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Accurate prediction of protein–nucleic acid 
complexes using RoseTTAFoldNA

Minkyung Baek    1, Ryan McHugh    2,3, Ivan Anishchenko    2,3, Hanlun Jiang4, 
David Baker    2,3,5 & Frank DiMaio    2,3 

Protein–RNA and protein–DNA complexes play critical roles in biology. 
Despite considerable recent advances in protein structure prediction, the 
prediction of the structures of protein–nucleic acid complexes without 
homology to known complexes is a largely unsolved problem. Here we extend 
the RoseTTAFold machine learning protein-structure-prediction approach 
to additionally predict nucleic acid and protein–nucleic acid complexes. We 
develop a single trained network, RoseTTAFoldNA, that rapidly produces 
three-dimensional structure models with confidence estimates for protein–
DNA and protein–RNA complexes. Here we show that confident predictions 
have considerably higher accuracy than current state-of-the-art methods. 
RoseTTAFoldNA should be broadly useful for modeling the structure of 
naturally occurring protein–nucleic acid complexes, and for designing 
sequence-specific RNA and DNA-binding proteins.

Current approaches for protein–nucleic acid complex structure pre-
diction involve building models of the protein and nucleic acid (NA) 
components separately and then building up complexes using compu-
tational docking calculations1–3. For predicting protein components, 
machine learning-guided approaches like RoseTTAFold4 and Alpha-
Fold5 are highly accurate, while RNA structure prediction has used a 
combination of Monte Carlo sampling approaches6–9 as well as deep 
learning methods10,11. Despite this progress in predicting individual 
components, the prediction of the structure of protein–nucleic acid 
complexes has lagged considerably behind the prediction of protein 
structures or RNA structures alone.

AlphaFold and RoseTTAFold take as input one or more aligned 
protein sequences, and successively transform this information in 
parallel one-dimensional (1D), two-dimensional (2D) and—in the case 
of RoseTTAFold—three-dimensional (3D) tracks, ultimately outputting 
three-dimensional protein structures. The 10 s to 100 s of millions of 
free parameters in these deep networks are learned by training on 
large sets of proteins of known structures from the Protein Data Bank 
(PDB). Both AlphaFold and RoseTTAFold can generate accurate models 
of not only protein monomers but also protein complexes, modeling 
folding and binding by successive transformations over hundreds of 
iterations. Given the overall similarities between protein folding and 

RNA folding, and between protein-protein binding and protein–nucleic 
acid binding, we reasoned that the concepts and techniques underlying 
AlphaFold and RoseTTAFold could be extended to the prediction of the 
structures of nucleic acids and protein–nucleic acid complexes from 
sequence information alone. We set out to generalize RoseTTAFold 
to model nucleic acids in addition to proteins, and to learn the many 
new parameters required for general protein–nucleic acid systems by 
training on the structures in the PDB. A major question at the outset 
was whether there were sufficient nucleic acid and protein–nucleic 
acid structures in the PDB to train an accurate and general model; key 
to the success of AlphaFold are the hundreds of thousands of protein 
structures in the PDB, but there are an order of magnitude fewer nucleic 
acid structures and complexes. The flexibility of nucleic acids relative 
to proteins could also make the prediction of the former more difficult.

Our new model, RoseTTAFoldNA, was trained using the same data 
as RoseTTAFold, augmented with all RNA, protein–RNA and protein–
DNA complexes in the PDB. Using nucleic acid complexes published 
more recently than any training-set examples, we evaluate its abil-
ity to predict structures of protein–nucleic acid complexes without 
homologs. We also assess the model’s self-assessments of model accu-
racy, and compare our predictions to a combination of AlphaFold and 
computational protein–DNA docking.
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contributions assessing the recovery of masked sequence segments, 
residue-residue (both amino acids and nucleotides) interaction geom-
etry and error prediction accuracy. To try to compensate for the far 
smaller number of nucleic-acid-containing structures in the PDB (fol-
lowing sequence-similarity-based cluster to reduce redundancy, there 
are 1,632 RNA clusters and 1,556 protein–nucleic acid complex clusters 
compared to 26,128 all protein clusters), we also incorporated physical 
information in the form of Lennard-Jones and hydrogen-bonding ener-
gies13 as input features to the final refinement layers, and as part of the 
loss function during fine-tuning. During training, 10% of the clusters 
were withheld for model validation.

We trained the model using structures determined prior to May 
2020, and used RNA and protein–NA structures solved since then 
as an additional independent validation set. For the validation set, 
complexes were not broken into interacting pairs and were processed 
entirely as full complexes. Paired MSAs were generated for complexes 
with multiple protein chains as described previously14. Due to GPU 
memory limitations, for the validation set only, we excluded complexes 
with more than 1,000 total amino acids and nucleotides, which resulted 
in a validation set containing 520 cases (98 clusters) with a single RNA 
chain, 224 complexes (116 clusters) with one protein molecule plus a 
single RNA chain (62/28 clusters) or DNA duplex (162/88 clusters), and 
161 cases with more than one protein chain or more than a single RNA 
chain or DNA duplex.

Predicting protein–NA complexes
RoseTTAFoldNA results on 224 monomeric protein–NA complexes are 
summarized in Fig. 2, shown as 116 clusters. The predictions are reason-
ably accurate, with an average Local Distance Difference Test (lDDT) of 
0.73 and 29% of models with lDDT > 0.8 (19% of clusters, Fig. 2a), and 
about 45% of models contain greater than half of the native contacts 
between protein and NA (fraction of native contacts, FNAT > 0.5, 35% 
of clusters, Fig. 2c). RoseTTAFoldNA, like RoseTTAFold and AlphaFold, 
outputs not only a predicted structure but also a predicted model con-
fidence, and as expected the method correctly identifies which struc-
ture models are accurate. Although only 38% of the complexes (28% of 
clusters) are predicted with high confidence (mean interface predicted 

Results
The architecture of RoseTTAFoldNA (RFNA) is illustrated in Fig. 1. It is 
based on the three-track architecture of RoseTTAFold4, which simul-
taneously refines three representations of a biomolecular system: 
sequence (1D), residue-pair distances (2D) and cartesian coordinates 
(3D). In addition to several modifications to improve performance12, 
we extended all three tracks of the network to support nucleic acids 
in addition to proteins. The 1D track in RoseTTAFold has 22 tokens, 
corresponding to the 20 amino acids, a 21st ‘unknown’ amino acid 
or gap token and a 22nd mask token that enables protein design; to 
these, we added 10 additional tokens, corresponding to the four DNA 
nucleotides, the four RNA nucleotides, unknown DNA and unknown 
RNA. The 2D track in RoseTTAFold builds up a representation of the 
interactions between all pairs of amino acids in a protein or protein 
assembly; we generalized the 2D track to model interactions between 
nucleic acid bases and between bases and amino acids. The 3D track 
in RoseTTAFold represents the position and orientation of each amino 
acid in a frame defined by three backbone atoms (N, CA and C), and up 
to four chi angles to build up the sidechain. For RoseTTAFoldNA, we 
extended this to include representations of each nucleotide using a 
coordinate frame describing the position and orientation of the phos-
phate group (P, OP1 and OP2), and 10 torsion angles which enable the 
building up of all the atoms in the nucleotide. RoseTTAFoldNA consists 
of 36 of these three-track layers, followed by four additional structure 
refinement layers, with a total of 67 million parameters.

We trained this end-to-end protein–NA structure prediction net-
work using a combination of protein monomers, protein complexes, 
RNA monomers, RNA dimers, protein–RNA complexes and protein–
DNA complexes, with a 60/40 ratio of protein-only and NA-containing 
structures (Methods). Multichain assemblies other than the DNA 
double helix were broken into pairs of interacting chains. For each 
input structure or complex, sequence similarity searches were used 
to generate multiple sequence alignments (MSAs) of related protein 
and nucleic acid molecules. Network parameters were optimized 
by minimization of a loss function consisting of a generalization of 
the all atom Frame Aligned Point Error (FAPE) loss5 defined over all 
protein and nucleic acid atoms (Methods) together with additional 
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Fig. 1 | Overview of the architecture of RoseTTAFoldNA. The three-track 
architecture of RoseTTAFoldNA simultaneously updates sequence (1D), residue-
pair (2D) and structural (3D) representations of protein–nucleic acid complexes. 
The areas in red highlight key changes necessary for the incorporation of nucleic 
acids: inputs to the 1D track include additional NA tokens, inputs to the 2D track 
represent template protein–NA and NA–NA distances (and orientations) and 

inputs to the 3D track represent template or recycled NA coordinates. Finally, the 
3D track as well as the structure refinement module (upper right) can build all-
atom nucleic acid models from a coordinate frame (representing the phosphate 
group) and a set of 10 torsion angles (six backbone, three ribose ring and one 
nucleoside). In this figure, dij are the template inter-residue distances, and SE(3) 
refers to the Special Euclidean Group in three dimensions.
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aligned error, PAE < 10), of those, 81% (78% of clusters) correctly model 
the protein–NA interface (‘acceptable’ or better by CAPRI metrics15). 
Over the 33 clusters with no detectable sequence similarity to training 
protein–NA structures, the accuracy is similar (average lDDT = 0.68 with 
24% of models > 0.8 lDDT and 42% with FNAT > 0.5), and the model is still 
able to correctly identify accurate predictions—24% of predictions in 
this subset are predicted with high confidence, of which all eight have 
acceptable interfaces according to CAPRI metrics. Four predictions of 
structures with no sequence homologs in the training set are shown 
in Fig. 2d–g. These include the endonuclease BpuJ1, tumor antigen 
p53, SmpB bound to a tRNA-like RNA domain, and components of a 
telomerase reverse transcriptase. Inaccuracies in these predictions can 
be found in flexible terminal regions (Fig. 2e,g), a slight tilt of the DNA 
double helix relative to the interface (Fig. 2e) and slight deviations in 
RNA tertiary structure (Fig. 2f,g), but the interfaces are clearly correct.

In cases where RoseTTAFoldNA fails to produce an accurate predic-
tion, the most common cause is poor prediction of individual subunits, 
typically large multidomain proteins, large RNAs (>100 nt) and small 
single-stranded nucleic acids. When the subunit predictions are accu-
rate, the most common failure mode is for the model to identify either 
the correct binding orientation or the correct interface residues, but 
not both. The remaining cases with completely incorrect interfaces 
often involve only glancing contacts or heavily distorted DNAs. It is pos-
sible that a different training schedule could reduce these errors, but 

more likely it is due to limited training data in these regimes. Extended 
Data Fig. 1 illustrates some examples.

RoseTTAFoldNA prediction is not limited to complexes with only 
a single protein subunit. Figure 3 summarizes the performance of 
RoseTTAFoldNA on 161 multisubunit protein–NA complexes, most of 
which are homodimeric proteins bound to nucleic acid duplexes. The 
performance is similar to that for monomeric protein–nucleic acid 
complexes, with an average lDDT = 0.72 with 30% of cases >0.8 lDDT, 
and good agreement between confidence and accuracy (Fig. 3a). Three 
examples are illustrated in Fig. 3b–d, showing the ability of the model 
to predict complex structure as well as the ‘bending’ of DNA induced 
by protein binding (Fig. 3e). Figure 3f,g shows another example where 
the relative positioning of protein domains is only made by copredict-
ing these complexes. Such effects would not be possible to predict by 
approaches that first generate models of the independent components 
and then rigidly dock them.

Predicting RNA complexes
Finally, RoseTTAFoldNA performance on RNA structures alone are 
summarized in Extended Data Fig. 2. Most predictions are reasonably 
accurate: the average lDDT is 0.73, with 48% of models (but only 14% 
of clusters) predicted with lDDT > 0.8 (Extended Data Fig. 2a). 62% of 
cases (30% of clusters) are predicted with very high confidence (pre-
dicted lDDT, plDDT > 0.9), for which the average lDDT is 0.81 and 77% 
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Fig. 2 | Protein–nucleic acid structure prediction. a–c, Summary of results on 
32 protein–NA cluster representatives from the validation set and 84 protein–NA 
structures released since May 2020. a, Scatterplot of prediction accuracy (true 
lDDT to native structure) versus prediction confidence (lDDT predicted by the 
model) shows that the model correctly identifies inaccurate predictions. b, The 
model seems to generalize well, with no clear performance difference between 
structures with and without sequence homologs in the protein–NA training 
set. c, Scatterplot of native interface contacts recapitulated in the prediction 
(FNAT) versus sequence similarity to training data. A total of 35% of predictions 

are ranked ‘acceptable’ or better by CAPRI metrics, and 78% of those with high 
confidence (mean interface PAE < 10). d–g, Four examples of protein–NA 
complexes without homologs in the training set: the BpuJ1 endonuclease bound 
to a modified cognate DNA (d, PBD ID: 5hlt)21; tumor antigen p53 bound to 
cognate DNA with induced-fit sequence specificity (e, PDB ID: 3q05)22; SmpB 
bound to the tRNA-like domain of a transfer-messenger RNA (f, PDB ID: 1p6v)23; 
and a telomerase reverse transcriptase bound to the enzyme’s RNA component 
(g, PDB ID: 4o26)24.
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of models (45% of clusters) have lDDT > 0.8. Even for cases with no 
homologs of known structure or small numbers of sequence relatives 
(shallow MSAs), confidently predicted models are generally quite accu-
rate (colourbar, Extended Data Fig. 2b,c) and the network is capable 
of predicting structures without detectable homologs in the training 
dataset (Extended Data Fig. 2d–g).

Discussion
At the outset of this work, it was not clear that there were enough pro-
tein–nucleic acid structures in the PDB to enable robust training of a 
deep learning-based predictor with atomic accuracy—the training data 
used for nucleic acid prediction is only one tenth the size of the dataset 
used for protein structure prediction. Our results show, however, that 
this data is sufficient in many cases for de novo structure modeling, 
with accurate modeling of protein–NA interfaces without shared MSA 
information or homologs of known structure in about 31% of cases. 
Prospective and blind tests will be important for further critical evalua-
tion of the method. Along these lines, we made predictions for CASP15 
RNA targets during CASP with an earlier version of RoseTTAFoldNA.

Comparison of RoseTTAFoldNA to current state-of-the-art meth-
ods is more difficult than the case for the deep learning methods Alpha-
Fold and RoseTTAFold which focused on the much more well studied 
protein structure prediction problem. There has been recent work on 
RNA structure prediction; Extended Data Fig. 3 shows the performance 
of this network compared to the traditional sampling-based FARFAR2 
method4 and the deep learning-based DeepFoldRNA method15. FAR-
FAR2 and DeepFoldRNA top-ranked models have average lDDTs of 
0.44 and 0.64, respectively, compared to 0.62 for RoseTTAFoldNA.  

On the CASP15 RNA targets, we perform worse than the leading machine 
learning methods DeepFoldRNA and AIchemy—but most of the targets 
are quite large and several are synthetic RNA origamis with no MSAs16. 
For protein structure prediction, we see performance in-line with 
AlphaFold, with an average TM-score of 0.87 for RFNA versus 0.88 for 
AlphaFold (comparing AlphaFold ‘model 1’ and using the same MSA 
for both AlphaFold and RFNA). While the performance of individual 
modalities is not an advancement over state-of-the-art, the strength 
of RoseTTAFoldNA is in the prediction of protein–nucleic acid com-
plexes. Here, comparisons are more difficult, as there are no equivalent 
deep learning-based methods, and even sampling-based methods 
have focused more on bespoke solutions to a specific problem rather 
than general methods. While automated methods are available for 
predicting individual protein, RNA, and DNA components and for 
energy-based docking of macromolecules, we find that this alterna-
tive workflow has very poor accuracy, finding the correct complex 
within the top three models in only 1 of 14 test cases (see Methods for 
details on our workflow and Extended Data Fig. 4 for detailed results). 
Hence, while the accuracy of RoseTTAFoldNA on protein–nucleic acid 
complexes is considerably lower than that of AlphaFold on protein 
structures, it represents a notable improvement in the state-of-the-art.

Further increases in accuracy might come from a larger, more 
expressive network; we used a smaller network than that of RoseTTA-
Fold, with ∼67 M parameters and 36 total layers. Use of high-confidence 
predicted structures as additional training examples (made more 
difficult by subsampling MSAs) should further increase model accu-
racy10; for this purpose there are databases of structured RNAs17,18 
and DNA-binding profiles for thousands of proteins19,20, and the latter 
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Fig. 3 | Modeling multichain protein–nucleic acid complexes. a, Scatterplot 
of predicted model accuracy versus actual model accuracy for 161 protein–NA 
complexes with multiple protein chains or multiple nucleic acid chains/duplexes 
shows that the model accurately estimates error. b–d,f, Examples of successful 
predictions without homologs in the training set, shown as the deposited 
model (left) and prediction (right). These include the viral chromatin anchor 

KSHV LANA (c, PDB ID: 4uzb)25, two dimeric helix-turn-helix transcription 
factors (b, PDB ID: 3u3w; panel D, PDB ID: 4jcy)26,27 and a replication origin 
unwinding complex (f, PDB ID: 3vw4)28. e,g, Example showing different predicted 
conformations of the same protein or DNA duplex alone (left) and with the other 
component (right), from the same complexes shown in d (e) and f (g).
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should be useful for training a model fine-tuned for DNA specificity as 
well (see Methods and Extended Data Fig. 5 for RoseTTAFoldNA perfor-
mance on DNA-binding specificity prediction). Deep learning-guided 
structure prediction of proteins has opened up new avenues of 
research; we hope that RoseTTAFoldNA does the same for protein–NA 
interactions and complexes. To this end, we have made the method 
freely available.

Online content
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Methods
Training and validation data processing
The protein and protein complex data used in training was identical 
to that used in training RoseTTAFold2. Additional data from RNA and 
protein–nucleic acid complexes was added to this. To construct this 
dataset, all PDBs solved by nuclear magnetic resonance, crystallogra-
phy or cryo-electron microscopy at better than 4.5 Å resolution were 
collected. A dataset was constructed considering all PDB structures 
published at or before 30 April 2020, and collecting:

•	 All RNA single chains and all RNA duplexes. A duplex was defined 
by looking for pairs of RNA chains making at least 10 hydrogen 
bonds.

•	 All interacting protein–nucleic acid pairs. Interacting pairs were 
defined by counting the number of 7 Å contacts between protein 
Cαs and any (non-hydrogen) nucleic acid atom; if there were 
more than 16 such contacts, the pair was considered interacting. 
Nucleic acid duplexes were included if the DNA or RNA chains 
made at least 10 hydrogen bonds.

For modeling, the full-length sequence was used. All non-standard 
bases/amino acids were converted into a backbone-only ‘unknown’ 
residue type. The dataset size was 7,396 RNA chains and 23,583 com-
plexes. These were then clustered using a 1 × 10−3 hhblits29 E-value for 
proteins and 80% sequence identity for RNA molecules, yielding 1,632 
non-redundant RNA clusters and 1,556 non-redundant protein–NA 
clusters. These clusters were then split into training and validation sets, 
with clusters chosen for the training set; an example which contained 
any member (NA or protein) of a validation set cluster was assigned 
to the validation set. This led to 199 protein–NA clusters and 116 RNA 
clusters in the validation set.

Multiple sequence alignments (MSAs) were then created for all 
protein and RNA sequences in the training and validation set. Protein 
MSAs were generated in the same way as RoseTTAFold12, using hhblits at 
successive E-value cutoffs (1 × 10−30, 1 × 10−10, 1 × 10−6 and 1 × 10−3), stop-
ping when the MSA contains more than 10,000 unique sequences with 
>50% coverage. RNA MSAs were generated using a pared-down version 
of rMSA (https://github.com/pylelab/rMSA) that removes secondary 
structure predictions: sequences were searched using blastn30 over 
three databases (RNAcentral17, rfam18 and nt) to first identify hits, then 
using nhmmer31 to rerank hits. We again use successive E-value cutoffs 
(1 × 10−8, 1 × 10−7, 1 × 10−6, 1 × 10−3, 1 × 10−2 and 1 × 10−1), stopping when the 
MSA contains more than 10,000 unique sequences with >50% coverage.

Finally, to improve generalizability of protein–DNA interactions 
we added a few ways of ‘randomizing’ inputs during training. As many 
crystal structures of protein–DNA complexes involve short DNA chains 
with the binding motif in the middle, initial versions of the model had a 
strong preference to binding in the middle of any provided sequence. 
To deal with this, we added a random padding of 0–6 nucleotides to 
both ends of all native structures: (1) containing double-stranded DNA 
and (2) making at least three base-specific contacts (using a cutoff dis-
tance of 3.4 Å). This yielded 580 protein–DNA complexes. These added 
residues were not included in loss calculations, but were present in the 
predicted structures. Additionally, we also performed negative train-
ing for these same 580 complexes; all DNA bases forming base-specific 
contacts to the bound protein were randomly mutated (maintaining 
Watson–Crick base pairing), and the model was trained to move the 
protein and DNA far apart (by favouring the 6-dimensional ‘distogram’ 
loss to place all its probability mass in the final bin).

Test set data processing
For an independent test set, we took all structures published to the PDB 1 
May 2020 or later. Selection criteria and preprocessing was the same as for 
the training and validation data with two exceptions: (1) only complexes 
fewer than 1,000 residues plus nucleotides in length were considered 
and (2) for complexes containing more than one unique protein chains, 

paired MSAs were created by merging sequences from the same organ-
ism into a single combined sequence (following prior work14). This gave 
us 91 complexes with one protein molecule plus a single RNA chain or 
DNA duplex, 43 cases with a single RNA chain and 106 cases with more 
than one protein chain or more than a single RNA chain or DNA duplex.

All atom generation for nucleotides
Following AlphaFold’s treatment of amino acids, when predicting 
structure, the model represents each nucleotide as a rigid frame (with a 
rotation and translation) and a set of internal torsion angles. For nucleic 
acids this frame corresponds to the orientation of the phosphate group 
(O–P–O), in the same way that N–Cα–C is used as an amino acid frame. 
A set of ten torsions describe the placement of all sidechain atoms, 
representing the rotatable bonds in the nucleotide: six backbone (α, β, 
γ, δ, ϵ and ζ), one sidechain (χ) and three additional angles controlling 
ribose ‘pucker’ (ν0, ν1 and ν2). When all atom models are generated as 
part of the loss calculation, they are kinematically folded outward from 
the phosphate group following the chain of torsions connecting them.

Loss functions
The model was trained using a loss function similar to RoseTTAFold, 
where we take the weighted sum:

loss = wseq × seq +w6D × 6D +wstr × str +wtors × tors +werr × err

Above, seq is the masked amino acid recovery loss (no masking is 
applied to nucleotide sequences); 6D is the six-dimensional ‘distogram’ 
loss32; str is the structure loss, consisting of the average backbone FAPE 
loss5 over all 40 structure layers of the network plus the all atom FAPE 
loss for the final model; tors is the torsion prediction loss averaged over 
the 40 structure layers; err is the loss in pLDDT prediction; and the w 
terms are the weights on individual components in the loss function.

FAPE loss is extended to nucleic acids in a straightforward man-
ner from how it is implemented for amino acids. For backbone FAPE 
loss, the phosphate group (O–P–O) in the nucleic acid backbone is 
treated as the nucleotides ‘frame.’ For nucleic acid all atom FAPE loss, 
three-atom frames are constructed corresponding to each of the ten 
‘rotatable torsions’ (see above), where the frame consists of the two 
bonded atoms defining the torsion plus an additional bonded atom, 
closer to the phosphate group in the bond graph. The cross product of 
these ten frames with all atoms is used to calculate FAPE loss.

Following training with the above loss function, an additional 
‘fine-tuning’ phase is carried out, where additional energy terms are 
added to the loss function enforcing reasonable model geometry:

lossfinetune = loss +wLJ × LJ +whbond × hbond

+wgeom × geom +wpairerr × pairerr

Above, LJ and hbond are the Lennard-Jones and hydrogen bond 
energies of the final structure (normalized by the number of atoms), 
using a reimplementation of the corresponding Rosetta energy terms13; 
geom is a term that enforces ideal bond lengths and bond angles around 
the peptide or phosphodiester bond connecting residues/nucleotides; 
and pairerr is a predicted residue-pair error5. The functional form of 
the geom term is identical to that of RoseTTAFold2, a linear penalty 
with a ‘flat bottom’ ±3°/0.02 Å from the ideal values.

Model training
The network was trained in two stages, an initial training period, and 
a fine-tuning period. In both, input structures were divided into five 
pools: (1) protein structures, (2) ‘distilled’ protein structures (consisting 
of high-confidence AlphaFold predictions), (3) protein complexes, (4) 
protein–NA complexes and (5) RNA structures. Training sampled from 
each of these pools with equal probability (though later in training pro-
tein–NA frequency was increased to 25% and RNA frequency lowered to 
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15%). For both pools containing ‘complexes,’ an equal number of posi-
tive and negative examples were used in training. Negative examples 
consist of nonbinding proteins or protein–NA pairs; the structure loss 
only penalizes each component individually, and the 6D loss favors 
placing negative binding examples far apart.

Examples larger than 256 residues/nucleotides in length were 
‘cropped’ to 256 residues in length. For protein-only data these crops 
were continuous sequences; for nucleic acids and nucleic acid–pro-
tein complexes the cropping was a bit more complex. A graph was 
constructed where sequential residues/nucleotides had edges with 
weight 1, Watson–Crick base-paired nucleotides had weight 0 and 
protein–NA bases closer than 12 Å (Cα to P) had a weight of 0. In nega-
tive cases, a single random protein–NA edge was given weight 0. Then 
minimum-weight graph traversal starting from a randomly chosen 
protein–NA edge was used to crop the model down to 256 residues/
nucleotides. For RNA-only models the same strategy was used, though 
the starting point was a random nucleotide.

Training was carried out in parallel on 64 GPUs. A batch size of 64 
was used throughout training with a learning rate of 0.001, decaying 
every 5,000 steps. The following weights were used: wseq = 3.0, w6d = 1.0, 
wstr = 10.0, wtors = 10.0 and werr = 0.1. The Adam optimizer was used, with 
L2 regularization (coeff = 0.01).

Following ∼1 × 105 optimization steps, fine-tuning training was 
carried out. Here we increase crop size to 384 and effective batch size 
to 128, and reduce learning rate to 5× 10−4. We used additional loss 
terms with weights wgeom = 0.1, wLJ = 0.02, whbond = 0.05 and wpairerr = 0.1, 
and optimized for an additional 30,000 minimization steps. All told, 
training took approximately 4 weeks.

Protein–nucleic acid docking
From the protein–nucleic acid complexes with no homologs in RFNA’s 
training set, we selected eight protein–DNA complexes and six pro-
tein–RNA complexes to use as test cases for docking. Protein mono-
mer structures were predicted with AlphaFold5, using the same MSAs 
generated for RFNA predictions and choosing the prediction with the 
highest average predicted lDDT from models 1–5. RNA components 
were predicted using DeepFoldRNA following the default instruc-
tions. DNA duplexes were generated as B-form helices using x3DNA33. 
Docking was performed using the Hdock web server34, using only 
template-free docking to avoid fitting directly to the original depos-
ited model. Structure and interface accuracy of the top three docks 
were evaluated as for RFNA. We acknowledge that a more careful DNA 
modeling and docking workflow could produce more accurate models, 
but similar could be said for RFNA.

Binding and nonbinding DNA sequence dataset
We obtained experimental data of transcription factors’ DNA-binding 
profiles from the Cis-BP database19. We used 1,509 proteins for which 
the protein sequences of the experimental constructs and DNA 8mer 
E-scores were available. From the 8mer E-scores for each protein, we 
chose the top three most enriched DNA sequences as ‘binding’ and 
three random negatively enriched DNA sequences as ‘nonbinding’. We 
predicted the proteins and DNAs together using RFNA and evaluated 
the model based on the average PAE across the interface.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Source code and a link to the training weights have been made avail-
able at https://github.com/uw-ipd/RoseTTAFold2NA. Updated CASP15 
RNA predictions have been made available at https://doi.org/10.5281/
zenodo.7555957. All data used for training and evaluation is publicly 
available through the PDB (https://www.rcsb.org/). The data used for 

analyzing sequence specificity is publicly available through Cis-BP  
(http://cisbp.ccbr.utoronto.ca/). Source data are provided with this paper.

Code availability
The code for this model is available at https://github.com/uw-ipd/
RoseTTAFold2NA. This repository includes preprocessing and infer-
ence scripts, and a link to the model weights.
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Extended Data Fig. 1 | Failure modes of protein - nucleic acid structure 
prediction. (a–d) Comparisons of representative predictions showing common 
failure modes of predictions in cases with no training-set homologs. Left is the 
deposited model, and right is the prediction. (A) Example where the individual 
subunits predict with poor accuracy, resulting in an incorrect overall complex 
(pdb ID: 6XMF). Cases like this represent 50% of the examined failures and often 
result from very large or very small single-stranded nucleic acids (>100 or <20 
nucleotides), large multi-domain proteins, or heavily distorted duplex DNAs. (B) 
Example where the subunits predict with reasonable accuracy and the relative 
orientation is correct but the details of the interface are wrong (pdb ID: 7A9X). 

Cases like this represent 20% of the examined failures, and can also result from 
small single-stranded nucleic acids or slight deviations in monomer structures. 
(C) Example where the subunits predict with high accuracy and the backbone-
backbone binding mode is correct, but the interface is predicted at the wrong site 
on the DNA (pdb ID: 4J2X). Cases like this represent 10% of the examined failures. 
(D) Example where both subunits predict correctly but the relative orientation 
and interface are incorrect (pdb ID: 7LH9). Cases like this represent 20% of the 
examined failures, and can result from distorted or non-duplex DNA structures 
or slight deviations in monomer structures.
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Extended Data Fig. 2 | RNA structure prediction. (a–c) Summary of results on 
55 RNA cluster representatives from the validation set and 43 RNA structures 
released since May 2020. (A) Model accuracy increases at higher confidence 
levels. The overall average lDDT is 0.64, and the average lDDT for very high 
confidence predictions (predicted lDDT > 0.9) is 0.78. (B) The model shows little 
to no performance decrease for RNA molecules with no sequence homologs in 
the training set. (C) Average accuracy improves as the number of sequences in 
the MSA increases, but many single-sequence examples are accurately predicted. 

(d–f) Four example predictions of RNA models with no detectable sequence 
homologs in the training set, two of which also have no detectable structural 
homology according to PDB structure similarity search. (D) a simple hairpin RNA 
fragment from the 16S rRNA (PDB id: 1i6u), (E) the 5S rRNA from a full ribosome 
structure (PDB id: 3jai), (F) the SARS-CoV-2 frameshifting pseudoknot RNA  
(PDB id: 7lyj), and (g) a 49-nt mRNA fragment, solved bound to a ribosomal 
protein (PDB id: 1u63).
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C.A. E.

B. D. F.

Extended Data Fig. 3 | Comparing RoseTTAFoldNA to other methods for 
RNA prediction. (a) Scatterplot of predicted accuracy for RoseTTAFoldNA 
versus DeepFoldRNA, a recent machine learning method for RNA structure 
prediction15. RoseTTAFoldNA has similar performance to DeepFoldRNA, with 
average lDDTs of 0.64 and 0.64 respectively. (b) RoseTTAFold outperforms 
DeepFoldRNA if only RoseTTAFold’s high-confidence predictions (predicted 
lDDT > 0.9) are considered, which have an average lDDT of 0.72. (c) Scatterplot 
comparing RoseTTAFoldNA to FARFAR2, a Rosetta-based fragment assembly 
method for RNA structure prediction4. FARFAR2 results show the best model by 

Rosetta energy, of 100 predictions or the number completed in 24 CPU-hours. 
RoseTTAFoldNA consistently and dramatically outperforms FARFAR2’s top-
ranked models, which have an average lDDT of 0.44. (d) The performance gap  
is similar when only considering RoseTTAFoldNA confident predictions.  
(e, f) Comparisons between RoseTTAFoldNA and other machine learning 
methods on the CASP15 RNA targets (using model 1 of each method). RFNA 
performs somewhat worse than DeepFoldRNA and significantly worse than 
AIchemy_RNA, the leading machine learning method from the competition.
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Extended Data Fig. 4 | Comparing RoseTTAFoldNA to docking of monomer 
predictions. (a) Scatterplot comparing overall structure accuracy of RFNA 
versus the top 3 ranked docks from Hdock template-free docking of predicted 
protein monomers with predicted RNAs or B-form DNAs. (b) Scatterplot 
comparing interface contact recovery of RFNA predictions versus the top 3 
models from the docking calculations. (c–f) Example predictions from both 
methods shown with the deposited model shown as a light gray silhouette.  
(C) Example where both RFNA and Hdock’s third-ranked dock successfully 
recover the correct interface (PDB id: 5HLT). Example where neither RFNA nor 

Hdock identify the correct orientation of protein and DNA (PDB id: 7V9F) []. 
Note that both RFNA and AF2 predict the protein in a different conformation 
than the one found in the deposited model, making complex formation difficult. 
(E) Example where RFNA predicts the correct complex while Hdock does not 
reproduce the interface (PDB id: 7K33). Note that the distorted DNA structure 
would be difficult to model using any traditional methods. (F) Another example 
where RFNA is successful but docking is not, again with a distorted DNA structure 
that is difficult to predict (PDB id: 3VW4).
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A. B.

Extended Data Fig. 5 | Using RoseTTAFoldNA to distinguish binding and non-
binding DNA sequences for transcription factors. (a) Plot showing distribution 
of the model’s interface confidence estimate for proteins predicted with binding 
and non-binding DNA sequences. (b) ROC curve showing how well the binding 

DNA sequences can be selected from the pool of binding and nonbinding 
sequences based on the model’s predicted accuracy scores. Curves are shown for 
all proteins and for the five most common protein families in the dataset.
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