
Received: 17 December 2023 Accepted: 23 December 2023

DOI: 10.1111/srt.13571

OR I G I N A L A RT I C L E

Differentiation and risk stratification of basal cell carcinoma
with deep learning on histopathologic images andmeasuring
nuclei and tumormicroenvironment features

Xuemei Lan1 GuanchenGuo2 XiaopoWang1 Qiao Yan3 Ruzeng Xue4

Yufen Li1 Jiaping Zhu1 ZhengbangDong3 FeiWang3 Guomin Li4

XiangxueWang2 Jun Xu2 Yiqun Jiang1

1Department of Dermatopathology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy ofMedical Sciences & Peking UnionMedical College,

Nanjing, Jiangsu, China

2lnstitute for Al inMedicine, School of Artificial lntelligence, Nanjing University of Information Science and Technology, Nanjing, China

3Department of Dermatology, School ofMedicine, ZhongDaHospital, Southeast University, Nanjing, China

4Dermatology Hospital, SouthernMedical University, Guangzhou, China

Correspondence

Jun Xu and XiangxueWang, lnstitute for Al in

Medicine, School of Artificial lntelligence,

Nanjing University of Information Science and

Technology, Nanjing, 210044, China.

Email: jxu@nuist.edu.cn and

xwang@nuist.edu.cn

Yiqun Jiang, Hospital for Skin Diseases,

Institute of Dermatology, Chinese Academy of

Medical Sciences & Peking UnionMedical

College, 12 Jiangwangmiao Street, Nanjing,

Jiangsu, 210042, China.

Email: yiqunjiang2017@163.com

Xuemei Lan and GuanchenGuo are considered

as joint first authors.

Yiqun Jiang, Jun XU and XiangxueWang are

considered as joint corresponding authors.

Funding information

CAMS Innovation Fund forMedical Sciences,

Grant/Award Number: 2021-I2M-C&T-B-087;

National Natural Science Foundation of China,

Grant/AwardNumbers: 62171230, 92159301,

91959207, 62301265; Key Project of Social

Development in Jiangsu Province,

Grant/Award Number: BE2023676

Abstract

Background: Nuclear pleomorphism and tumor microenvironment (TME) play a crit-

ical role in cancer development and progression. Identifying most predictive nuclei

and TME features of basal cell carcinoma (BCC) may provide insights into which

characteristics pathologists can use to distinguish and stratify this entity.

Objectives:Todevelop anautomatedworkflowbasedonnuclei andTME features from

basaloid cell tumor regions to differentiate BCC from trichoepithelioma (TE) and strat-

ify BCC into high-risk (HR) and low-risk (LR) subtypes, and to identify the nuclear and

TME characteristics profile of different basaloid cell tumors.

Methods:The deep learning systemswere trained on161H&E -stained sectionswhich

contained 51 sections of HR-BCC, 50 sections of LR-BCC and 60 sections of TE from

one institution (D1), and externally and independently validated on D2 (46 sections)

andD3 (76 sections), from2015 to2022. 60%, 20%and20%ofD1datawere randomly

splitted for training, validation and testing, respectively. The framework comprised

four stages: tumor regions identification by multi-head self-attention (MSA) U-Net,

nuclei segmentation by HoVer-Net, quantitative feature by handcrafted extraction,

and differentiation and risk stratification classifier construction. Pixel accuracy, pre-

cision, recall, dice score, intersection over union (IoU) and area under the curve (AUC)

were used to evaluate the performance of tumor segmentationmodel and classifiers.

Results:MSA-U-Net model detected tumor regions with 0.910 precision, 0.869 recall,

0.889 dice score and 0.800 IoU. The differentiation classifier achieved 0.977± 0.0159,
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0.955 ± 0.0181, 0.885 ± 0.0237 AUC in D1, D2 and D3, respectively. The most

discriminative features between BCC and TE contained Homogeneity, Elongation, T-

T_meanEdgeLength, T-T_Nsubgraph, S-T_HarmonicCentrality, S-S_Degrees. The risk

stratification model can well predict HR-BCC and LR-BCC with 0.920 ± 0.0579,

0.839 ± 0.0176, 0.825 ± 0.0153 AUC in D1, D2 and D3, respectively. The most dis-

criminative features between HR-BCC and LR-BCC comprised IntensityMin, Solidity,

T-T_minEdgeLength, T-T_Coreness, T-T_Degrees, T-T_Betweenness, S-T_Degrees.

Conclusions: This framework hold potential for future use as a second opinion helping

informdiagnosis of BCC, and identify nuclei and TME features relatedwithmalignancy

and tumor risk stratification.

KEYWORDS

artificial intelligence, basal cell carcinoma vs trichoepithelioma, histopathology images, tumor
microenvironment

1 INTRODUCTION

Basal cell carcinoma (BCC) is the most common skin malignancy

worldwide, approximately 80% of skin cancer occurrences per year

attributed to BCC.1 The rising incidence of BCC is putting a heavy

burden on healthcare systems and economics in terms of diagnosis,

treatment and follow-up.2

Microscopic examination of pathology slides is the cornerstone

of BCC diagnosis. During this process, the diagnosis between BCC

and trichoblastoma or trichoepithelioma (TE) is one of the most

common clinical practices for dermatopathologist.3 If a definite diag-

nosis of BCC is made, pathological subtypes of BCC, which could be

stratified as low-risk BCCs (LR-BCCs) such as nodular, superficial, pig-

mented, fibroepithelial, infundibulocystic variants, and high-risk BCCs

(HR-BCCs), including micronodular, infiltrating, sclerosing/morphoeic,

basosquamous and sarcomatoid subtypes should be stated, in order to

provide a guidance for proper therapeutic choices.4

TE and BCC share similar cytology in term of the basaloid epithelial

component while the surrounding stromal reaction is different. To dif-

ferentiate these two entities, a lot of efforts has been made including

immunohistochemical stains with minimal help.5 HR-BCCs represent

the population which are more likely to recurrence andmetastasis and

need more extensive care in contrast to LR one. They are featured

by infiltrating architecture of the epithelial composition and scleros-

ing mesenchyme with different immune reaction, comparing with the

LR counterpart in pathology. These differences including the neoplas-

tic epithelial cells, the tumor microenvironment (TME) and their cross

talk are thought to play a critical role in cancer development and

its consequent prognosis.6 Therefore, characterization of the tumor

cytology such as nuclear pleomorphism and the surrounding TMEmay

provide subtle evidence to recognize and even stratify BCCs more

exactly. However, during the practice of diagnosing BCC, it is difficult

for pathologists to quantify the minor difference of nuclei features of

basaloid cell tumors and describe their TME signatures. As a result,

TME, such as lymphocyte and fibroblast infiltration, is not routinely

presented in the pathological diagnostic reports of BCC.

Recently, deep learning algorithms have shown promising results

in computing the microscopic features for further quantitative char-

acterization and classification of tissue images of cancers. Early in

1997, Herrera-Espiñeira C et al. used planar graphs to discriminate

benign and malignant breast lesions by measuring nuclear shape,

orientation, and texture features from H&E -stained images.7 In 2011,

Kararizou et al. reported that the mean value of nuclear orientation

was highly correlated to degree of malignancy of human gliomas.8

In 2021, Mohsin bilal et al. applied HoVer-Net (a nuclear segmen-

tation model) to segment and classify cell nuclei on H&E -stained

slides from colorectal cancer, and predicted the status of key molec-

ular pathways and mutations based the nuclear features of tumor

images.9

Traditionally, the classification and segmentation of pathological

primitives among different cancer types including BCC have been

developed for years. Thealgorithmshave shownexcellent performance

in recognizing the neoplasms.10–12 Our team previously developed

a cascaded framework based on smartphone-captured microscopic

ocular images to recognize BCC which had a classification model

for identifying hard cases and a segmentation model for further in-

depth analysis of them.13 However, less deep learning study has

focused on demonstrating nuclear and TME signatures of basaloid cell

tumors and clarified the association between these characteristics and

corresponding entities.

Therefore, in this work, we aimed to develop two classifiers,

based on tumor images output from (multi-head self-attention) MSA-

U-Net and combined with the fine nuclear features which contain

morphology, texture, spatial arrangement of tumor cell nucleus, inter-

relationships between tumor cells, fibroblasts and lymphocytes, to

differentiate and stratify BCC. We also identified the nuclear and

TME characteristics profile of different basaloid cell tumors and

investigated their diagnosis significance in clinical setting.
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2 MATERIALS AND METHODS

2.1 General dataset introduction

A total of 161 H&E slides representing typical cases of LR-BCC (50),

HR-BCC (51), and TE (60) were obtained from Hospital for Skin Dis-

eases and Institute of Dermatology, Chinese Academy of Medical

Sciences & Peking Union Medical College, Nanjing (D1) from January

2015 to October 2022. Two external validation cohorts were tested,

the first consisting of 46 slides from Department of Dermatology,

School of Medicine, Zhong Da Hospital, Southeast University, Nan-

jing (D2), the second including 76 slides from Dermatology Hospital,

Southern Medical University, Guangzhou (D3) (Table S1). Slides from

D1 were manually labelled by three dermatopathologists in consulta-

tionwith apathologist. TheD1and2weredigitizedusing aHamamatsu

NaNoZoomer S360 digital slide scanner, while D3was scanned using a

HamamatsuNaNoZoomer-S60, all at a 40×magnificationwith0.23um

pixel-size.

All methods and procedures were performed in accordance with

relevant guidelines and regulations. Written informed consent was

obtained fromall participants, and this studywas approvedby the Insti-

tutional Review Board of the Institute of Dermatology, Peking Union

Medical College & Chinese Academy of Medical Sciences (2021-KY-

042).

2.2 Tumor regions identification and nuclei
segmentation

The ground-truth annotations were created in QuPath by experienced

pathologists over the full-resolution images with four categories:

normal epithelial tissue (containing epidermis and hair follicle), tumor

region (containing BCC and TE), background, other normal tissue. The

whole slide segmentation model consisted of an implementation of

MSA-U-Net model that is trained using 512 × 512 patches sampled

from 10× magnification (µm/pixel). To manage class imbalances and

prevent overfitting during training, additional rotation, blurring,

contrast and color augmentation were applied to each patch. Sixty

percent patches were used for training, 20% were used for validation,

and the remaining 20% comprised an unseen test set, which was

used to test model performance. The segmentation model trained

on D1 was able to outline normal epithelial tissue, tumor region,

background, other normal tissue by predicting a pixel level classifi-

cation in a given test image. We calculated pixel accuracy, precision,

recall, intersection over union (IoU), and dice score to report the

performance of the four classes segmentation model on the test

set. Batch level predictions were aggregated to generate WSI level

prediction for downstream feature analysis from each independent

patch. Then, only tissue with evident tumor features (prediction

probability, >average pixel accuracy rate) were included for training

in nuclei segmentation model, HoVer-Net which can segment dif-

ferent types of cell nuclei: non-neoplastic epithelial cells, neoplastic

epithelial cells, inflammatory cells, mesenchymal cells and necrotic

cells.9

2.3 Feature extraction

A total of 262 dimensions of nuclear features (variance in nuclear

texture, morphological, spatial arrangement characteristic) and

TME profiles (variance in the spatial relationship between tumor

nuclei and connective nuclei/ tumor nuclei and immune nuclei/

immune nuclei and connective nuclei) were manually extracted

from tumor areas. The features are related to nuclear texture,

shape, nuclear spatial arrangement and TME features as described

below.

Nuclear morphological/texture features (46 descriptors): this set of

characteristics focused on quantifying nuclear texture and shape using

different measurements including: area, areaBbox, cellEccentricities,

circularity, elongation, and so on.

Nuclear spatial arrangement and TME features (216 descriptors):

These features are intended to capture the difference of nuclear

topology and spatial structural relationship between tumor nuclei in

corresponding conditions. They containNsubgraph, degrees, coreness,

closeness, and so on.

2.4 Feature selection, and classifier construction
and evaluation

Three different feature selection methods, Random Forest, minimum

redundancy maximum relevance (mRMR) and Chi-square test were

used to identify the best features that maximally distinguished two

classes (BCC and TE; HR-BCC and LR-BCC). The most frequently

selected features were identified and were quantitatively evaluated

using violin plots to compare features expression between BCC and TE

(HR-BCCandLR-BCC).We limited thenumberof features for inclusion

in the classifier to 20 to avoid the curse of dimensionality problem and

model overfitting.

Four different machine learning classifiers, logistic regression, deci-

sion tree, support vector machine (SVM), and Random Forest classifier

were implemented in conjunction with the selected features. The top-

performing combination of feature selection scheme and machine

learning classifier was identifiedwith a five-fold cross-validation based

on the AUC of patch level within the modeling set. To classify a

whole slide image, we constructed an integration module that uses

the average-probability aggregation strategy to average the predicted

probabilities for each and tumor type and assigned the type with the

larger probability. AUCswas generated based the performance of clas-

sifiers on test dataset, and then we applied differentiation and risk

stratification models to two external independent test sets (D2, D3)

to assess their performance and generalizability. AUC, accuracy, recall,

and specificity were used to evaluate to overall performance of the

classifier. The workflow is illustrated in Figure 1.
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F IGURE 1 Experimental workflow. (A) Four classesMSAU-Net based segmentationmodel (B) Tumor regions identification, nuclear features
extraction and selection, and classifier construction. (C) The differentiation classifier generated patch-level prediction, then compared the
probability of BCC and TE, and finally assigned the type with the larger probability. (D) If differentiation classifier predicted the case as BCC, it
would transfer to risk stratification classifier for further analysis. BCC, basal cell carcinoma;MSA, multi-head self-attention; TE, trichoepithelioma.

3 RESULTS

3.1 Patients and tumor characteristics of three
datasets

In D1, regarding BCC, the mean age was 65.69 years (SD 16.15;

rang 27–90 years); 38.61% were males. Ninety-five percent lesions

were located on the head. In LR-BCC dataset, there consisted mainly

four subtypes of BCC: superficial (7), nodular (32), pigmented (5),

infundibulocystic (6). In HR-BCC dataset, three histologic subtypes

were included:micronodular (13), infiltrating and sclerosing (38). Since

it is difficult to distinguish infiltrating type from sclerosing one, these

two histologic patternswere regarded as one type.14 In TE dataset, the

mean age was 32.48 years (SD 16.07; rang 6–70); 16.66% were males.

All the lesions were located on the head.

In D2, the mean age of BCCs was 72 years (SD 9.61; rang 55–

93 years); 45.94% were males. 86.48% were located on the head.

There were four subtypes of LR-BCC, superficial (3), nodular (16),

pigmented (2), infundibulocystic (3). Three subtypes of HR-BCC con-

tained micronodular (4), infiltrating and sclerosing (9). In TE dataset,

the mean age was 47 years (SD 10.42; rang 36–70); 55.55% were

males.

In D3, the mean age of BCCs was 61.08 years (SD 16.00; rang

11–87 years); 52.63% were males. 84.21% were located on the head.

There were four subtypes of LR-BCC, superficial (10), nodular (18),

pigmented (3), infundibulocystic (3). Three subtypes of HR-BCC con-

tained micronodular (9), infiltrating and sclerosing (14). In TE dataset,

the mean age was 32.73 years (SD 19.43; rang 8–82); 42.10% were

males. Demographics of the patients, histologic subtypes and anatomic

location from three datasets are available in Table 1.

3.2 Tumor regions identification and the
performance of two classifiers

The MSA-U-Net algorithm segmented tumor regions with 91.0% pre-

cision, 86.9% recall, 88.9% dice score and 80.0% IoU, and the network

can achieve a per-pixel accuracy and an average class accuracy of

93.2% and 88.9% respectively across four classes (background, normal

epithelia tissue, tumor and other tissues (Table 2).
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TABLE 1 Patients and tumor characteristics of three datasets.

Variable (Dataset 1) Variable (Dataset 2) Variable (Dataset 3)

LR-BCC Total (50) LR-BCC Total (24) LR-BCC Total (34)

Mean age 59.75± 11.91 Mean age 72.37± 9.31 Mean age 64.79± 13.82

Sex, n (%) Sex, n (%) Sex, n (%)

Female 27(54) Female 13(54.16) Female 12(35.29)

Male 23(46) Male 11(45.83) Male 22(64.70)

Location Location Location

Head and neck 48(96) Head and neck 19(79.16) Head and neck 27(79.41)

Extremities 1(2) Extremities 1(4.16) Extremities 2(5.88)

Trunk 1(2) Trunk 2(8.33) Trunk 4(11.76)

Other 0 Other 2(8.33) Other 1(2.94)

Diagnosis, n (%) Diagnosis, n (%) Diagnosis, n (%)

Superficial 7(14) Superficial 3(4.16) Superficial 10(29.41)

Nodular 32(64) Nodular 16(66.66) Nodular 18(52.94)

Pigmented 5(10) Pigmented 2(8.33) Pigmented 3(8.23)

Infundibulocystic 6(12) Infundibulocystic 3(12.5) Infundibulocystic 3(8.23)

HR-BCC Total (51) HR-BCC Total (13) HR-BCC Total (23)

Mean age 68.25± 16.07 Mean age 71.30± 10.09 Mean age 55.60± 17.37

Sex, n (%) Sex, n (%) Sex, n (%)

Female 35(68.62) Female 7(53.84) Female 15(56.21)

Male 16(31.37) Male 6(46.15) Male 8(34.78)

Location Location Location

Head and neck 50(98.03) Head and neck 13(100) Head and neck 21(91.30)

Extremities 0 Extremities 0 Extremities 0

Trunk 0 Trunk 0 Trunk 2(8.69)

Other 1(1.96) Other Other

Diagnosis, n (%) Diagnosis, n (%) Diagnosis, n (%)

Micronodular 13(25.49) Micronodular 4(30.76) Micronodular 9(39.13)

Infiltrating and sclerosing 38(74.50) Infiltrating and sclerosing 9(69.23) Infiltrating and sclerosing 14(60.86)

TE Total (60) TE Total (9) TE Total (19)

Mean age 32.48± 16.07 Mean age 47± 10.42 Mean age 32.73± 19.43

Sex, n (%) Sex, n (%) Sex, n (%)

Female 50(83.33) Female 4(44.44) Female 11(57.89)

Male 10(16.66) Male 5(55.55) Male 8(42.10)

Location Location Location

Head and neck 60(100) Head and neck 9(100) Head and neck 18(94.73)

Extremities Extremities Extremities 1(5.26)

Abbreviations: BCC, basal cell carcinoma; Infiltrating, infiltrating BCC; Infundibulocystic, Infundibulocystic BCC;Micronodular, Micronodular BCC; Nodular,

Nodular BCC; Pigmented, Pigmented BCC; sclerosing, sclerosing BCC; Superficial, superficial BCC; TE, trichoepithelioma.

Regarding to the differentiation classifier, the performance of the

12 combination of feature selection and classifier schemes in terms of

classification performance for differentiation BCC from TE on patch

level are summarized in Table 2S. The combination of Random Forest

and SVM analysis achieved the best performance on WSI in distin-

guishing BCC and TE (AUC = 0.98 ± 0.02, accuracy = 0.91 ± 0.0006,

recall = 0.97 ± 0.002, specificity = 0.92 ± 0.009); AUC in D2

was 0.95 ± 0.02 (accuracy = 0.91 ± 0.02, recall = 0.92 ± 0.0001,

specificity = 0.87 ± 0.0001); AUC in D3 was 0.89 ± 0.02 (accu-

racy= 0.82± 0.001, recall= 0.92± 0.0001, specificity= 0.61± 0.002)

(Figure 2).

With regard to risk grading classifier, the performance of the 12

combination of feature selection and classifier schemes in terms of

classification performance for risk grading of BCC on patch level
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TABLE 2 The performance of four-class segmentationmodel.

Class Precision Recall Dice score IoU

Background 0.961 0.972 0.966 0.935

Other tissue 0.880 0.874 0.877 0.781

Normal epithelial tissue 0.808 0.770 0.789 0.652

Tumor regions (BCC+TE) 0.910 0.869 0.889 0.800

Note: Normal epithelial tissue containing epidermis and hair follicle.

Abbreviations: BCC, basal cell carcinoma; IoU, intersection over union; TE, trichoepithelioma.

F IGURE 2 Performance of the differentiation and risk stratification classifier on three independent datasets. (A) The differentiation classifier
achieved 0.977± 0.0159, 0.955± 0.0181, 0.885± 0.0237 AUC onD1 (blue), D2 (green), and D3 (red), respectively. The dashed line represents the
random prediction 0.5. (B) The risk stratification classifier obtained 0.920± 0.0.0579, 0.839± 0.0579, 0.825± 0.0153 onD1(blue), D2 (green), and
D3 (red), respectively.

are summarized in Table 3S. The feature selection scheme-Random

Forest, combination of SVM classifier achieved the best performance

on WSI in discriminating LR-BCC from HR-BCC (AUC = 0.92 ± 0.06,

accuracy= 0.81± 0.02, recall= 0.75± 0.03, specificity= 0.87± 0.01);

AUC in D2 was 0.84 ± 0.02 (accuracy = 0.75 ± 0.0001,

recall = 0.60 ± 0.0004, specificity = 0.90 ± 0.001); AUC in D3

was 0.82 ± 0.02 (accuracy = 0.82 ± 0.02, recall = 0.69 ± 0.001,

specificity= 0.82± 0.001) (Figure 2)

3.3 The discriminative features of differentiation
classifier

In the modeling set, there were 20-dimension discriminative features

used to construct the differentiation classifier (11 dimensions related

to nuclear texture features, 3 dimensions related to nuclear mor-

phology features, 6 dimensions related to nuclear topology features)

(Figure 3) (Table 4S). We ranked the features by the contribution of

each feature to the classification target, which is obtained by the fea-

ture_importances function of the random forest. These top three dis-

criminative features between BCC and TE were related to the nuclear

texture and topological relationship between tumor cells: Intensi-

tyMin_mean, IntensityMean_mean, T-T_meanEdgeLength_mean. The

comparison of standardized feature values of corresponding nuclear

features betweenBCCandTE is visualizedby violin plots (Figure 3) and

for more feature definition and explanation please refer to Table 4S.

For nuclear texture features, the nuclear intensity of TE appeared

to be more uniform which was supported by the features Tex-

ture_Homogeneity_var, Texture_Homogeneity_mean. By contrast,

there was a greater variation in nuclear intensity of BCC, evidenced

by the feature associated with minimum, mean, maximum or the

standard deviation intensity value of nuclear image. The constituent

tumor nuclei of TE had a higher ratio of major axis length over the

minor axis length than that of BCC in terms of morphological features

(indicated by the features Elongation_mean, MinorAxisLength_mean,

MinorAxisLength_var). Regarding to topological features, the dis-

tance between two connected tumor nuclei in TE is shorter than

that of BCC (supported by the features T-T_meanEdgeLength_mean,

T-T_minEdgeLength_var, T-T_minEdgeLength_mean). Moreover, BCC

had more complex image compositions than TE (supported by T-

T_Nsubgraph_mean). With regard to TME features, the distance

between a nucleus of stroma cell and tumor nucleus in TE is shorter
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F IGURE 3 Discriminative features of the differentiation classifier. (A) Top 1 to top 10 nuclear features. (B) Top 11 to top 20 features. Violin
plots are used to visualize and compare features expression between BCC and TE. These 20 dimensions nuclear features were statistically
different between BCC (orange) and TE (green) (p< 0.05). BCC, basal cell carcinoma; TE, trichoepithelioma.
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than that of BCC (indicated by S-T_HarmonicCentrality_mean). TE

had tighter connectivity between the stromal cells, supported by

S-S_Degrees_mean.

3.4 The discriminative features of risk
stratification classifier

There were 20-dimension discriminative features used to construct

the risk stratification classifier (12 dimensions related to nuclear tex-

ture features, 1 dimension related to nuclear morphology feature, 7

dimensions related to nuclear topology features) (Figure 4) (Table 5S).

We also ranked the features by the contribution of each feature to

the classification target, which is obtained by the feature_importances

function of the random forest. These top three discriminative features

between HR-BCC and LR-BCC were all related to the nuclear tex-

ture: IntensityMean_var, Homogeneity_var, ASM_mean. The compari-

son of standardized feature values of corresponding nuclear features

betweenHR-BCCand LR-BCC is visualized by violin plot (Figure 4) and

for more feature definition and explanation please refer to Table 5S.

Regarding nuclear texture features, HR-BCC had higher intensity

value of nucleus than that of LR-BCC (indicated by the Intensi-

tyMin_var, IntensityMin_mean, IntensityMean_var, Homogeneity_var

and other nuclear texture feature). For nuclear morphologic features,

LR-BCC had a regular nuclear edge than that of HR-BCC (supported

by Solidity_mean). With regard to topological features, LR-BCC had a

shorter distance between tumor cells and a greater number of con-

nections between tumor cells (supported by T-T_minEdgeLength_var)

than that of HR-BCC. HR-BCC had more dispersed tumor masses

than LR-BCC (indicated by T-T_Coreness_var, T-T_Degrees_var, T-

T_Degrees_mean, T-T_Betweenness_mean). LR-BCC had a greater

number of tumor nucleus to stromal nucleus connections in terms

of TME features (supported by S-T_Degrees_mean) in tumor region

compared to HR-BCC.

4 DISCUSSION

In the daily pathological diagnostic workflow of BCC, distinguishing

BCC from potential mimics and stating aggressive (HR-BCC) or nonag-

gressive types (LR-BCC) are essential skills for dermatopathologists.15

Deep learning models have been applied separately for the differenti-

ation and risk stratification of BCC, but not yet been used to construct

a pathological framework to accomplish such clinical procedure for

daily dermatopathological diagnosis.16,17 In addition, the importance

of nuclear and TME features which have been proved to be important

factors among other cancer types, and have been used to predict

tumor prognosis, benign and malignant judgment, and disease risk

classification in non-dermatopathological area, although these char-

acteristics are often underestimated in dermatopathology.18–21 Thus,

we developed an automated deep learning system which integrated

the nuclear and TME features of basaloid cell tumors to diagnose BCC

in a clinical setting.

We constructed two end-to-end algorithms to recognize BCC and if

a BCCwas identified, it would be sent into the risk stratification classi-

fier. Such a combination is similar to pathologist’s diagnostic thinking

and is expected to be applied in clinical practice. When dealing with

common clinical problem (hesitation between BCC and TE), the differ-

entiation classifier can discriminate BCC from TE inmodel setting with

comparable performance to some of previous studies.17,19 The perfor-

mance of the this classifiers is above mean level (sensitivity = 89.2%,

specificity = 81.1%) for machine learning in the diagnosis of non-

melanoma skin cancers, but under the top level to differentiate BCC

from TE (recall = 100%).17,19 However, the later model was trained

only on 5 sections of TE and test on one slide to differentiate BCC

fromTE.17 The small sample size of TE and single center study reduced

its confidence of differentiation, while our differentiation classifier is

robust to variable H&E stains from different institutions and AUCs

were above 0.88 in three different datasets, demonstrating broad

applicability and robustness of this algorithm.

Furthermore, in this work, we described the nuclear and TME

features difference between BCC and TE, and revealed most repre-

sentative indicators of them which may help differentiation in future

clinicopathological diagnosis. For nuclear texture features, features

related to nuclear intensity suggest that nuclear staining in TE is more

uniform compared to that of BCC and the indicator of nuclear staining

consistency is Homogeneity, followed by other indicators associated

with maximum, minimum and mean of the intensity of nuclear texture.

The discriminating nuclear texture features signify the uniformity

or variance in nuclear texture may help distinguish between benign

and malignant lesions. This is intuitive since in benign tumor, the

constituted tumor cells are relatively well differentiated as a result

of absence of nuclear atypia or nuclear pleomorphism.22 Also, we

checked the measurements related to nuclear morphological features

and found the constituent tumor nuclei shared more spindle shape in

comparison to BCC. Themost suggestive indicators are Elongation and

this nuclear morphological can be used as one of key differentiation

points between BCC and TE in future clinicopathological diagnosis.

Meanwhile, we have looked at features relating to nuclear topology

and found increased distance within tumor nuclei in BCC compared

with TE. This is in alignment with pathological manifestations which

BCC tumor cells are arranged loosely for mucin presenting within

or surrounding tumor nodules.5 The most suggestive indicator of

minimum distance between tumor nuclei is T-T_meanEdgeLength.

Furthermore, some other topological features also implied the

histopathological images of BCC were relatively more complex than

TE which indeed corresponds with the pathological findings. BCCs

have variable histological subtypes (superficial, nodular, pigmented,

infundibulocystic, micronodular, infiltrating and sclerosing, etc.), while

TEs present with a relatively simple morphological pattern which con-

sists of nests and strandsof basaloid cells in a racemiformconfiguration

intermingling with or without horn cysts).5 The image complexity may

associate with relatively poor differentiation because of rapid disorga-

nized cells growth and formation of irregular organizational patterns,

such as infiltrating BCC.23 The indicative feature of image complexity

is T-T_Nsubgraph which can also be regarded as one of key diagnosis
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F IGURE 4 Discriminative features of the risk grading classifier. (A) Top 1 to top 10 nuclear features. (B) Top 11 to top 20 features. Violin plots
are used to visualize and compare features expression betweenHR-BCC and LR-BCC. These 20 dimensions nuclear features were statistically
different betweenHR-BCC (green) and LR-BCC (orange) (p< 0.05). BCC, basal cell carcinoma; HR, high-risk; LR, low-risk.

points of malignant tumor. Apart from texture, morphological, and

topological features, we investigated the TME signature difference

between BCC and TE and found more stromal nuclei were found

within tumor regions than BCC. Correspondingly, TE pathologically

has a delicate stroma with abundant spindled cells in comparison to

BCC with a myxoid stroma.5 The most indicative features which rep-

resent a stroma enriched spindle cells are S-T_HarmonicCentrality and

S-S_Degrees.

Or when we confirm the diagnosis of BCC, the risk grading classi-

fier can stratify BCC intoHR and LR subtypewith AUC 0.920± 0.0579

in internal dataset, and 0.839 ± 0.0176, 0.825 ± 0.0153 in two exter-

nal cohorts. The performance of the risk stratification classifier varied
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when applied to external test datasets, showing instability of this clas-

sifier. The reason for this phenomena might be associated with high

histologic or nuclei variations of HR-BCCs and laboratory differences

in terms of tissue preparation and staining processes.24

Likewise, in our study, we also characterized the nuclear and

TME signatures of HR-BCC and LR-BCC, and identified the indica-

tor associated with risk grading of cancer which may be applied for

prognosis prediction in the future. Discriminative nuclear texture fea-

tures demonstrated nucleus staining in HR-BCC may be deeper than

that of LR-BCC, since the nuclear staining may be correlated with the

differentiation degree of the tumor cells, and the deeper the nucleus

staining represents the relatively poor differentiation the tumor cells

are.25 We also found the nucleus in LR-BCC had a regular shape in

comparison to HR-BCC which may also associate with differentiation

ability of tumor. The more differentiated the tumor is, the more regu-

lar the nucleus shape is or the less the nucleus pleomorphism is. The

indicator of a regular nuclear shape is Solidity and this feature may

be a one of hallmarks of low grade cancer.25 With regard to topo-

logical features, tumor nucleus in LR-BCC was prone to cluster and

well-circumscribed, while the tumor nucleus in HR-BCC tended to dis-

perse which is consistent with the pathologic manifestation.26 The

indexes to evaluate the degree of tumor dispersion or aggregation are

T-T_minEdgeLength, T-T_Coreness, T-T_Degrees andT-T_Betweenness

which also can be evaluation indexes of tumor risk grading. In addition

to nuclear texture, morphological and topological features, the TME

feature difference betweenHR-BCC and LR-BCCwere identified. One

TME feature, S-T_Degrees, indicated the tumor cells in LR-BCC are

more tightly connected to the fibroblasts. This TME feature suggested

the more abundant stromal nuclei within the tumor regions suggests

a lower tumor grade and supported the notion that cancer-associated

fibroblasts have tumor-suppressive functions.27

There are still several limitations to this deep learning pipeline

before it can be safely applied in daily clinical routines. The applicabil-

ity of the deep learning system remains theoretical. More basaloid cell

tumors need be inclusion in the dataset to develop an AI-based clinical

application with wide indications. More slides of HR-BCC and LR-BCC

should be trained to increase the stability of risk grading classifier.

In summary, the deep learning system could perform several rou-

tine pathologist tasks such as BCC differentiation and stratification.

Most importantly, we have identified differences of nuclear and TME

features within basaloid cell tumors and these discriminative features

may be applied for routine pathologic diagnosis workflow in the future.

Furthermore, this method could be easily extended to perform other

essential tasks such as prognosis prediction and identification the TME

signatures of BCC prone to recurrence.
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