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ABSTRACT
We review recent progress in the electronic structure study of intrinsic magnetic topological insulators
(MnBi2Te4) · (Bi2Te3)n (n = 0, 1, 2, 3) family. Specifically, we focus on the ubiquitously (nearly)
gapless behavior of the topological Dirac surface state observed by photoemission spectroscopy, even
though a large Dirac gap is expected because of surface ferromagnetic order.The dichotomy between
experiment and theory concerning this gap behavior is perhaps the most critical and puzzling question in
this frontier. We discuss various proposals accounting for the lack of magnetic effect on the topological
Dirac surface state, which are mainly categorized into two pictures, magnetic reconfiguration and
topological surface state redistribution. Band engineering towards opening a magnetic gap of topological
surface states provides great opportunities to realize quantized topological transport and axion
electrodynamics at higher temperatures.

Keywords: intrinsic magnetic topological insulator, topological surface states, magnetic gap, magnetic
reconfiguration, topological surface state redistribution, van der Waals spacing expansion

INTRODUCTION
Magnetism has been used and studied over millen-
nia. Yet, this branch of physics keeps flourishing in
recent years with emerging states of magnetic mat-
ters such as quantum spin liquid [1,2] and two-
dimensional (2D) magnets [3,4]. By comparison,
the first two decades of the new millennium em-
braced the triumph of topological states of matter,
which has revolutionized our knowledge of crys-
talline materials by introducing topological invari-
ants to categorize their electronic structure [5,6]. In
2007, the realization of the quantum spin Hall ef-
fect (QSHE) based on a 2D HgTe/CdTe quantum
well [7,8] opened a new era of exploring topologi-
cal phases and materials in condensed matter. Elec-
tronically, this QSH state is insulating with a bulk
gap separating the conduction and valence bands
but has a pair of one-dimensional (1D) conducting

edge states. These 1D topological edge states are
protected by time-reversal symmetry, wherein elas-
tic backscattering by nonmagnetic impurities are
forbidden, holding the potential for dissipationless
spintronics. The QSHE state can be classified by a
type of topological invariant called the Z2 invari-
ant [9] and is now recognized as the first example
of a 2D time-reversal invariant topological insulator
(TI) with Z2 = 1. Z2 classification can be general-
ized to three-dimensional (3D) to describe ‘weak’
and ‘strong’ TIs [10]. A 3D strong TI has a ubiqui-
tous, gapless topological surface state (TSS)withhe-
lical spin texture due to spin-momentum locking. In
2008, 3D TI was first realized based on Bi-Sb alloys
[11]withmultiple TSSs crossing the Fermi level five
times.Up tonow, there have beenhundreds ofmate-
rials predicted as 3D strong TI [12–14] and dozens
of them have been experimentally verified, usually

C©TheAuthor(s) 2023. Published byOxfordUniversity Press on behalf of China Science Publishing&Media Ltd.This is anOpen Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original
work is properly cited.

https://doi.org/10.1093/nsr/nwad066
mailto:zhaoy@sustech.edu.cn
mailto:liuc@sustech.edu.cn
mailto:liuqh@sustech.edu.cn
mailto:chency@sustech.edu.cn
http://creativecommons.org/licenses/by/4.0/


Natl Sci Rev, 2024, Vol. 11, nwad066

through direct observation of their Dirac cones at
the surface by angle-resolved photoemission spec-
troscopy (ARPES) [15–17]. Among them, themost
representative one is Bi2Se3 and its family of mate-
rials [18–21] found in 2009. The Bi2Se3 family is
now considered the ‘hydrogen atom’ of topological
materials due to its simple and elegant electronic
structure. It is a semiconductor with a bulk gap of
∼ 0.3 eV, among the few with sizable bulk gap to
manifest surface state transport. It has only one TSS
Dirac cone at the center of the Brillouin zone, with
the Dirac point located close to the middle of bulk
gap. It consists of -Se-Bi-Se-Bi-Se- quintuple layers
(QLs) stacking along c axis bounded by van der
Waals (vdW) interaction, easy for device fabrica-
tion and epitaxial growth. Importantly, the TSS is
confirmed to be robust in ambient environments
because of the topological protection [22]. These
excellent properties distinguish the Bi2Se3 family
from others for the exploration of novel topologi-
cal effects. Particularly, thequantumanomalousHall
effect (QAHE), a time-reversal-symmetry-breaking
version of QSHE, was predicted in 2010 [23] and
then realized in 2013 [24] based on magnetically
doped films of this family (Fig. 1).

Our story of topological states of matter has
reached a point where this rising star meets a clas-
sic field of physics, magnetism. However, this is not
their first rendezvous. Back in 1980, the quantum
Hall effect (QHE) was observed from a 2D elec-
tron gas system subjected to a strong magnetic field
[25].This phenomenon was later explained theoret-
ically as a topological property of the occupiedbands
in the Brillouin zone [26]. In the current context,
we can call the QHE the first topological insulator
ever found, classified by a time-reversal-symmetry-
breaking topological invariant called Chern number
C (originally the well-known Thouless–Kohmoto–
Nightingale–Nijs invariant [26]). The applied mag-
netic field in QHE can be replaced by the intrinsic
magnetization of the material, leading to QAHE. In
this regard, QHE and QAHE states are both Chern
insulators. In 2D Chern insulators, 1D gapless edge
states emerge at theboundarybetween theChern in-
sulator and ordinary insulator (vacuum) because of
the distinct band topology. Like the 1D helical edge
states of QSHE, the 1D chiral edge state in QAHE
can propagate along one direction with forbidden
backscattering, suitable for developing low-power-
consumption electronics without the need for an
applied magnetic field.

The prediction and realization of QAHE [23,24]
represent a breakthrough in fundamental physics,
yet much effort is needed toward its practical ap-
plication. On the one hand, Hall bar devices based
on magnetically doped films require sophisticated

epitaxial growth and microfabrication procedures
that only a few labs in the world can accomplish
[24,27–34]. On the other hand, atomic doping
brings disorder to the crystal and inhomogeneity to
the electronic structure, resulting in amuch reduced
effective exchange gap of the TSS, where the realiza-
tion temperature was as low as 30 mK at first [24]
and the current record is 2 K [30] after 10 years’
effort. In this context, intrinsic magnetic TI, which
combines magnetic order and band topology in the
same material without the need of doping, is highly
desired.

In a magnetic TI, while the time-reversal
symmetry � is broken by the magnetic order, its
combinationwith certainmagnetic lattice symmetry
such as rotation Cn and fractional translation T1/2
can retain an equivalent time-reversal symmetry and
the system can still be classified by the topological
Z2 invariant. This was first discussed in the theoret-
ical proposal of antiferromagnetic TI in 2010 [38].
In an antiferromagnetic TI, both� andT1/2 are bro-
ken but the combination S = �T1/2 is preserved,
leading to a topologically nontrivial phase which
shares the topological Z2 invariant and quantized
magnetoelectric effect in a 3D strong TI. The differ-
ence is that, while 3D TIs have symmetry-protected
gapless TSS at all surfaces, 3D antiferromagnetic
TIs have intrinsically gapped TSS at certain surfaces
with broken S symmetry. The gapped TSSs in
3D antiferromagnetic TIs carry a half-quantized
Hall conductivity (σxy = e 2/2h), which may aid
experimental confirmation of quantized magneto-
electric coupling (Fig. 1). Although with fascinating
properties, the material realization of an intrinsic
antiferromagnetic TI was not initiated until 2017.
First-principles calculation proposed that by insert-
ing an MnTe bilayer into the first quintuple layer
of Bi2Te3, a septuple layer of MnBi2Te4 is con-
structed and the TSS opens a sizable magnetic gap,
promising a robust QAH state [39,40].Thematerial
was first experimentally realized with thin films via
molecular beam epitaxy [41]. Theoretical works on
single crystalline MnBi2Te4 were reported in 2019
and revealed its fertile topological states of matter
[42–45]. Since the successful preparation of single
crystal MnBi2Te4, the surge of intrinsic magnetic
TI based on MnBi2Te4 and its family of materials
has begun.

Now we know more details concerning the
structural, magnetic, and topological aspects of
MnBi2Te4 antiferromagnetic TI. Its R 3̄m lattice
consists of layered -Te-Bi-Te-Mn-Te-Bi-Te- units
(SL) stacking along the c axis and the layers are
bounded by vdW force [46,47]. In the ground
state below TN ∼ 24.6K, Mn ions (S = 5/2 of
2+ valence) with a large magnetic moment of
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Figure 1. Emergent topological phenomena arising from an intrinsic magnetic TI. The interplay of magnetism and band topology offers a great chance
to explore the QAHE previously realized on magnetically doped TI films (adapted from [24]) but now potentially at much higher temperatures, the chiral
Majorana fermion at the interface of QAHE state and s-wave superconductor which forms the basis of topological quantum computing (from [35]),
quantized magneto-optical effect (from [36]), topological magnetoelectric effect, fractional Chern insulator, high Chern number insulator and so on
(from [37]).

∼ 5 μB form a ferromagnetic layer with moments
pointing out-of-plane. These ferromagnetic layers
couple each other in an antiferromagnetic way along
the c -axis [48,49] (A-type AFM). The bulk gap is
around 220 meV from calculation [45] but only
∼ 130meV asdirectly observedbyARPES[50–52].
At the natural cleavage plane (0001), the TSS gap
of ∼ 88 meV at the Dirac point is expected due to
S breaking [42–45]. This sizable TSS gap is the key
ingredient enabling the observation of exotic phe-
nomena such as quantizedmagnetoelectric coupling

[38,53,54], axion electrodynamics [55–57], QAHE
[24,27–34,58], and chiral Majorana fermions
[59–62] atmuch higher temperatures. In fact, quan-
tum transport experiments have revealed the exis-
tence of a 2DChern insulator with QAHE observed
at 1.4 K based on 5 SLs [63], and the characteristics
of an axion insulator state based on 6 SLs [64],
both at zero magnetic field. Under a perpendicular
magnetic field (15T), characteristics of high-Chern-
number quantum Hall effect without Landau levels
contributed by dissipationless chiral edge states are
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observed, indicating a well-defined Chern insulator
state with C = 2 (9, 10 SLs) [65]. Its intralayer
ferromagnetic and interlayer antiferromagnetic
configuration exhibits the layer Hall effect in which
electrons from the top and bottom layers deflect in
opposite directions due to the layer-locked Berry
curvature, resulting in the characteristic of the
axion insulator state (6 SLs) [66]. In addition
to these experimental observations, it is further
shown by theory that manipulating its magnetic
and structural configuration can give rise to many
new topological states. For example, the flat Chern
band in twisted bilayer MnBi2Te4 may boost the
fractional Chern insulator and p + i p topological
superconductor [67]; changing the stacking order
between MnBi2Te4 SL and Bi2Te3 QL may lead
to novel states such as QSHE insulator with and
without time-reversal symmetry [68]; magnetic
ground states other than A-type AFM may lead to
different phases such as Weyl semimetal [69,70]
and higher-order topologicalMöbius insulator [71].
These predictions (Fig. 1) certainly deserve further
experimental efforts.

There have been several reviews/perspectives
on this intrinsic magnetic TI family [72–76],
with distinct emphases on theoretical, computa-
tional, and transport studies, respectively. In this
review, we focus on the electronic structure of
(MnBi2Te4) · (Bi2Te3)n (n = 0, 1, 2, 3) family,
which has long been a subject of much debate. We
will first review the ARPES observation of ubiqui-
tously (nearly) gapless behavior of TSS Dirac cone
from MnBi2Te4 and MnBi2Te4 SL termination, as
well as the band hybridization features from Bi2Te3
QL terminations. While the significantly reduced
TSS gap size of MnBi2Te4 termination deviates
from that obtained by first-principles calculations, it
is not against the relatively low temperature for the
observation of QAHE, suggesting that the effective
magnetic moments for the TSS may be diminished.
There is also experimental evidence suggesting the
robust A-type AFM order at the topmost SL layers
from magnetic force microscopy (MFM), polar
reflective magnetic circular dichroism (RMCD)
and X-ray magnetic circular/linear dichroism
(XMCD/XMLD)measurements. Furthermore, the
magnetic splitting of certain bulk quasi-2D bands
seems to validate the effect of magnetic order on
the low-energy band structure. Bearing these estab-
lished experimental results in mind, we then discuss
the validity of possible scenarios proposed to ac-
count for the (nearly) gapless TSS from MnBi2Te4
termination, such as surface magnetic reconstruc-
tion, TSS redistribution, defect and self-doping ef-
fects, etc. Future band engineering towards opening
amagnetic gap at theTSSDiracpoint via approaches

such as magnetic manipulation, element substitu-
tion, chemical potential and material optimization
is proposed, which would provide great opportu-
nities to the realization of QAHE and topological
magnetoelectric effect at higher temperatures.

UBIQUITOUSLY GAPLESS TSSs
Due to the S breaking at the natural cleavage plane
(0001), below TN ∼ 24.6 K antiferromagnetic TI
MnBi2Te4 is expected to show a magnetic gap
∼ 88meV at theDirac point ofTSS [42–45]. Earlier
ARPES investigations on the single crystals reported
gapped TSS behavior with a Dirac gap ranging from
70 meV to 200 meV [45,77,78], in line with the
theoretical prediction. However, the photon-energy
dependent gap size indicates its bulk nature rather
than a surface origin. Indeed, our systematic photon-
energy-dependent ARPESmeasurements show that
the bulk gap separating the bulk valence and con-
duction bands varies from 130 meV to 200 meV
from bulk Brillouin zone � to Z [50]. Astonish-
ingly, the TSS Dirac cone remains gapless below or
above TN ∼ 24.6 K, as first reported by our group
(data shown in Fig. 2a) and others [50–52]. Such
observations of (nearly) gapless TSS Dirac cone on
MnBi2Te4 (0001) surface below and above the an-
tiferromagnetic order temperature have been fur-
ther repeated [79–84]. To date, there have been ex-
tensive efforts to explain the origin of this gapless
behavior, which will be reviewed in the following
sections.

This striking violation against the theoretical pic-
ture has inspired intensive ARPES measurements
extended to the antiferromagnetic heterostructure
members of this family, i.e. MnBi4Te7 consisting
of alternating SL and QL sequence and MnBi6Te10
consisting of alternating SL and two QLs se-
quence [47,86].The enlarged distance between SLs
in MnBi4Te7 and MnBi6Te10 reduces the anti-
ferromagnetic exchange interaction. Consequently,
MnBi4Te7 has an antiferromagnetic ground state
with TN ∼ 13 K, while MnBi6Te10 is antiferromag-
netic below TN ∼ 10.7K. [87–90]. Due to the vdW
interaction between SLs and QLs, MnBi4Te7 has
two natural cleavage planes (SL and QL termina-
tions)whileMnBi6Te10 has three (SL,QL, and dou-
bleQL terminations). Since the intralayer ferromag-
netic order comes from Mn residing in the central
layer of SL, one would expect magnetic gap opening
from SL termination and gapless TSS from QL and
double QL terminations. However, similar to the
case ofMnBi2Te4 (0001) surface, all the SL termina-
tions fromMnBi4Te7 [52,79,85,91] andMnBi6Te10
[79,89,90,92] show(nearly) gaplessTSSDirac cone
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Figure 2. Gapless TSSs from all the terminations of (MnBi2Te4) · (Bi2Te3)n (n = 0, 1, 2). (a) Gapless TSS from the (0001) surface of MnBi2Te4,
measured at 10 K using photon energy hv = 6.3 eV [50]. (b) Gapless TSSs from the SL (left) and QL (right) terminations of MnBi4Te7, measured at
11 K using photon energy hv = 6.3 eV [85]. (c) Gapless TSSs from the SL (left), QL (middle) and double QL (right) terminations of MnBi6Te10, measured
at 6 K using photon energy hv = 6.994 eV [79]. Red arrow emphasizes the in-gap states inside the hybridization gap between TSS and bulk valence
band while blue arrow indicates the TSS Dirac point.

as presented in Fig. 2b and c. These results suggest
that the (nearly) gapless behavior of the TSS Dirac
cone is ubiquitous for all the SL terminations of
(MnBi2Te4) · (Bi2Te3)n (n = 0, 1, 2).

It is also interesting to look at the TSS behav-
ior from QL and double QL terminations. Both QL
terminations from MnBi4Te7 (Fig. 2b, right) and
MnBi6Te10 (Fig. 2c,middle)present similar features
for theTSS. First of all, theTSSDirac point is buried
inside the bulk valence band region as indicated by
blue arrows. Second, an apparent gap is opened at
the upper TSS Dirac cone due to its hybridization
with one neighboring bulk valence band. Third, be-
low this hybridization gap, the residual TSS and bulk
valance band compose a Rashba-split band (RSB)
feature, with the new RSB Dirac point coming from
the original TSS Dirac point. Last and more impor-
tantly, there appears anewband inside thehybridiza-
tion gap, with its top touching the upper part of
the gapped TSS, forming a new gapless Dirac cone.
This in-gap state extends from the new Dirac point
down to the valence band region, resulting in the
generally gapless surface and bulk spectra. The ap-
pearance of this new in-gap Dirac cone is intrigu-
ing. Based on the above band features, a TSS-RSB
hybridization picture has been proposed to explain
the complicated band features from both SL and
QL terminations [90]. Combining circular dichro-
ism ARPES and first-principles calculations, the ex-

istence of RSB and its hybridization with TSS have
beenfirmly establishedbyworks fromseveral groups
[77,83,85,90,93]. The TSS-RSB hybridization can
be simulated in a tight-binding simulation. By tun-
ing the hybridization strength, the QL ARPES spec-
tra can be reproduced. According to the simulation,
the new in-gap Dirac cone indeed comes from the
original bulk RSB (see Fig. 4b–d in ref. [90]). This
hybridization picture can also reproduce well the
ARPES spectra on the SL termination and poten-
tially explain the puzzling gapless behavior of the
TSS Dirac point, which will be discussed in detail in
the following section. For the double QL termina-
tion of MnBi6Te10, similar band hybridization fea-
tures are observed (Fig. 2c, right), but the hybridiza-
tion gap is too narrow for the investigation of the
in-gap state.

KEY PROPERTIES RELATED TO THE TSS
GAP
Since its first observation, attempts had been made
to explain the gapless behavior at the Dirac point
of the SL termination with S breaking under anti-
ferromagnetic order [50–52]. Before going to the
bewildering variety of proposals, we would like to
mention the key properties established by various
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the most important intrinsic defects (and concentrations in atomic %) at both Te-rich and Te-poor limits in MnBi2Te4, from [97].

experimental probes, which are closely related to the
gapless/gapped behavior of TSS at the SL.

The first one comes from the experimental real-
ization of QAHE in a 5 SLs MnBi2Te4 device [63],
as shown in Fig. 3a, strongly suggesting the existence
of a 2D Chern insulator state with gapped TSS. By
fitting the Arrhenius plot of longitudinal resistance
Rxx as a function of 1/T , the energy gap of the ther-
mally activated charge transport can be obtained as
�E = 0.64 meV at zero-field [63]. This energy
scale characterizes the minimum energy required to
excite an electron from the surface valence band to
the surface conduction band, two orders of magni-
tude smaller than the predicted exchange gap [45].
On the other hand, the gapless behavior of the TSS
observed byARPESmay just represent the resolving
power of the instrument, and the TSS gap could still
exist but be smaller than the energy resolution (typi-
cally> 1meV).TheTSS gap size fromARPESmea-
surements varies from being diminished [50,51], to
∼ 10 meV [52] or even larger, with strong sample
and spatial dependence [94,95]. The above obser-
vations suggest that the gapless behavior of the TSS
Dirac point at SL termination at the antiferromag-
netic phase is unlikely to be symmetry enforced. It is
worth noting that, according to the theoretical defi-
nition of antiferromagnetic TI, the TSS is protected
in a weaker sense than the 3D strong TI, indicating
that it is generally not stable to disorder [38].

The second key property is the robust A-type
AFM order at the surface SL layers as evidenced

by measurements using MFM [96] and other tech-
niques. Fig. 3b shows the MFM image taken after
field cooling at 0.6 T, with the tip polarized by a
magnetic field of −0.3 T perpendicular to the sam-
ple surface. Clear contrast in the image illustrates
several domains, where the magnetic signal changes
its sign when crossing the domain walls. If the mag-
netic moment on the tip is reversed by a magnetic
field of 0.3 T, all the domains and domain walls
change their contrast. Further analysis of the screen-
ing effect from fractional QL impurity phases sup-
ports the persistence of uniaxial A-type spin order
at the top SL layers. One may wonder if the ro-
bustness of A-AFM at the top SL layers is also sam-
ple dependent. It is thus important to note that
other techniques, such as polar reflective magnetic
circular dichroism (RMCD) [98] and X-ray mag-
netic circular/linear dichroism (XMCD/XMLD)
[45,48,94,99–101] spectroscopies, also give strong
evidence for the existence of net out-of-plane mag-
netic moments at the sample surfaces.

Even though the robust A-type AFM order is
confirmed, what about its influence on the low-
energy electronic structure?The (nearly) gapless be-
havior and its weak temperature dependence across
the magnetic transition suggest a negligible effect
of the magnetic order on the TSS. However, there
are other bands close to the Fermi level which are
surprisingly affected by the magnetic order. As ex-
emplified in Fig. 3c by the bulk conduction bands la-
beled as CB1a and CB1b, at high temperatures they
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Figure 4. Various magnetic reconfigurations accounting for the (nearly) gapless behavior of MnBi2Te4 TSSs. (a–c) Prototypical magnetic reconstructions
leading to different gap behavior of TSS, including A-type AFM with out-of-plane ferromagnetic moments (A-AFMz) (a), disordered magnetic moments
(b), G-type AFM (c) (adapted from [50]) and A-type AFM with the magnetic moments along the x -axis (A-AFMx) (d) from [113]. (e) Magnetical domain
wall edge states (left, from [28]) resemble the gapless TSS, which is further discussed in a first-principles-based tight-binding model (right, from [115]).
(f) Native point defects MnBi can introduce ferrimagnetism and reduce the TSS gap, from [103]. (g) The hybridization between the Mn 3d and Te 5p
states, as schematically shown in the left two panels (from [73]) is too weak according to the resonant photoemission spectra (right, from [52]) to induce
TSS magnetic gap.

merge into one bandCB1, while their splitting starts
when the temperature decreased to TN and reaches
∼ 35 − to 45meV below10K [51,52,102]. It is fur-
ther reported that CB2 also shows a Rashba-like fea-
ture and band splitting below TN [80].These results
demonstrated the third key property of MnBi2Te4,
i.e. the coupling between antiferromagnetic order
and the low-energy bands.

The fourth one comes from a material point of
view concerning the disorders typically present in
transition metal chalcogenides. In MnBi2Te4 fam-
ily, various types of disorders, such as BiTe antisites
(i.e. Bi atoms at the Te sites) located in the surface
layer,MnBi substitutions (Mn-Bi intermixing) in the
second and central atomic layer, and Mn vacancies
(VMn) are observed by combiningmany experimen-
tal tools such as scanning transmission electron mi-
croscopy (STEM), scanning tunneling microscopy
(STM), single-crystal X-ray diffraction (XRD), en-
ergy dispersive X-ray (EDX) analysis in scanning

electron microscope (SEM) [48,49,78,103–112]
and even density functional theory (DFT) calcula-
tions [97].We will show in the next section that cer-
tain types of disorders may strongly affect the mag-
netic response of the TSS.

MAGNETIC RECONFIGURATION TO
EXPLAIN THE (NEARLY) GAPLESS TSSs
The (nearly) gapless behavior of TSS and its weak
temperature dependence across the antiferromag-
netic order lead to natural speculation of mag-
netic surface reconstruction. Deviations from the A-
AFMz type (Fig. 4a), such as disordered magnetic
structure (Fig. 4b), G-AFM with intralayer and in-
terlayer antiferromagnetic (Fig. 4c) and AFMx with
ferromagnetic in-plane moments (Fig. 4d), are con-
sidered in calculations [50,69,71,113]. As shown in
Fig. 4b–d, all three deviations can lead to gapless
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TSS. Since it remains a technical challenge to de-
termine the magnetic structure for the topmost SL,
it would be insightful to examine the specific fea-
tures from ARPES spectra and check their corre-
spondence to the various magnetic structures. As
shown in the right panel of Fig. 4d, for A-AFMx, the
net magnetic moments break the in-plane rotation
symmetry and lead to a TSS constant energy con-
tour with only mirror symmetry. Further consider-
ation of spin texture will result in mirror symmetry
breaking [113]. For G-AFM, the double-sized unit
cell in the antiferromagnetic phase may lead to in-
plane band folding feature compared to the param-
agnetic phase. For the disordered case, the lack of
any oriented moment would retain the sixfold ro-
tation symmetry of the constant energy contour of
the TSS, while for the A-AFMz, the net out-of-plane
moments in the top SL layer coupled to the TSS
will break the sixfold rotation symmetry and leave
only a threefold rotation symmetry. Further ARPES
studies with ultrahigh energy, momentum resolu-
tion, and spin resolution from three directional com-
ponents (Px , Py , Pz) are highly encouraged to
distinguish the above features.

Another type of magnetic reconfiguration is the
formation of domains and domain walls illustrated
in Fig. 4e (left panel [28]). The existence of mag-
netic domain walls in MnBi2Te4 surface has been
observed experimentally [96,114]. In the presence
of such opposing magnetic domains, first-principles
calculations and tight-binding model analysis pro-
posed that gapless chiral boundary modes can ex-
ist [37] (Fig. 4d, right panel [115]). Note that this
edge mode is strictly gapless, while the TSS gap
size in MnBi2Te4 shows sample and spatial depen-
dence [94,95]. As the typical magnetic domain size
is ∼10 μm, the contribution of chiral edge states at
domain walls could be too tiny to explain the gapless
topological surface states [96].

One more sophisticated ferrimagnetic structure
has been experimentally observed [107,108] and
employed to account for themuch-reducedTSS gap
[103]. As shown in Fig. 4f, the Mn-Bi intermixing
could introduce MnBi defects in the 2nd and 6th
atomic layers counting from the surface, with itsmo-
ments antiparallel to that of the central Mn layer.
Due to the predominant localization of TSS den-
sity of states to the Te-Bi-Te layer, the moments of
MnBi defects counteract that from the central Mn
layer, leading to a reduction of the TSS gap. The in-
homogeneity ofMnBi defects could explain the sam-
ple and spatial dependence of TSS gap size, suggest-
ing that improving the crystalline quality with sup-
pressed Mn-Bi intermixing is a crucial task for stud-
ies in the near future [103]. However, to better cor-
relate the MnBi defect density to the TSS gap size,
one needs to perform in situ ARPES and STMmea-

surements for the same region of the sample surface,
which is hardly feasible considering that these two
techniques have ‘field of view’ with orders of magni-
tude difference.

It is also reasonable to check the effective
coupling between Mn d orbitals contributing
magnetism and Bi/Te p orbitals related to the TSS.
According to a resonant photoemission study [52],
the Mn 3d states are mainly located 4 eV below the
Fermi level (Fig. 4g), negligible in the energy range
where nontrivial topology arises, leading to the
speculation of weak p − d hybridization.This spec-
ulation is against first-principles calculations which
predict sizable TSS gaps [116] and contradicts
the observation of magnetism-induced conduction
band splitting as discussed in ‘key properties related
to the TSS gap’ (above). It is noted that a recent
ultrafast magnetic dynamic study reveals large
p − d exchange coupling (>10 meV) [117].
Based on the above analyses, there remain plenty
of challenging experimental investigations, micro-
scopically or spectroscopically, to determine the
magnetic structure of the topmost SL accounting
for the (nearly) gapless TSS.

TSS REDISTRIBUTION TO EXPLAIN ITS
(NEARLY) GAPLESS BEHAVIOR
In this section we introduce the TSS redistribution
picture where the TSS distribution can be extended
from the topmost SL to the layers beneath, lead-
ing to a (nearly) gapless TSS as it feels a compro-
mised effective magnetic moment. The compensa-
tion of the effective magnetic moments relies on
the fact that the topmost SL and the second SL
have antiparallel and comparable moments, mean-
ing that this TSS redistribution picture is only ap-
plicable to MnBi2Te4 but not the heterostructure
members containing nonmagnetic QLs. However,
the potential origins of a redistributed TSS, such
as band hybridization, vdW spacing expansion, or
charge/defect effect, may generally exist in all the
members of this family. In the following, we briefly
introduce these mechanisms.

Based on the observation of hybridization
between the TSS and a pair of RSBs, A TSS-RSB
hybridization picture has been proposed [90] to
explain the origin of sophisticated band structure
for both QL and SL terminations in this material
family (see details in ‘ubiquitouly gapless TSSs’
above). Specifically for SL as shown in Fig. 5a,
tight-binding model simulation reveals that the
TSS Dirac cone has a bulk origin. This inspires
a TSS redistribution picture to account for the
lack of magnetic effect on TSS in MnBi2Te4. As
schematically illustrated in Fig. 5b, in an ideal case,
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Figure 5. TSS redistribution picture explaining the (nearly) gapless behavior of MnBi2Te4 TSSs. (a) ARPES spectra and tight-
binding model simulation show the hybridization between TSS and Rashba-split bands, from [90]. (b) Schematic showing the
redistribution of TSS density of states and gapped/gapless Dirac cone corresponding to an ideal antiferromagnetic phase
(left), an actual antiferromagnetic phase (middle) and an expected ferromagnetic phase (right). (c) Distribution of bulk mag-
netization (mz ) and surface state envelope function � according to effective model analysis, from [118]. (d) Surface excess
charge induced redistribution of TSS top/bottom cone localization, from [95]. (e) TSS redistribution due to the vdW spacing
expansion, from [94]. (f) Three-Dirac-fermion approach to the gapless TSS under vdW spacing expansion, from [119]. (g) Co-
antisites (exchanging Mn and Bi atoms in the surface layer) can strongly suppress the magnetic gap down to several meV in
the antiferromagnetic phase, from [120].

the TSS predominantly locates on the topmost SL.
In the A-AFM configuration, the effective magnetic
moments for the TSS are approximately equal to
the net ferromagnetic moments from one SL, which
is large enough to open a sizable TSS Dirac gap as
expected. In the actual case, the TSS distribution
extends to the second SL. The interlayer antiferro-
magnetic order results in zero net magnetization
for the top two SLs and consequently compensated
effective magnetic moments for the TSS. In an
extreme situation where the top two SLs equally
share 50% of TSS localization, gapless TSS appears
regardless of the robust surface A-AFM order and
its coupling to the band structure. Based on this
TSS redistribution picture, a sizeable TSS magnetic
gap can be expected if the magnetic compensation
effect is eliminated, e.g. in a ferromagnetic ground

state. This expected case will be discussed in the next
section.

Such a TSS redistribution picture has been sup-
ported by numerous model analyses and distinct
calculations-based approaches. Starting from a 3D
Hamiltonian for bulk MnBi2Te4 and taking into ac-
count the spatial profile of the bulk magnetization,
an effective model for the TSS has been derived
[118]. This model suggests that the diminished sur-
face gap may be caused by a much smaller and more
localized intralayer ferromagnetic order and the fact
that the surface states are mainly embedded in the
first two SLs from the terminating surface (Fig. 5c).
To be specific, by using the envelope function the
penetration depth of TSS is calculated as ∼16.2 Å,
larger than the thickness of one SL (∼13.7 Å,).This
is in agreement with the results obtained by ab initio
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calculations, which present the spatial charge distri-
bution of the TSS Dirac state between the first and
second SL expanded by 15.3% at equilibrium struc-
ture and for vdW spacing (Fig. 5e from ref. [94]).
With increasing vdW spacing, the TSS is found to
shift its dominant occupation from the top SL to the
second SL, resulting in reduced effective moments.
The TSS Dirac gap is found to decrease and van-
ish at 15.3% expansion. As the vdW spacing modu-
lation is likely to occur in both magnetic and non-
magnetic vdW TIs, a general three-Dirac-fermion
approach can be developed [119] to describe the
TSS behavior. As shown in Fig. 5f, the three-Dirac-
fermion refers to three TSS Dirac cones located at
the top surface of the topmost SL/QL(D1), the bot-
tom surface of the topmost SL/QL (D2) and the
top surface of the second SL/QL (D3), respectively.
Their coupling is tuned by coupling energies �12
and�23, with the latter being dependent on the top-
most interlayer vdW spacing d . Remarkably, unex-
pected gapless TSS Dirac cones are found to arise
due to d expansion, when the total Chern number of
the system changes by 1 in this expansion process.
It should be emphasized that, in this three-Dirac-
fermion approach, the gapless point is topologically
protected and comes from the competition between
the Zeeman coupling and the Dirac fermion cou-
pling. Such vdW spacing expansion may be intro-
duced by the mechanical cleavage process [22,121]
before ARPES and STM measurements, yet the di-
rect evidence is still missing from atomic layer re-
solved probes such as STEM.

Excess surface charge is found to affect the dis-
tribution of TSS in a top/bottom cone-dependent
manner [95]. Obviously, the smallest gap values
should be achieved when the top and bottom TSS
cones are mostly and independently located in two
adjacent SLs, as they experience an exchange field
of the opposite sign (q = −0.045e0 in Fig. 5d).
Furthermore, from an ab initio calculation, cation
co-antisites MnBi and BiMn (extra Bi replacing Mn)
can push the TSS charge toward the second SL.
Therefore, the influence on the magnetic gap from
the top SL is reduced while the second SL influ-
ence is simultaneously enhanced (Fig. 5g) [120], re-
sulting in compensated effective magnetic moments
and reduced TSS magnetic gap. It is noted that the
existence of excess charge and Mn-Bi intermixing
defects are well established in this material family.

PERSPECTIVES TO OPEN THE TSS
MAGNETIC GAP
In the context of the TSS redistribution picture,
gaplessTSScomes fromcompensatedmagneticmo-
ments as a nature of the A-AFM order. Assuming a

ferromagnetic background, no compensation exists
no matter how the TSS redistributes. This offers a
great chance to realize a sizeable TSS gap through
magnetic engineering based on MnBi2Te4. In fact,
a large amount of Sb substitution in the Bi sites can
indeed transform the MnBi2Te4 ground state from
antiferromagnetic to ferromagnetic or ferrimagnetic
order [104,107,123–125]. The TSS band structure
study by ARPES, however, is difficult due to the
heavy hole doping induced by Sb substitution. It is
worth noting that with a small amount of Sb doping,
we have observed a TSS gap opening in MnBi2Te4
samples which stay at the antiferromagnetic phase.
Surprisingly this TSS gap size is proportional to the
doping level and carrier density, allowing a con-
tinuous tunability of gap size [126]. However, this
TSS gap is independent of the antiferromagnetic-
paramagnetic transition, with the origin of the gap
remaining to be investigated.

Another way to realize the ferromagnetic ground
state is through heterostructure engineering.
As mentioned in ‘ubiquitouly gapless TSSs’, in
(MnBi2Te4) · (Bi2Te3)n (n = 0, 1, 2, 3) family
the interlayer antiferromagnetic coupling between
the ferromagnetic SLs can be reduced by QL spac-
ing. In fact, with 3QLs spacing (n = 3),MnBi8Te13
develops a long-range ferromagnetic order below
TC = 10.5K [127].This provides a valuable chance
to realize the magnetic gap in TSS from SL ter-
mination. High-quality MnBi8Te13 single crystals
are grown and characterized through structural,
magnetic, transport, and electronic structure studies
[122]. Its crystal structure shown in Fig. 6a was
obtained from single-crystal XRD and powder
XRD refinement. The temperature-dependent
anisotropic magnetic susceptibility (Fig. 6b) shows
Curie-Weiss (CW) behavior above 150 K (inset)
with the characteristic temperature θCW = 12.5 K
and 10.5K for H ‖ c and H ‖ ab , respectively.The
larger bifurcation between zero-field cooling (ZFC)
and field cooling (FC) magnetization and magnetic
hysteresis loop (Fig. 6c) indicate an easy axis along
the c -axis and an Ising-type exchange interaction
between adjacent Mn layers. These properties
suggest a ferromagnetic order with an out-of-plane
magnetic moment configuration inMnBi8Te13.

The heterostructure lattice of MnBi8Te13 natu-
rally yields four types of terminations by cleaving
the single crystal perpendicular to the c axis, namely,
SL, QL, double QL, and triple QL terminations.
A spatial-resolved ARPES with a laser beam spot
∼5 μm was employed to resolve the intrinsic sur-
face band structure from these four distinct termi-
nations and the results are shown here in Fig. 6e–h.
We start with those three nonmagnetic QL termina-
tions and find very similar TSS-RSB hybridization
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features as we discovered from QL and double QL
terminations ofMnBi6Te10 (Fig. 2c [90]), while the
triple QL termination shows a TSS Dirac cone re-
sembling that of Bi2Te3. Emphasiswas put on the SL
termination and a clear gap can be found at the TSS
Dirac point as indicated by the black arrow inFig. 6e.
The gap size is extracted by fitting the energy dis-
tribution curves (EDCs) using multiple Lorentzian
peaks. The fitting yields a TSS Dirac gap ∼ 28 meV
at 7 K. Furthermore, this gap exhibits a monotoni-
cal decrease with increasing temperature (Fig. 6d)
and finally closes at 11 K, right above TC , estab-
lishing a ferromagnetic-induced Dirac-point gap in
the SL termination. Although TSS gaps have been
observed in other members of this materials fam-
ily and doped TIs, their magnetic origin remains
controversial with, particularly, the lack of clear
temperature dependence [50,51,79,90,128]. Con-
sequently, this observation—that a TSS Dirac cone
gap decreases monotonically with increasing tem-
perature and closes right at TC , forming a gap-
less Dirac cone—represents direct evidence of TSSs
gappedby themagnetic order amongall knownmag-
netic topological materials. It is still more desirable
to realize the magnetic gap of TSSs in MnBi2Te4
rather than its heterostructure cousins as the lat-
ter contains uncontrollable terminations with dif-

ferent magnetism from the exfoliation process. The
realization of theTSSmagnetic gap in ferromagnetic
MnBi8Te13 seems to be consistent with the TSS re-
distribution picture.

We have discussed several possible microscopic
mechanismsofTSS in twoaspects, i.e.magnetic con-
figuration (such as disordered magnetic structure
andA-AFMxwith ferromagnetic in-planemoments)
andTSS redistribution (such asTSS-RSBhybridiza-
tion, vdW spacing expansion, excess surface charge,
and cation co-antistites effect). It should be noted
that, to reach any of these situations, an energy bar-
rier needs to be overcome due to its deviation from
the bulk ground states. Hence, a natural question
arises: why would these situations occur? Is it an oc-
casional case for Mn-Bi-Te family or does there ex-
ist some general fundamentalmechanism? From the
perspective of energy competition, a more general
self-doping scenario in real samples had been pro-
posed as the essential force that may lead to such
situations based on Koopmans’ theorem [129]. For
the gapped TSS, the energy level of the conduction
bandminimum is higher than that for the case of the
gapless Dirac point. According to Koopmans’ theo-
rem, an electronic self-doping would naturally save
energy for the gapless TSS. Once such energy gain
overwhelms the energy barrier of the redistribution
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of the TSS or magnetization, the gapless behavior
of TSS emerges. In this sense, the self-doping may
be the underlying origin of the nearly gapless TSS,
while the TSS redistribution or magnetic reconfig-
uration serves as the intermediate. In this view, the
emergence of the magnetic gap ofMnBi8Te13 could
also be understood. Instead of staying at the sur-
face SL that contributes to the TSS, most of the self-
doped electrons enter the bulk QL bands, thus sup-
pressing the gapless transition of TSS [129]. There-
fore, to open the TSS magnetic gap it is favorable to
recover its charge neutrality via doping or material
optimizing.

Despite the remaining puzzles of themicroscopic
mechanism of the TSS, there are currently experi-
mental advances that may be informative. Related
to the vdW gap mechanism, point contact tunnel-
ing spectroscopy on MnBi2Te4 reveals the signa-
ture of the TSS gap, which indicates that a mod-
erate pressure on the surface may deduce the vdW
gap expansion to restore the effective magnetic mo-
ments for a gapped TSS [130]. Related to the ex-
cess surface charge and antisite effect, improving the
crystalline quality is a direct way to eliminate such
effects. Recent efforts in growing MnBi2Te4 sin-
gle crystals using chemical-vapor-transport (CVT)
methods [131,132] have reported samples marked
with higher Mn occupancy on the Mn site, slightly
higher MnBi antisites, smaller carrier concentration,
and a Fermi level closer to the Dirac point, yielding
highest mobility of 2500 cm2V−1s−1 in MnBi2Te4
devices [131]. ARPES measurement with ultrahigh
energy and momentum resolution, as in the previ-
ous studies [50–52,122,126], is called for the ex-
ploration of spectroscopic signature of coupling be-
tween the ferromagnetic order and TSS, such as
magnetic gapopening and sixfold rotation symmetry
breaking [119,133]. Quantum transport measure-
ment is highly expected for thin layer devices based
on CVT single crystals in pursuit of quantized con-
ductivity at higher temperature.
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