influenced the analyses to some extend (74).

Patients with AD further displayed a stronger correlation of the 
oral and fecal microbial communities, compared with MCI and 
healthy controls, which may speak for synchronization or spill-
over between these two compartments. The so-called “oraliza-
tion” of intestinal communities often stands for a break-down of 
the oral-gut barrier and has been linked to several inflammatory 
diseases (75–79). Interestingly, Horvath et al. (80, 81) recently re-
ported that oralization of the gut microbiota is associated with in-
testinal inflammation and disruption of intestinal barrier 
function, which may facilitate neuroinflammation and neurode-
generation in AD.

Functional analysis
In addition to taxonomic differences in response to AD, we also 
found significant functional differences between healthy and dis-
eased communities on different levels. Disease-associated com-
munities displayed a consistent overrepresentation of functions 
involved in “Sulfur metabolism” and “Taurine and hypotaurine 
metabolism.” Competition for sulfur or sulfur metabolites in the 
gut may reduce uptake and lower sulfur-containing metabolite 
concentrations which may be involved in AD (82). Taurine and 
sulfur-containing medication have shown beneficial effects for 
Alzheimer patients due to their innate antioxidant potential 
(82). These patterns may be linked to Solobacterium moorei which 
appeared to be a central, yet opportunistic pathogen in the oral 
microbiota with the capacity to convert cystein to H2S in concert 
with other oral disease-associated community members like 
P. gingivalis (67, 68).

Interestingly, components of the Curli protein (i.e. csgB, csgE, 
csgF, and csgG) were more abundant in oral samples of healthy 
controls compared with patients with AD. The Curli type amyloid 
protein, which is found in the outer membranes of several 
Enterobacteriaceae is an important factor for biofilm formation 
(83). It shows similarities to human Aβ and α-synuclein which is 
implicated in Parkinson’s disease and may contribute to path-
ology through immune activation via systemic or vagal pathways 
(84). So far, animal experiments showed a higher abundance of 
Curli in AD and Parkinson’s disease mouse models (85, 86); how-
ever, substantiation of these patterns in humans is still lacking be-
hind, particularly for AD. Immunological responses to Curli are 
highly site specific, provoking proinflammatory reactions in sys-
temic infections while leading to intestinal anti-inflammatory 
and barrier-restoring reactions when administered orally (87, 
88). Thus, the lower oral abundance of Curli in AD could represent 
a differentiating pattern to other neurodegenerative diseases, like 
Parkinson’s disease (89), but requires further validation and 
mechanistic investigations. We recognize the limited explanatory 
power of imputed metagenomic functional spectra via PiCRUSt2 
in comparison with true shotgun metagenomic sequencing, but 
emphasize its value as a first insight into the functional character-
istics of those communities and the relatively high accuracy of the 
PICRUSt2 algorithm (90).

Limitations
Limitations in our study are that only a subset of the participants 
provided oral samples which was due to the Covid-19 pandemic 
situation. Longitudinal dietary changes in the course of the dis-
ease progression could potentially affect the interpretation of 
the differences in community compositions between patients 
and controls (91, 92). Although dietary changes have been 

associated with patients with AD (93, 94) the impact of diet on mi-
crobial composition has not yet been intensively investigated in 
AD (95). Furthermore, some participants reported the use of anti-
biotics within the last 6 months. We did not find differences in mi-
crobial diversity or abundance of genera between individuals who 
did or did not use antibiotics in this time span (see Fig. S9). This 
suggests that the use of antibiotics within the last 6 months did 
not significantly influence our results. Moreover, although we 
did not see the effects of different medication on the microbial 
composition (see Fig. S9), it might still have influenced our results 
to some extent (96).

Outlook
Our results provide advanced insights into the host-microbe 
crosstalk in AD pathology and may contribute to the discovery 
of diagnostic markers potentially be used as early detection 
markers and potential therapeutic targets for AD as reported in 
Ferreiro et al. (97). Determining the mechanistic relationship be-
tween the gut and oral microbiota in the progression of AD may 
lead to novel interventional approaches that alter or restore 
healthy gut and oral bacterial composition. Validating these find-
ings in longitudinal studies is critical for the translation into clin-
ical benefits.

Methods
Ethics
The study was conducted in accordance with the Declaration of 
Helsinki, and ethical approval was granted by the ethics commit-
tee at Kiel University (AZ A103/14, D440/18, and D498/19). All par-
ticipants provided written informed consent before taking part in 
the study.

Cohort characteristics and sampling
Patients’ characterization
Patients with AD and MCI were recruited from the outpatient 
memory clinic and the inpatient clinic at the University Hospital 
Schleswig-Holstein, Campus Kiel as well as the DIAKO Hospital 
in Flensburg between October 2018 and April 2021. All patients 
were diagnosed according to the latest version of diagnostic guide-
lines (98, 99) and, together with their caregivers, patients were in-
formed about the study in verbal and written form before signing 
the written informed consent. Healthy elderly controls were re-
cruited via open platforms in the University Hospital 
Schleswig-Holstein, Campus Kiel as well as from our healthy con-
trol database. Participants at-risk were recruited from the 
University memory clinic as tertiary referral center for risk assess-
ment for developing AD in which course the APOE4 status was 
tested. Exclusion criteria included any significant neurologic dis-
ease except MCI or AD for the patient cohort (including active ma-
jor psychiatric disease such as alcohol/substance dependence, 
major depression, or other neurodegenerative disease) or any sig-
nificant acute illness (including major gastrointestinal tract sur-
gery in the past 2 years, active uncontrolled gastrointestinal 
disorder or active inflammatory bowel disease, persistent infec-
tious gastroenteritis, or chronic diarrhea). Microbiome-specific 
exclusion criteria were the current usage of antibiotics, changes 
in medical treatment within the previous 3 months (including 
no use of corticosteroid or immunosuppressive agents), or major 
dietary changes during previous months. All participants com-
pleted a questionnaire addressing lifestyle and nutritional behav-
ior as well as medication at the time of stool and saliva sampling.
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For neurocognitive assessment, we used the MMSE, MoCA, and 
MRDS. The MoCA test was designed as a rapid screening instru-
ment for mild cognitive dysfunction and assesses different cogni-
tive domains such as attention and concentration, executive 
functions, memory, language, visuoconstructive skills, concep-
tual thinking, calculations, and orientation (range: 0–30, <26 
MCI/AD). The MMSE is a widely used quantitative screening as-
sessment for cognitive impairment with a score under 24 indicat-
ing cognitive impairment associated with dementia in 79% of 
cases (100, 101). MRDS is an additional assessment used for detec-
tion of cognitive impairment in the elderly population supple-
menting the other metrics by examining different cognitive 
domains like attention, perseveration/initiation, construction, 
combination, and memory (102, 103). We defined z-scores of the 
total MRDS score using the most current normative data available 
(104). In order to harmonize data from different cognitive assess-
ments, we used the individual z-scores of the 3 tests (called cogni-
tion) for further analysis. Embedded in the clinical diagnostic 
routine, CFS biomarker as Aβ1–42, tau-, and p-tau were evaluated. 
In order to incorporate both pathophysiological aspects of AD in 1 
variable, we used the ratio of p-tau and Aβ1–42 (p-tau/Aβ1–42) for 
correlative analysis. Blood was taken within the clinical routine 
to assess general inflammatory parameters including CRP. 
Furthermore, we performed cerebral MRI on patients with AD 
and MCI and evaluated the MTA score, a score to visually graduate 
the MTA in patients with AD and MCI by means of loss of hippo-
campal height, width of the choroidal fissure, and width of the 
temporal horn (105). The score ranges from 0 (no mediotemporal 
atrophy) to 4 (severe loss of mediotemporal volume) and was va-
lidated for diagnosis of AD in a research context (106). The visual 
inspection was performed by three clinical evaluators (board- 
certified neurologist and two radiologists, T.B., L.P.S., and S.A.) ex-
perienced in detecting mediotemporal atrophy and scoring the 
MTA score blinded to the patient’s diagnosis.

Sampling of fecal and oral microbiome
All participants resided at home and provided fecal samples col-
lected at home by means of a prepared collection kit including 
two stool tubes (Sarstedt sterile stool tube, 76 × 20 mm), 1 with 
5 mL RNAlater RNA stabilization solution (Invitrogen), the other 
without puffer solution. For further analysis, only samples with-
out stabilization solution were used. Samples were sent back 
within 24 h. Fecal samples were immediately frozen at −80°C after 
arrival at the department of Neurology. Swab samples (Sarstedt 
forensic swab tube with ventilation membrane, 93 mm, ISO 
18385) were taken by a physician or a trained assistant at the out-
patient visit of the participant by swabbing the left and right inner 
cheek for 30 s and directly frozen at −80°C on average of 1 week 
before fecal sampling. At the time of fecal sample collection, par-
ticipants completed a questionnaire containing information 
about dietary habits, medication, recent antibiotic, or probiotic 
use, as well as current and past gastrointestinal and metabolic 
conditions.

Stool and swab sample processing and sequencing
DNA of stool samples were extracted using the QIAamp DNA fast 
stool mini kit automated on the QIAcube (Qiagen, Hilden, 
Germany). Material was transferred to 0.70 mm Garnet Bead 
tubes (Qiagen) filled with 1.1 mL InhibitEx lysis buffer. For swab 
samples, QIAamp UCP Pathogen mini kit automated on the 
QIAcube was used. The swab was therefore transferred to a 
Pathogen Lysis Tube S filled with 0.65 mL ATL buffer (incl. DX) 

and incubated for 10 min at 56°C with continuous shaking at 
600 rpm. Bead beating for both sample types was performed using 
a SpeedMill PLUS (Analytik Jena, Jena, Germany) for 45 s at 50 Hz 
with subsequent continuation of the manufacturer’s protocol. 
Extracted DNA was stored at −20°C before PCR amplification. 
Blank extraction controls were included during extraction of sam-
ples, PCR, and sequencing. Amplicon sequencing of variable re-
gions 1 and 2 of the 16S rRNA gene was done as described in 
detail earlier (107).

Sequence data processing
Data processing was performed using DADA2 v1.10 (108), via 
the workflow for big datasets (https://benjjneb.github.io/dada2/ 
bigdata.html). This resulted in abundance tables of ASVs 
according to a workflow adjusted for V1-V2 region, which can be 
found here: https://github.com/mruehlemann/ikmb_amplicon_ 
processing/blob/master/dada2_16S_workow_with_AR.R. Resulting 
ASVs underwent taxonomic annotation using the Bayesian classi-
fier provided in DADA2 and using the Ribosomal Database Project 
version 16 release (109). One sample with <10,000 sequences 
was not considered for further analysis. The representative ASV 
sequences were aligned using the Nearest Alignment Space 
Termination (NAST) algorithm and filtered for informative 
sites (excluding constant gaps/bases) in mothur (110, 111). 
Phylogenetic trees were constructed via FastTree v2.1 (112) using 
the “CAT” substitution model with Γ-correction and improved ac-
curacy (longer initial tree search [-spr 4], slower initial tree search 
[-slownni], more exhaustive tree search [-mlacc 2]).

ASV sequences and abundance matrices were transformed 
into biom format (R package “biomformat” v1.24.0) (113) and proc-
essed via the standard pipeline of PICRUSt2 (v2.5.0) (90). 
Functional information was imputed in the form of KEGG func-
tional orthologs (114) and used for further analyses. Sequences 
which poorly aligned or were too distant from the least common 
ancestor (Nearest Sequenced Taxon Index [NSTI] value) were re-
moved (16 ASVs).

Statistical analyses of microbiota analyses
The R package “vegan” (v2.5-1) (115) was used to investigate alpha 
diversity in this study. Alpha diversity of the samples was meas-
ured by Chao1 and Shannon diversity. Phylogenetic alpha diver-
sity was measured by unweighted NRI and NTI as implemented 
in “picante” (v1.8.2) (35, 116). The association between microbial 
diversity and compared groups (controls vs. AD, MCI, or at-risk 
participants) were tested via linear regression models. Linear re-
gression models were run in R (117) via the lm function from 
“stats” package. Age and sex were included as covariates in all 
statistical tests and normality was checked via the Shapiro–Wilk 
test.

Trend analyses of taxa monotonically correlating with disease 
severity were performed on healthy individuals (including at-risk 
individuals), MCI, and AD patients. The health condition was re-
corded as a severity gradient (controls and at-risk = 0, MCI = 1, 
AD = 2). Taxon abundances were clr transformed (R package com-
positions) and correlated with the severity score by linear models, 
incorporating age and sex as covariates. Results were visualized 
via heatmaps which were generated using the R package 
“complexHeatmap” v2.14.0 (including Ward clustering).

For analysis on beta-diversity, NMDS was performed with 
Bray–Curtis dissimilarity as implemented via metaMDS in the R 
package “vegan.” Bray–Curtis distance matrices based on the mi-
crobial communities in all samples were generated using the R 
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package “phyloseq” v1.22.3 (118). A permutational multivariate 
analysis of variance (PERMANOVA) (119) was then performed on 
the distance matrix to assess the effects of status (healthy con-
trols vs AD, MCI, or at-risk participants) on variance between mi-
crobial communities. The PERMANOVA was performed based on 
the adonis function of the R package “vegan,” with 999 permuta-
tions. Betadisper function was used to test for homogeneity of var-
iances between groups.

Differential abundance of taxa between AD, MCI, and control 
groups was determined at the ASV level using the “DESeq2” pack-
age in R (120), for each ASV which was covered by at least 50 read 
pairs and showed a minimum prevalence of 5% in all samples. 
Missing data are included as partial data in “DESeq2” models. 
Age and sex were included as covariates. Results were expressed 
as log2 fold change in AD and MCI participants relative to control 
participants. False discovery rate (FDR) was used for multiple 
testing correction. Similar techniques were applied for the ana-
lyses of differentially abundant functions, including subject age 
and sex as covariates, and performing negative binomial models 
with Wald tests as implemented in “DESeq2” (including auto-
mated effect filtering) to derive significance (FDR corrected). 
Enrichment analyses were performed on significant K-numbers 
for the respective pairwise comparisons and associations via 
“clusterProfiler” (v4.4.4) using the enrichKEGG function (121, 122) 
(KEGG database access: 2022 December 15, p-values are FDR 
corrected). Heatmaps were generated using the R package 
“complexHeatmap” v2.14.0 (123).

For correlation analysis, we used linear regression models. 
Linear regression models were run in R (117) via the lm function 
from “stats” package, after clr transformation from compositions 
package, ASV abundances were defined as outcome variable and 
AD score levels, sex, and age as the dependent variables (FDR cor-
rected). The correlation matrix was plotted as a heatmap includ-
ing hierarchical clustering of samples and variables via average 
linkage clustering (based on the Euclidean distance measure-
ments) (123).

Weighted coabundance networks were generated based on the 
correlation of ASV abundances (present >5% of samples). 
Networks were generated individually for the fecal and oral sam-
ples, via graphical models (Meinshausen–Buhlmann’s neighbor-
hood selection) as implemented in “SpiecEasi” v1.1.2 (124). The 
resulting networks were of sizes 1,094 and 830 nodes after filtering 
for edges present in ≥80% of the network subsamples (bounded 
StARS selection, 50 permutations, and 50 lambda paths) 
(125, 126). Node-based importance measures (degree, between-
ness, and PageRank index) were calculated in “igraph” v1.2.4.1 
(127–130). To assess whether bacteria were more important than 
expected by chance, observed centralities were compared against 
a permuted set of networks (1,000 times) via one-sided Z-tests 
(FDR corrected). Indicator species analysis as implemented via 
the function multipatt in the “indicspecies” package (v1.7.12) was 
used to detect predictive taxon for the respective patient charac-
teristics (36).
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