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Abstract
Purpose of the Review Even as immune checkpoint inhibitors (ICIs) have transformed the 
lifespan of many patients, they may also trigger acceleration of long-term cardiovascular 
disease. Our review aims to examine the current landscape of research on ICI-mediated 
atherosclerosis and address key questions regarding its pathogenesis and impact on 
patient management.
Recent Findings Preclinical mouse models suggest that T cell dysregulation and proathero-
genic cytokine production are key contributors to plaque development after checkpoint 
inhibition. Clinical data also highlight the significant burden of atherosclerotic cardiovas-
cular disease (ASCVD) in patients on immunotherapy, although the value of proactively 
preventing and treating ASCVD in this population remains an open area of inquiry. Cur-
rent treatment options include dietary/lifestyle modification and traditional medications 
to manage hypertension, hyperlipidemia, and diabetes risk factors; no current targeted 
therapies exist.
Summary Early identification of high-risk patients is crucial for effective preventive strat-
egies and timely intervention. Future research should focus on refining screening tools, 
elucidating targetable mechanisms driving ICI atherosclerosis, and evaluating long-term car-
diovascular outcomes in cancer survivors who received immunotherapy. Moreover, close col-
laboration between oncologists and cardiologists is essential to optimize patient outcomes.

Opinion statement

The current treatment options for ICI-mediated athero-
sclerosis require extensive further investigation given 
the comparatively recent awareness of this phenomena. 
Targeted therapies are limited and management is still 
heavily informed by evidence for traditional age and 
lifestyle-related ASCVD, although preclinical evidence 
suggests that immune dysregulation plays a much more 
prominent role in ICI-mediated atherosclerosis. One 
key component is monitoring and optimizing base-
line cardiovascular risk factors such as hypertension, 
hyperlipidemia, and diabetes, while engaging in life-
style modifications such as smoking cessation, a low-
fat diet, and regular exercise as tolerated. Radiographic 

imaging remains an underutilized tool for assessing 
baseline plaque burden, identifying future lesional 
areas, and predicting the risk of severe cardiovascular 
events in patients on ICIs. However, further research is 
needed on how to best utilize and hybridize standard-
of-care CT/FDG-PET scans for oncology patients with 
cardiac imaging modalities that track progression of 
coronary artery calcium and vascular wall inflamma-
tion. Therapeutically, standard medical therapy includ-
ing statins, ezetimibe, PCSK-9 inhibitors, and antiplate-
let agents can be employed as tolerated. There is some 
evidence that statins in particular enhance the effec-
tiveness of ICI while attenuating plaque progression; 
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however, clinicians should be aware of the potential 
increased risk for myopathy. Nonspecific immunomod-
ulatory agents such as steroids are not recommended 
for prevention or suppression of ICI-induced plaque 
development, as they may worsen atherosclerosis. 
While targeted therapies that address the underly-
ing immune-mediated mechanisms are still being 

developed, optimal management of ICI atherosclero-
sis should emphasize recognition of immunotherapy 
as a major ASCVD risk factor, early risk stratification/
optimization, and a multidisciplinary approach involv-
ing both oncologists and cardiologists to determine 
appropriate screening and medical management.

Introduction

Immune checkpoint inhibitors (ICIs) have dramatically changed cancer ther-
apy over the last decade, allowing patients with many malignancies to live 
longer with better quality of life, particularly those with melanoma and non-
small cell lung cancer (NSCLC). Over thirty percent of all cancer patients are 
now eligible for ICI therapy, while up to 70% of ICI-treated patients may go on 
to develop an immune-related adverse event (IRAE) [1]. By reducing immune 
tolerance of malignant cells, ICIs inherently carry the risk of off-target T-cell 
autoreactivity in other organs. Much research on ICI cardiotoxicity has focused 
on lymphocytic myocarditis, a rare IRAE with a high mortality rate [2]. A grow-
ing body of basic science, translational, and clinical evidence now suggests 
that myocarditis may be the tip of the iceberg in terms of cardiac IRAEs, with 
ICI-induced acceleration of atherosclerotic cardiovascular disease (ASCVD) 
contributing significantly to vascular toxicity in the long term.

Disentangling the relationship between cardiovascular disease, cancer, 
and cancer treatment is complicated by shared risk factors such as older 
age, comorbid conditions (e.g., hypertension, diabetes, and dyslipidemia) 
and a chronic inflammatory state. Initially viewed as a bland lipid storage 
disorder, atherosclerosis is now thought to be exacerbated by an inflamma-
tory milieu. Observational and prospective epidemiological studies have 
demonstrated that higher levels of IL-6, TNF-α, fibrinogen, and CRP are 
associated with increased cardiovascular risk [3–7]. Atherosclerosis-specific 
self-antigens include LDL, oxidized LDL (oxLDL), heat shock protein, and 
ApoB [8–11]. In both human and mouse models, endothelial expression of 
vascular cell adhesion molecules and T-cell chemoattractants is upregulated 
within early atheromas, which in turn facilitate binding and migration of 
macrophages and T-lymphocytes at these sites [12–15]. Once inside the arte-
rial wall, immune cells promote evolution of plaques and contribute towards 
their acute thrombotic complications: macrophages ingest lipids to become 
foam cells, while T cells secrete inflammatory cytokines that further stimulate 
macrophages and smooth muscle cells (SMCs) that make up plaque. These 
cytokines—particularly IFN-γ—ultimately contribute to risk of acute throm-
boses through growth and destabilization of plaques and their fibrous cap 
[16–22]. Systemically circulating acute phase reactants such as fibrinogen 
and plasminogen may also alter thrombotic risk [19].

Targeting inflammation to reduce ASCVD risk in humans has been previ-
ously tested with mixed results. CANTOS (Canakinumab Anti-Inflammatory 
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Thrombosis Outcomes Study), LoDoCo (Low-Dose Colchicine), and COL-
COT (Colchicine Cardiovascular Outcomes Trial) support the theory that 
inhibition of innate immunity slows the progression of ASCVD [23]. How-
ever, the CIRT trial (Cardiovascular Inflammation Reduction Trial) did not 
find that low-dose methotrexate reduced cardiovascular events or levels of 
IL-1β, IL-6, or CRP. CANTOS also showed only modestly (− 15%) reduced 
cardiovascular events in post-myocardial infarction patients [24]. These trials 
highlight how immunomodulatory therapies for atherosclerosis must target 
specific points of immune dysregulation, which are still not fully understood.

The majority of cancers are associated with increased systemic inflam-
mation, which is thought to contribute to the significantly increased risk 
of thrombosis in patients with active cancer. These risks are heightened by 
radiation therapy, which accelerates plaque development and calcification, 
as well as certain tyrosine kinase inhibitors which have direct vascular tox-
icities [25–30]. Certain malignancies, such as pancreatic or advanced geni-
tourinary cancer, also carry an independently high thrombogenic risk [31]. 
More recently, accelerated ASCVD has emerged as an important frontier in 
understanding ICI cardiotoxicity beyond myocarditis [23].

Here, we review the latest clinical and preclinical literature on the epide-
miology and mechanisms of ICI atherosclerosis. With heart disease a leading 
cause of death among cancer survivors, and ICIs increasingly used as adjuvant 
treatment, understanding the causative pathways behind ICI-mediated ASCVD 
can help clinicians thread the needle between maximizing cancer treatment 
response while mitigating serious potential long-term cardiac toxicities.

Clinical evidence supporting ICI‑mediated atherosclerosis

Several recent studies suggest an association between ICI initiation and rates 
of subsequent atherosclerotic cardiovascular events [23]. In one large matched 
cohort study involving 2842 patients who started immunotherapy and 2842 
controls matched by age, the 2-year risk of myocardial infarction (n = 37, 
1.30%), coronary revascularization (n = 22, 0.77%), or ischemic stroke (n = 35, 
1.23%) after starting an ICI was threefold higher, with > threefold higher rate 
of plaque progression on imaging [32•]. Interestingly, this association was 
attenuated by concomitant use of statins or corticosteroids, though interpreta-
tion of these results is limited by potential confounding by indication. Another 
study by Bar et al. reported that among 1215 cancer patients receiving ICI 
therapy, 31 (2.6%) developed acute vascular events and 8 (0.66%) developed 
myocardial infarction within 6 months of treatment initiation [33].

Smaller scale studies and prior meta- or pooled-analyses differ in their con-
clusions on the burden of ICI-mediated ASCVD. In patients with non-small 
cell lung cancer, prior studies have shown no definitive increase in cardiovas-
cular or venous/arterial events relative to traditional cytotoxic therapy [33, 34]. 
One meta-analysis of treatment-related deaths in FDA-approved PD1/PDL1 
clinical trials (n = 82) found a 9.8% incidence of deaths attributable to car-
diovascular events, although incidence of myocardial infarction (n = 1, 1.2%) 
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and acute coronary syndrome (n = 1, 1.2%) was low [35]. Conversely, an FDA 
pooled analysis of patients on ICI therapy (n = 21,644) suggested up to a 35% 
(95% CI: 0.76 to 2.4) increase in isolated coronary ischemia over 6 months 
for patients on an ICI versus traditional cytotoxic therapy [34].

Radiographically, patients with lung cancer and melanoma do appear to 
develop more unstable plaque phenotypes after immunotherapy. Non-cal-
cified plaques are associated with greater cardiovascular and stroke risk than 
calcified plaques, while carotid plaque inflammation has been linked to less 
calcification on imaging [36]. One case–control study (40 cases with ICI and 
20 controls without ICI) by Drobni et al. found that ICI use in lung cancer 
was associated with a significantly higher progression rate of noncalcified 
plaque volume (11.2% vs. 1.6% per year, p = 0.001). Patients who did not 
receive immunotherapy showed greater progression in calcified plaque vol-
ume (25% vs. 2% per year, p = 0.017) [37]. Similarly, in a cohort of 35 patients 
with melanoma and pre-existing aortic calcification, post-ICI plaque compo-
sition showed increased non-calcified plaque volume, which suggests a more 
vulnerable, rupture-prone state [36]. While existing studies often include a 
low proportion of patients on combination ICIs, making it difficult to assess if 
combination immunotherapy enhances ICI-mediated atherosclerosis, Drobni 
et al. reported that patients on combination ICIs exhibited greater plaque 
progression, suggesting that multiple checkpoint blockades have an additive 
effect on vascular inflammation [32•].

Atherosclerosis is a gradual process in which the disease burden pro-
gresses over many years or even decades. Improved oncologic outcomes have 
extended survival times, meriting closer attention to the potential health 
complications of longer term cancer survivorship. Follow-up evaluation of 
patients over a greater time window is needed to fully understand the chronic 
impact of ICI therapy on ASCVD and how it interacts with other cardiovas-
cular risk factors such as age, hypertension, and diabetes.

Preclinical models for ICI atherosclerosis

The role of T cells in atherosclerosis has come to attention in recent years, par-
ticularly as innovative single-cell analyses in human and mouse models shed 
new light on the immune diversity of plaques beyond macrophages [38–43]. 
T cells are the predominant lymphocyte type in plaque, but murine models 
have reported both pro- and anti-atherogenic functions of different T cell 
subsets [8]. In mice, CD4+ T helper 1 (Th1) cells appear to be pro-atherogenic 
in large part due to production of IFN-γ and TNF-α [44–49]. The role of 
other Th subsets, CD8+ T cells, and Tregs remains equivocal, potentially due 
to differences in mice strain, T cell depletion strategy, gene knockout strategy, 
and study diet [8, 50]. There is also a lack of knowledge around antigen speci-
ficity for these T cell subsets, so it cannot be ruled out whether a particular 
Th subset is pro- or anti-atherogenic depending on the type of antigens or 
signaling present. For example, while generally thought to be atheroprotec-
tive in mice due to secretion of TGF-β and IL-10, Tregs’ initial protective 

719



Curr Treat Options Cardio Med (2023) 25:715–735

response may shift towards pro-inflammatory as atherosclerosis progresses 
[51–57]. In humans, there is also not a consistent clinical correlation between 
blood/plaque Treg level and atherosclerosis [58–61]. Depuydt et al. did find 
that autoreactive CD4+ T cells may contribute to atherosclerosis in humans 
[43]. Fernandez et al. further suggest that T cell activation and exhaustion 
reprogramming play an important role, with exhausted human plaque T cells 
expressing more PD-1 than their blood counterparts [41•]. This has sparked 
interest in the potential impact of immunotherapy on plaque T-cell activity.

By releasing the innate brake on T cell activation, ICIs promote a systemic, 
T-cell mediated antitumor response. However, disrupting this key regula-
tory step can also result in many off-target immune reactions. Figure 1 and 
Table 1 summarize preclinical studies that have used genetic knockout models 
and co-stimulation/co-inhibition of ICI targets to shed light on the role of 
immune checkpoints in atherosclerosis.

The PD-1/PDL-1 pathway was one of the original targets of ICI therapy, 
but also plays an important role in downregulating T-cell activity. Bu et al. 
showed that Pd1−/−Ldlr−/− mice had not only worsened atherosclerotic 
disease but also enhanced infiltration of cytotoxic T cells and macrophages 
in plaques and arterial walls, as well as elevated levels of serum IFN-γ and 
TNF-α, suggesting continued immune dysregulation [62]. Similarly, other 
studies in PD1-deficient mice or mice treated with anti-PD1 antibodies have 
reported that these mouse model experience worsened plaque burden with 
significant T cell and macrophage expansion both in atherosclerotic lesions 

Fig. 1  This figure shows the different cardiac toxicities of immunotherapy and the different mouse models that have been 
used to investigate ICI-associated atherosclerosis. Abbreviations: PDL-1, programmed cell death ligand 1; Lag-3, lympho-
cyte activation gene 3; CTLA-4, cytotoxic T-lymphocyte antigen 4; Tim-3, T-cell immunoglobulin mucin; ApoE, apolipopro-
tein E; Ldlr, low-density lipoprotein receptor.
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and systemically [63–65]. Bu et al. also reported that Pd-l1/2-/- Ldlr -/- bone 
marrow chimeric mice had significantly more CD4+ T cells, CD8+ T cells, 
and macrophages in plaque lesions compared to controls; this difference was 
most notable for CD8+ T cells [62]. These results are consistent with Gots-
man et al.’s prior work, which showed that Pd-l1/2-/- Ldlr-/- mice had more 
lesions and lesional inflammation [66]. Stimulation of the PD-1 pathway in 
a drug-treated mouse model appeared to have an opposite effect on athero-
sclerosis by decreasing levels of monocytes and T cells that secrete IFN-γ in 
the peripheral blood, while improving biomarkers such as B1 cells, Bregs, 
and oxLDL IgM levels considered to be atheroprotective [67]. Beyond the 
role of PD-1/PDL-1 in T cell exhaustion, a PD1-deficient mouse model with 
selective targeting of myeloid cells suggested that this pathway also acts as an 
important negative regulator of cholesterol synthesis and uptake [68]. Col-
lectively, these preclinical studies provide robust evidence that inhibiting the 
PD1/PDL-1 pathway accelerates atherosclerotic plaque progression.

The CTLA-4 pathway plays an important atheroprotective role by com-
peting with CD28 in T cell activation and acting as a co-inhibitor of T cell 
migration into nonlymphoid tissues such as arterial walls or tumors [69, 70]. 
CTLA-4 Tg/Apoe-/- mice, which constitutively over-express CTLA-4, have been 
found to have less plaque formation as well as markedly reduced intralesional 
and vessel wall accumulation of macrophages and CD4+ T cells [71]. Treat-
ment with abatacept, which inhibits CD28 mediated T-cell activation, also 
mitigated the accelerated atherosclerosis and elevated serum levels of IFN-γ 
seen in ApoE3-Leiden and Apoe -/-mice [72, 73]. Conversely, Poels et al. 
reported that antibody-mediated inhibition of the CTLA-4 pathway in Ldlr-
/- mice induced an activated T cell profile and increased ICAM1 endothelial 
expression along with increases in aortic plaque area [74].

PD-1/PDL-1 and CTLA4 remain the most common and widely used targets 
for cancer immunotherapy. Short-term combination immunotherapy led to 
unfavorable plaque and artery wall profiles in Ldlr-/- mice in the setting of 
T-cell, not myeloid, driven inflammation: larger necrotic core size, increased 
intraplaque CD8 T cells, increased CD4 effector/CD8+ T cells in arterial walls, 
and more endothelial activation as measured by Icam1 expression [75].

More recently, combination therapy with PD-1 and LAG3 blockade was 
approved for patients with unresectable or metastatic melanoma [76]. LAG3 
is expressed across multiple leukocyte subtypes including T cells. Within T 
cells, it negatively regulates T cell activation and proliferation and is expressed 
at higher levels on exhausted T cells [77]. Mulholland et al. used Ldlr-/- mice 
as a background to test the effect of a Lag3 genetic knockout, as well as treat-
ment with an anti-Lag3 antibody. In both models, there was no change in 
plaque burden, but recruitment of T cells to plaque lesions and increased 
levels of T cell activation/cytokine production were observed. They also noted 
an additive effect of dual LAG3/Pd-1 blockade on T cell activation [77].

TIM-3, a co-inhibitory immune checkpoint expressed on CD8 T cells, may 
also be a negative regulator of atherosclerosis. Foks et al. report that in Ldlr- 
mice fed a lipid-rich diet, TIM-3 antibody blockade increased macrophage 
content and decreased Treg cells in atherosclerotic plaque [23]. This com-
plements findings in human subjects treated with dual inhibition of PD-1 
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and TIM-3, who had increased pro-inflammatory cytokine levels (IFN-g and 
TNF-a) compared to singular blockade of either immune checkpoint [78].

Conversely, magrolimab, an anti-CD47 monoclonal antibody that is part 
of the macrophage checkpoint inhibitor class, appears to exert anti-atherogenic 
effects in recent human and animal studies. Macrophages play an important 
role in programmed cell removal of apoptotic or diseased cellular debris 
through a process called efferocytosis, leading to interest in magrolimab’s 
potential to induce tumor cell phagocytosis [79]. A retrospective study of 9 
lymphoma patients treated with magrolimab and rituximab also showed sup-
pression of vascular inflammation on FDG-PET, although it did not assess 
how plaque composition or efferocytosis rates were directly modified by mag-
rolimab [80]. The pro-atherogenic effects of CD47 are thought to be from 
nonspecific downregulation of efferocytosis, as a key feature of plaque is the 
formation of a necrotic core of apoptotic lipid-laden cells [81]. Kojima et al. 
recently reported that treatment with CD47 antibodies attenuated athero-
sclerosis across multiple mouse models, consistent with their findings that 
CD47 is also upregulated in atherogenesis and localizes intensely to plaque 
necrotic core [82].

Preclinical models of atherosclerosis in other autoinflammatory condi-
tions offer further insight into the cardiovascular sequelae of dysregulated 
adaptive immune activity that ICIs may mimic. Rheumatoid arthritis (RA) 
and systemic lupus erythematosus (SLE) have well-established associations 
with the development of cardiovascular disease. MRL-Faslpr mice, which 
develop an SLE-like phenotype, are at higher risk of atherosclerotic disease 
and vascular damage, potentially driven by leukocyte infiltration and over-
expression of inflammatory cytokines such as IL-6 and TNF-α [83, 84]. While 
MRL-Pdcd1-/- mice have been found to be predisposed to lymphocytic myo-
carditis, there are no current studies which examine atherosclerosis in MRL-
Pdcd1-/- mice [85]. The B6.SLE mouse model also leads to a lupus phenotype 
involving T cell activation. Transfusion of isolated CD4+ T cells from this 
model into Ldlr-/-, Rag-/- mice (lacking functional B and T cells) dramati-
cally accelerated atherosclerosis without causing lupus in the recipient [86].

In summary, recent preclinical models of atherosclerosis suggest that 
immune checkpoint pathways play a vital role in down-regulating T cell acti-
vation and migration. Further research is required to understand whether T 
cell activation and plaque progression worsen with a “dual-hit” of checkpoint 
blockade compared to ICI monotherapy, as risk of checkpoint myocarditis 
has been shown to. Finally, most studies utilized complete genetic knockout/
chimeric mice or administration of an antibody drug not used for treatment 
of human subjects. This may limit their generalizability due to potential treat-
ment effects on unexamined cell subtypes. For example, the role of myeloid 
versus T cell PD-1 blockade is still not well-understood. Strauss et al. found 
that targeted PD1 deficiency in myeloid-specific (Pd1 f/fLysMcre) mouse 
cells appeared to decrease tumor growth more than T cell specific (Pd1 f/
fCD4cre) targeting [68]. At the same time, the myeloid-targeted mice had 
significantly elevated cholesterol levels, which may be consistent with clini-
cal research showing baseline hypercholesterolemia and obesity’s association 
with improved survival in human patients treated with ICIs [87–89].
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Proposed mechanisms for ICI atherosclerosis

No direct mechanistic studies in humans have been performed to evaluate 
accelerated atherosclerosis in the setting of ICI therapy. However, extrapolat-
ing from mouse models for atherosclerosis and ICI myocarditis provides 
insight into several plausible pathways for immune checkpoint blockade 
to cause plaque progression. Single-cell sequencing and mass cytometry 
showed that T-cells are active contributors in human and mice atherosclerotic 
lesions [51, 90]. These plaques exhibit significant heterogeneity in CD4+ and 
CD8+ T-cell phenotypes, ranging from highly active T cells expressing inflam-
matory molecules like granzymes and cytokines, to exhausted T cells char-
acterized by high PD1 expression. Interestingly, in late-stage atherosclerosis, 
three major T cell subsets appear to undergo clonal expansion, indicating that 
generation of autoreactive CD4, CD8, and Treg cells may play an important 
role in ASCVD progression [91]. Conversely, inhibition of costimulatory T cell 
activation in mice through targeting of CD40/CD40L and B7 led to reduced 
plaque size and formation [92–94]. However, while the importance of T cell 
immunity in atherosclerosis is well established, the exact site of T-cell activity-
associated atherosclerosis remains unclear.

One theory is that checkpoint inhibition of PD1 could activate T cells 
and decrease peripheral tolerance within intimal plaques [38, 95], leading to 
increased risk of plaque rupture and MACE. This has not been experimentally 
verified and may not be generalizable to explain higher rates of ASCVD seen in 
patients undergoing non-PD-1/PDL-1 treatments. Furthermore, in patients with 
basal or squamous cell carcinoma treated by PD-1 blockade, pre-existing tumor-
specific T cells appeared to have limited reactivation capacity, and response to 
therapy may have resulted instead from constant attraction of new T cells [96].

Another proposed mechanism for ICI atherosclerosis is the unleashing of 
antigen-experienced T cells to recognize atherosclerosis-specific autoantigens. 
Recent mouse model studies of myocarditis have confirmed the presence of 
antigen-specific effector-like cytotoxic CD8 T cells which recognize cardiac 
autoantigens such as alpha-myosin [97–99]. It is still unclear whether these 
findings can be extrapolated to ICI atherosclerosis, and if the latter is indeed 
an antigen-driven process, what the identities of these specific antigens might 
be [91]. Single-cell RNA analysis of human coronary atherosclerotic plaque 
has demonstrated clonal expansion of primarily antigen-experienced T-cells, 
highlighting one potential pathway for self-reactive epitopes to accelerate 
atherosclerosis by interacting with smooth muscle cells and macrophages in 
the plaque microenvironment [100].

Recent research in Apoe-/- mice with advanced atherosclerosis found pat-
terns of deteriorating peripheral T-cell tolerance, most notably in plaques fol-
lowed by artery tertiary lymph node organs [91]. The large number of immune 
checkpoint pathways beyond PD-1/PD-L1 and CTLA4 has not been as closely 
examined for their role in modulating peripheral T cell tolerance in the setting 
of cancer and atherosclerosis. Further research is required to determine how 
much T-cell recruitment versus T cell reactivation drives the accumulation and 
clonal expansion of various T cell subsets within ICI atherosclerosis.
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Functional cross-talk between T cells and macrophages also deserves fur-
ther investigation in both the plaque and solid tumor immune microenvi-
ronments. Lipid-laden macrophages, or foam cells, directly contribute to 
plaque volume and necrotic core formation. After infiltrating vessel walls, 
foam cells are thought to enhance activation of the inflammasome and CD4 
T cells, particularly Th1 cells, which in turn secrete proatherogenic IFN-γ and 
TNF-α. [63, 101] Interferons are particularly important regulators of athero-
sclerosis due to their role in enhancing endothelial activation, regulation of 
apoptosis, and foam cell formation [102]. It will be important for clinicians 
to understand how ICI-mediated systemic T-cell activation impacts CD4-
monocyte interactions within plaque, whether foam cells in particular retain 
some degree of monocyte antigen-presenting capabilities, and how T cells 
may play a reciprocal role in ASCVD-related monocyte function. For example, 
while CD8 T cells’ contribution to atherosclerosis is less clear, Cochain et al. 
demonstrated in a Ldlr-/- mouse model that CD8+ T cell activity promoted 
atherosclerosis through modulation of monopoiesis and serum monocyte 
levels [103, 104]. Similarly, other murine models in PD1-deficient mice show 
a shift from CD4+ to CD8+ T cells within vessels affected by plaque, while CD8 
T-cell depletion in Apoe- and Ldlr-/- mice reduced atherosclerosis [62, 66]. 
This was hypothesized to be due to CD8 T cells’ cytotoxic function in mac-
rophage cell death and necrotic core formation within atherosclerotic plaques. 
ScRNA-sequencing profiles also suggest that dysfunctional CD8 T cell tolerance 
in mouse plaques is shared by human coronary/carotid arterial plaques [91].

The role of Tregs in ICI atherosclerosis remains an open question. 
Tregs secrete TGF-b and IL-10 which encourage an anti-inflammatory mac-
rophage phenotype, while constitutively expressing CTLA-4 and PD-1/PDL-1 
[105–107]. Increased number of Treg cells is associated with smaller human 
plaque size and improved plaque stability [107]. In the context of athero-
sclerosis, however, Treg cells may switch to exTreg cells through Treg/Th17 
conversion in plaques [91]. One PD1-/Ldlr- mouse model found that PD1 
knockout stimulated the Foxp3 + Treg response systemically and in atheroscle-
rotic vessels, but overall, a pro-atherogenic CD4+ T cell response dominated 
[63]. Although studies have shown differing conclusions on PD-1/PDL-1’s 
regulation of Treg function, Tregs appear to play an overall negative regulatory 
role in T cell activation that may counteract the pro-inflammatory cascade 
triggered by blockade of CTLA-4 or PD1/PDL1 [108, 109]. Current evidence 
on how Treg function is affected by other checkpoints targeted in ICI therapy, 
such as LAG-3 is sparse. Data from genetic knockout mice suggest that LAG-3 
promotes autoimmunity by limiting Treg cell proliferation/function [110].

Beyond primary ICI atherosclerosis, immunotherapy may exacerbate ath-
erosclerosis through alternative IRAEs such as vasculitis. Among the systemic 
vasculitides, accelerated atherosclerosis has been clearly noted in Takayasu 
arteritis and ANCA-associated vasculitis (AAV) [111]. Systematic reviews and 
pharmacovigilance studies have reported that anti-PD-1 and CTLA-4 directed 
therapy have been associated with large-vessel vasculitis and vasculitis of the 
nervous system [112–114]. Interestingly, a humanized mouse model of GCA 
found that treatment with anti-PD-1 antibodies led to arterial infiltration 
with T cells and macrophages even from healthy subjects and development 
of fulminant arteritis [65]. Native AAV has been linked to single nucleotide 
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polymorphisms in the CTLA-4 gene, highlighting one possible mechanism 
through which CTLA-4 inhibition may also lead to vasculitis [115].

Collectively, these studies point to immune checkpoint pathways as 
important negative regulators of T-cell activation, function, and recruitment. 
Long-term, ICI-mediated ASCVD may result from disrupting these mecha-
nisms’ role in artery walls and plaques.

Treatment options
Prevention and monitoring

Several recently completed trials suggest that the adjuvant/neoadjuvant use 
of immunotherapy leads to additional improvement in survival rates for 
patients with resectable disease, particularly those with NSCLC or melanoma 
[116–121], [122–126]. As immunotherapy shifts towards curative or long-
term adjuvant use for some patients, it becomes increasingly important that 
clinicians recognize and implement ICI-mediated ASCVD screening as part 
of routine cancer treatment. This may require coordination between primary 
care providers, oncologists, and potentially cardiologists to screen for and 
manage modifiable risk factors such as cholesterol levels, diabetes mellitus, 
and hypertension.

Cross-specialty collaboration is also needed to determine the optimal use 
and timing of imaging techniques. Plaque progression is a strong predictor of 
future cardiovascular events. Drobni et al. found that among 40 patients with 
melanoma, there was a greater progression rate of thoracic plaque burden 
(2.1% per year to 6.7% per year, p = 0 0.02) on CT after initiation of ICI [32•]. 
In a smaller cohort of 11 patients with pre-existing ASCVD on nivolumab in 
Italy who received contrast-enhanced CT scans at baseline and a minimum of 
8 weeks, 63.6% had no significant changes and 27.3% experienced significant 
improvement in plaque burden; only one patient showed modest worsening 
of atherosclerotic lesions, and one patient demonstrated repeated, dramatic 
resolution of plaques on treatment with PD1/PDL1 inhibitors [127, 128]. 
Interestingly, all cases with significant improvement in plaque burden also 
reported grade > 2 IRAEs [127]. The imaging results of FDG PET-CT studies 
assessing systemic inflammation and plaque burden after ICI in small-scale 
cohorts of melanoma patients and mouse models have also been inconclu-
sive, although Calabretta et al. do suggest that immunotherapy may trigger 
low-grade vascular wall inflammation primarily affecting the earlier, more 
vulnerable non-calcified coronary plaques, which could increase risk of future 
rupture [129, 130].

Going forward, it is important for clinicians to recognize the benefits and 
limitations of standard oncologic imaging approaches as a means of screening 
for and monitoring ASCVD in patients on immunotherapy [131]. Inciden-
tal coronary artery calcium (CAC) seen on non-gated CT imaging has been 
found to be predictive of major adverse cardiac events, particularly when the 
CAC score was over 100. However, prospective randomized trials examining 
the impact of non-gated CAC on ASCVD outcomes are needed [132, 133]. 

726



Curr Treat Options Cardio Med (2023) 25:715–735 

Future studies incorporating the use of coronary CT angiography to evaluate 
for ICI-mediated atherosclerosis are also needed. Novel imaging approaches 
such as immune-PET tracers are currently uncommon in clinical practice, but 
have proven valuable in human and mouse models for detecting vulnerable 
atherosclerotic lesions generally [134–137].

Pharmacologic therapy
Treatment strategies for ICI-mediated ASCVD remain in the exploratory 
phase. Statins, ezetimibe, fibrates, and PCSK9 inhibitors are safe, effective, 
and well-established treatments for atherosclerosis. However, their impact in 
the setting of ICIs and cancer requires further exploration to fully characterize 
risks and benefits to this complex patient population.

Statins
Despite hyperlipidemia control’s well-known role in ASCVD risk reduction, 
prospective randomized control trials have not yet evaluated the efficacy of 
statins from both an onco- and atheroprotective perspective during ICI ther-
apy. In a recent retrospective study, Drobni et al. showed that statin or aspirin 
use by patients receiving ICI therapy was not associated with differences in a 
composite outcome of cardiovascular events, but statins were associated with 
significantly slower annual rate of progression in both total and noncalcified 
plaque volume in an imaging substudy of 40 patients [32•]. Because patients 
on statins were more likely to have ASCVD risk factors, it is difficult to interpret 
Drobni et al.’s findings in isolation. Interestingly, several recent studies report 
that concomitant use of common cardiovascular medications such as statins 
or aspirin also improves ICI activity, with enhanced activity of cytotoxic CD8 
T cells and reduction of pro-inflammatory cytokines as possible mechanisms 
[138–140]. Adjuvant statin use during ICI therapy may carry important risks 
however. Drobni et al. subsequently conducted another retrospective analysis 
that suggested a > twofold risk of inflammatory or non-inflammatory skeletal 
myopathy in such cases, with a 2.5-fold higher risk of inflammatory myopathy, 
although there was not an increased risk of transaminitis [141].

PCSK‑9 inhibitors
PCSK9 inhibitors are a newer class of monoclonal antibodies (and RNAi) 
used to treat patients at high risk for ASCVD refractory to statins. Similar to 
statins, recent studies have found that adjuvant PCSK9 use with ICIs, leading 
to enhanced intratumoral cytotoxic T cell infiltration, antigen presentation, 
and expression of co-inhibitory checkpoint molecules [142–144].
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Steroids
In retrospective studies, steroid use during ICI therapy has been associated 
with a lower annual rate of plaque progression (3.5% vs. 6.9%, p = 0.04); 
however, there is a lack of prospective data supporting this association 
[32•]. Several confounders may still be present including study match-
ing by cancer type, degree of pre-existing ASCVD, and length of steroid 
or ICI therapy. More importantly, chronic glucocorticoid excess has been 
associated with worse cardiovascular outcomes, most strikingly in patients 
with Cushing’s and metabolic syndrome, but also in those with autoim-
mune conditions requiring exogenous steroids such as lupus or rheumatoid 
arthritis [145–149]. Inflammation from autoimmune disease itself likely 
contributes to ASCVD. However, glucocorticoids have non-specific immu-
nosuppressive effects, while also carrying their own increased risk of long-
term atherosclerotic complications. Several studies have reported that even 
low levels of steroids confer an increased risk of ASCVD in these patients 
when used chronically [148–150]. From an oncologic standpoint, some 
studies raise the concern that steroids may blunt ICI treatment response, 
though this is not entirely clear [151–156]. Overall, steroids are not recom-
mended for prevention or treatment of ICI-mediated ASCVD, and more 
research on targeted steroid-sparing therapies is needed.

Emerging therapies
Just as ICIs have transformed oncology, they have also changed clinical con-
siderations for patients who experience cardiotoxic IRAEs. While existing 
literature suggests that ICIs cause a net acceleration in atherosclerosis, we 
lack a complete mechanistic understanding of their effects on plaque for-
mation and progression. Induction of a pro-inflammatory, T cell-rich envi-
ronment likely plays an important role. However, ICIs have heterogeneous 
effects on immune activation, some of which may even be atheroprotective, 
and newer checkpoint targets such as TIM3 inhibitors remain less studied. 
Although active research is ongoing into focused immune targets behind 
plaque formation in ICI-associated atherosclerosis, specific molecular and 
cell-based therapies remain needed and lacking.

Sex-related differences in ICI cardiotoxicity remain one knowledge gap 
with implications for ICI atherosclerosis risk stratification. Both clinical 
and mouse studies suggest that females may be at higher risk of ICI myo-
carditis, but the literature on sex disparities in ICI atherosclerosis is more 
equivocal, limited by small sample sizes or borderline significance [32, 33, 
157, 158]. In the general population, sex differences in cardiovascular bio-
markers (e.g. adipokines, inflammatory markers, fibrosis, and metallopro-
teinase inhibitors) have been found and were most pronounced between 
pre-menopausal women versus men [159]. There is also a well-established 
sex-based dimorphism in risk of autoimmune disease and IRAEs that is 
increased for women [160–162]. This highlights the complex interplay 
between several cardiovascular risk factors that may help determine indi-
viduals’ risk for ICI atherosclerosis and response to standard therapy.
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Moving forward, eliciting the interaction of genetic, hormonal, and 
immune-related factors in ICI atherosclerosis is critical to preserving cardio-
vascular health among cancer patients who receive immunotherapy. Expand-
ing our knowledge of these pathways will allow for the basic and transla-
tional insights needed to develop novel preventive and therapeutic strategies. 
For this complex patient population, developing more precise ASCVD risk 
stratification and targeted therapies while defining current imaging and phar-
maceutical best practices will require close collaboration between cardio-
oncologists, oncologists, and basic/clinical/translational researchers.

Conclusion

In addition to their remarkable success in treating many malignancies, 
ICIs have been linked to increased risk of ASCVD, one of the most com-
mon chronic conditions with an underlying inflammatory component. 
As immunotherapy moves into the curative/adjuvant setting, advanced 
cancer survivorship is also expected to grow. This population of patients 
who require ongoing, potentially lifetime, use of ICI therapy to control 
their advanced or metastatic disease carry unknown cardiovascular risks 
that can significantly impact mortality beyond their cancer diagnosis. It 
is essential for all clinicians who treat cancer patients longitudinally to 
recognize ASCVD as a potential immune-related complication that would 
benefit from close monitoring and control of risk factors such as hyperten-
sion, hyperlipidemia, and diabetes mellitus, especially in those with a prior 
ASCVD history or risk factors.

The precise mechanisms underlying the pathogenesis of ICI atheroscle-
rosis remain in need of further preclinical and clinical study. Several mouse 
models of ICI atherosclerosis suggest that checkpoint inhibition disrupts 
negative regulation of T-cell activity and serum levels of proatherogenic 
cytokines in particular. Still, it remains necessary to distinguish the extent 
of T-cell reactivation versus T-cell recruitment during this process, as well as 
whether Treg function leads to a net atherogenic or atheroprotective effect 
in the setting of ICI use. Finally, cross-talk between CD4/CD8 T cells and 
myeloid populations such as macrophages/monocytes also appear to play 
an important role in plaque development, although the precise impact of 
immunotherapy on their activity remains under-explored.

Further characterization of the mechanisms underlying plaque progres-
sion is needed to determine appropriate timing of atherosclerotic imaging 
as well as medical interventions. Existing observational studies have limited 
follow-up timelines and likely do not capture the full extent of the associa-
tion between ICI use and lifetime ASCVD risk or other adverse cardiovas-
cular events. Longer-term trials using larger cohort sizes are also needed 
to understand how standard medical management of ASCVD risk factors 
affects cancer patients in heterogeneous ways. Our review underscores the 
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importance of further preclinical and clinical investigation into this grow-
ing patient population to explore targeted therapeutic targets.
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