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Abstract

Network pharmacology (NP) provides a new methodological perspective for understanding traditional medicine from a holistic
perspective, giving rise to frontiers such as traditional Chinese medicine network pharmacology (TCM-NP). With the development
of artificial intelligence (AI) technology, it is key for NP to develop network-based AI methods to reveal the treatment mechanism of
complex diseases from massive omics data. In this review, focusing on the TCM-NP, we summarize involved AI methods into three
categories: network relationship mining, network target positioning and network target navigating, and present the typical application
of TCM-NP in uncovering biological basis and clinical value of Cold/Hot syndromes. Collectively, our review provides researchers with
an innovative overview of the methodological progress of NP and its application in TCM from the AI perspective.
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ORIGIN AND DEVELOPMENT OF TCM-NP
Traditional Chinese medicine (TCM) embodies the integration of
clinical practice experience and theory of the Chinese nation
in the prevention and treatment of diseases for thousands of
years. TCM regards the human body as a complex system, and
is characterized by its holistic perspective and treatment based
on syndromes differentiation [1]. The major challenges for TCM
maintain as how to uncover the biological basis of the human
complex system, how to further elucidate various TCM terms,
including syndromes and herbs/formulas, and their relationships,
and how to derive new findings to facilitate precision medicine
according to TCM rationales. Consistent with the holistic per-
spective of TCM, with the rise of interdisciplinary subjects such
as bioinformatics, system biology and computational biology, the
research paradigm of modern medicine has gradually shifted
from ‘reductionism’ to ‘holism’, and the research strategy of
disease diagnosis and treatment has also shifted from ‘single
disease, single target and single drug’ to ‘multi-target and sys-
tematic regulation’, emphasizing the importance of analyzing the
mechanism of complex diseases from the perspective of systems
biology [2, 3]. In this context, TCM-NP arose as the crystallization
of cross-innovation between traditional and modern medicine,
information science and system science [4, 5]. TCM-NP-related

hypotheses and ideas were proposed as early as in 1999 [6],
and further developed in 2002 [7], earlier than the concept of
‘network pharmacology’ proposed in 2007 [8]. The characteristics
of TCM-NP are highly consistent with the holism of TCM and the
principle of treatment based on syndrome differentiation, which
has become a frontier and hot spot in the field of traditional
medicine research [4, 5, 9].

The emergence and development of artificial intelligence (AI)
and multi-omics sequencing technologies provide a new bonding
point and support for TCM-NP in promoting the precision TCM.
From the methodological perspective, the key issue of NP is to
transform the machine learning (ML) paradigm that focuses on
object’s features into that of learning relationships among fea-
tures, which could increase the object’s feature space to realize
feature enhancement [10]. In this regard, AI methods, especially
deep learning-based ones, have made great strides in automati-
cally learning feature representations from biomedical data and
thus are playing an increasingly important role in the field of
TCM-NP [11]. According to the Web of Science (WOS) statistics,
as the rapid development of AI technology, the number of TCM-
NP-related studies has increased steadily and rapidly, which has
doubled since 2017. In particular, with the release of the first
monograph [5] and standard [4], TCM-NP has ushered in new
development opportunities in the era of AI and big data [12].
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Figure 1. Network target concept and key methodological framework for TCM-NP. The network target emphasizes that the relationships between TCM
herbs/compounds and TCM syndromes/diseases are reflected in the regulatory effects of TCM herbs/compounds on disease-related molecular network
modules. From a methodological perspective, AI-based identification of potential network target can be categorized into ‘network relationship mining’,
‘network target positioning’ and ‘network target navigating’.

In this review, we will summarize TCM-NP-involved AI methods
into three categories: network relationship mining, network target
positioning and network target navigating, where representative
methodological cases and state-of-the-art (SOTA)AI methods are
introduced. We also present the typical applications of TCM-NP
in Cold/Hot syndromes (a.k.a. TCM ZHENG), two basic concepts of
TCM, for dissecting network relationships and their clinical value
among syndromes, diseases and TCM formulas.

METHODOLOGIES OF TCM-NP
Network target concept and theory
The main goal of the precision TCM is to reveal the mecha-
nisms of action (MoA) of TCM formulas/drugs on diseases/syn-
dromes, which could be briefly viewed as dissecting the rela-
tionships between diseases/syndromes and drugs/formulas [12].
From the perspective of TCM-NP, this goal involves systematically
understanding the multilevel relationships between macro-level
objects, including diseases/syndromes, traditional Chinese and
Western drugs, and micro-level ones, including cells, genes and
proteins, and identifying the network elements that can system-
atically couple these macro- and micro-level objects. This is in line
with the focus of NP [8] and network medicine [13]. In this regard,
the concept and theory of ‘network target’, proposed by Shao Li,
is considered one of the earliest and most representative theories
for understanding the MoA of TCM from the holistic perspective.
This theory characterizes the main tasks of TCM-NP research:
to construct disease or syndrome-related biological networks; to
further infer the key modules of TCM formulas or components
for intervening diseases or syndromes based on the biological
network, as shown in Figure 1.

From the methodological perspective, AI-based identification
of potential ‘network target’ that characterizes the relationships
between diseases/syndromes and drugs/formulas can be catego-
rized into three categories: (i) AI-based mining of relationships
between macro- and/or micro-level objects from prior knowledge
or omics data, which can be referred as ‘network relationship
mining’ and viewed as the basis of TCM-NP methodologies. This
issue could find echoes of natural language processing (NLP)

tasks and network embedding tasks; (ii) AI-based new network
relationships inference, which can be referred to as ‘network tar-
get positioning’. This tissue mainly includes ‘disease/syndromes–
gene’ relationships prediction and ‘herb/natural products–target’
relationships prediction. (iii) AI-based identification of the net-
work modules (i.e. network targets) connecting TCM drugs/formu-
las with diseases/syndromes based on the inferred network rela-
tionships, which referred to ‘network target navigating’. Examples
of network navigating methods include disease–disease relation-
ships analysis for syndrome differentiation, disease-drug relation-
ships analysis for drug repurposing/discovery and formula recom-
mendation, and drug–drug relationships analysis for drug syner-
gistic effects and MoA of formulas. Of note, these above methods
have been integrated into the UNIQ system (Using Network target
for Intelligent and Quantitative analysis on drug actions, UNIQ),
the AI-based R&D platform our group has established to develop
various new drugs [14, 15, 16, 17]. In the following three sections,
we will provide an overview of the progress of AI-based methods
involved in TCM-NP, where we also emphasize the role of SOTA
AI-based methods, including graph neural networks (GNNs) and
network embedding, summarized as Table 1.

Network relationship mining
Network relationships mining from prior knowledges
With the accumulation of biomedical knowledges, AI-based min-
ing of relationships between drugs/formulas and diseases/syn-
dromes from prior knowledges is the premise and foundation of
TCM-NP, and has emerged as a current research topic of great
interest. From a network perspective, the network relationships
mainly involve disease/syndrome-level, biological molecule-level
and drug/formula-level (Figure 2). At the drug/formula-level, NLP
techniques are mainly used to mine the relationships between
different clinical symptoms related to diseases/syndromes from
prior knowledges. According to the TCM clinical diagnosis and
treatment theory, we could not only infer the similarities of clin-
ical symptoms by mining clinical phenotype entries [18], but
also infer the relationships between syndromes and phenotypes
[19–23]. At the level of drugs/formulas, the structural similarity
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Table 1: Representative AI algorithms/data resources involved in TCM-NP

TCM-NP
methodologies

Categories AI algorithms/data resources Brief description Publish
year

Ref.

Network relationship
mining

Prior
knowledge-derived

KEGG Relationships among genes and genomes 1999 [32]
STRING Relationships among proteins 2003 [31]
TCMGeneDIT Relationships among herbs, genes and diseases 2008 [37]
DrugBank Relationships between drugs and targets 2008 [39]
PubChem Relationships among small molecules 2009 [24]
HIT Relationships between herbal active ingredients

and targets
2010 [36]

DrugCentral Relationships between drugs and targets 2016 [38]
ChEMBL Relationships among bioactive molecules with

drug-like properties
2019 [25]

ETCM Relationships among herbs contained in formulas
and their properties

2019 [28]

SymMap Relationships among TCM-related symptoms 2019 [34]
DrugCombDB Relationships among drugs 2020 [27]
HERB Relationships among herbs contained in formulas

and their properties
2021 [29]

BioGRID Relationships among proteins 2021 [33]
CDCDB Relationships among drugs 2022 [26]
TCMBank Relationships among herbs contained in formulas

and their properties
2023 [30]

Omics data-derived LMMA Refined gene network combined literature and
micro-array gene-expression data

2006 [49]

Regression Biological network of Hot syndrome and Cold
syndrome

2013 [40]

Bayesian inference Multicellular function and disease with human
tissue-specific networks

2015 [50]

Single-cell Transcriptomics Single-cell transcriptome network underlying
gastric premalignant lesions and early gastric
cancer

2019 [44]

Nonlinear ordinary differential
equations/ regulatory factors

Gene regulatory or signal transduction
relationships

2020 [51]

scGNN GNNs for representation of gene expression and
cell–cell relationships

2021 [52]

Network relationship
analysis and
representation

Literature co-occurrence Co-occurrence network between syndromes-level
and symptoms-level.

2014 [60]

AMNE Deep auto-encoder model for formula-symptom
network construction

2019 [63]

MHADTI Heterogeneous information network embedding
for drug–target interactions prediction

2022 [67]

GLIM Graph embedding algorithm for heterogeneous
biological network construction

2022 [65]

Network target
positioning

Disease/syndrome-
related gene
prediction

CPHER Logistic regression-based method for disease-gene
prediction

2008 [14]

PTsGene Network topology-based method for
diseases/syndromes-genes prediction

2020 [77]

CIPHER-SC Graph convolution network for disease-gene
prediction

2020 [78]

Target prediction of
compound in TCM

DrugCIPHER Regression based method for compound-related
targets prediction

2010 [15]

idTRAX ML method for effective anti-cancer drug targets 2019 [80]
HGNA-HTI Heterogeneous GNN for herb-target interactions

prediction
2021 [82]

DrugBAN Bilinear attention network for drug–target
prediction

2023 [87]

Network target
navigating

Disease–syndrome
relationships
navigating

Literature co-occurrence Relationships between syndrome-level and
symptom-level.

2014 [60]

CIPHER Relationships between spleen qi deficiency
syndrome and digestive diseases

2020 [92]

RNA-seq, DIA-based proteomics,
and untargeted metabolomics

Biological basis of PBS syndrome in CHD 2022 [42]

Herbs/formulas–
disease relationship
navigating

SVM, MLR, RF and Fully
Connected Neural Network

ML and deep learning methods for optimum
formulas for Alzheimer’s disease

2019 [100]

FordNet Convolution neural network for formula
recommendation with phenotype and molecule
information

2021 [99]

KDHR Graph convolution network for herb
recommendation with symptom and herb features
representation

2022 [95]

TCM formula-related
MoA navigating

DMIM Network topology method for identifying useful
relationships between herbs in formulas

2010 [109]

Random walk with restart (RWR) Efficacy of Si Ni San (SNS) intervention in NAFLD 2021 [104]
Graph embedding and graph
convolutional network

Reusable drug combination for COVID-19 from 480
Chinese herbal medicines.

2022 [112]
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Figure 2. Framework of network relationship mining. Network relationships among phenotypes, cells, molecules and drugs, can be mined from prior
knowledges, literature and omics data with methods categozied as single-layer and multilayer network construction.

relationships between the components contained in formulas are
mainly mined from databases such as PubChem [24], ChEMBL [25],
CDCDB [26] and DrugCombDB [27], as well as the relationships
between the herbs contained in formulas and their properties
(e.g. relationships between Cold/Hot herbs) mined from TCM-
related databases such as ETCM [28], HERB [29] and TCMBank
[30]. At the molecular level, relationships such as protein–protein
interactions (PPI), signal and transcriptional regulation between
molecules are mainly mined from databases such as STRING
[31], KEGG [32] and BioGRID [33]. The theory of TCM emphasizes
‘treatment based on syndrome differentiation’ and provides treat-
ment plans based on patients’ different syndromes and pheno-
typic characteristics, so there are also relationships between syn-
dromes/phenotypes and the efficacy of herbs/formulas, such as
the relationships between syndromes and herbs/formulas mined
from databases such as SymMap [34] or based on the princi-
ple of co-occurrence in literature [35]. At the same time, it is
worthy of our attention for the relationships between macro-
and micro-level objects. Thus, the network relationships also
include those between compounds or natural products and their
relevant molecular targets mined from databases such as HIT
[36], TCMGeneDIT [37], DrugCentral [38] and DrugBank [39]. These
network relationships mined from literature or public databases
provide a biological basis for understanding TCM from a systemic
perspective and laying a data foundation for conducting in-depth
methodological analysis using AI methods.

Network relationships mining from omics data
Considering the abundant features embedded in omics data, it is
possible to infer diverse relationships, especially those among
micro-level elements, including cells, genes and proteins. In
recent years, a large amount of omics data related to TCM
have been accumulated, including bulk transcriptomics [40, 41],
metabolomics [42, 43] as well as single-cell omics [44–46] related
to specific herbs and/or TCM syndromes (Figure 2). From a data
perspective, computational methods related to mining network
relationships from omics data are similar for both TCM and
Western medicine. Therefore, AI-based network relationships
mining of omics data could also be widely applied in the field
of TCM-NP.

Taking the transcriptomics as an example, the common
method to mining potential relationships is to construct the
co-expression network using canonical ML algorithms, such
as statistical analysis [47] or regression [48] . For example, Li
et al. [40] applied the ML-based strategy that integrated gene
co-expression patterns with network topological features, to
construct the molecular network underlying Cold and Hot
syndrome, from which a series of syndrome-related biomarkers
were identified. Furthermore, considering the noise within
transcriptomics data, several studies have utilized Bayesian
models to integrate omics data with prior knowledge to infer
more reliable network relationships [49, 50]. For instance, Li et al.
combined literature and micro-array gene-expression data to
refine a gene network [49]. Greene et al. proposed a data-driven
Bayesian inference framework that integrated hierarchy-aware
knowledge and data compendium, to construct diverse human
tissue-specific networks to understand multi-cellular function
and disease [50]. In addition to gene co-expression relationships,
several studies have inferred potential causal relationships from
transcriptomic data by integrating gene regulatory or signal
transduction relationships from prior knowledges, thus providing
computational inference for identifying upstream regulatory
factors [51].

With the development of single-cell sequencing technology, a
large amount of single-cell transcriptomics data related to TCM
have been accumulated [44–46], providing an unprecedented data
resource for network relationship mining. For example, Zhang
et al. [44] constructed a single-cell transcriptomics atlas from
gastric premalignant and early-malignant patients with Hot syn-
drome. Given that drop-based single-cell sequencing technology
enable to simultaneously generate transcriptomic profiles for
thousands of cells, it provides an unprecedented opportunity
for deep learning-based cell-level network analysis [52–56] and
inferring cell-specific gene regulatory networks (GRNs) [57]. For
example, Wang et al. introduced a single-cell graph neural net-
work (scGNN) that used GNNs to establish and aggregate cell–cell
relationships which provided an effective representation of gene
expression and cell–cell relationships [52]. Although the current
AI-based research for exploring network relationships from TCM-
related omics data is still insufficient, these omics-based network
mining methods will greatly expand our understanding of TCM
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biology at the systematic level and lay a solid foundation for the
development of TCM-NP methodology.

Network relationship analysis and representation
Analysis and representation of multilayer network relationships
are also important in network relationship mining. In this regard,
AI-based methods still play an increasingly important role. In
terms of disease/syndrome-related network relationship anal-
ysis, the similarity of network modules composed of different
phenotypes belonging to the same syndrome or different syn-
dromes of the same disease is evaluated by network topology-
based methods [58–60], i.e. relationships between phenotype-
level and disease/syndrome-level. For example, Zhou et al. [60]
constructed a clinical phenotype network (CPN) to investigate the
promiscuous boundary of syndromes and the co-occurrence of
symptoms. In term of herb/formula-related network relationship
analysis, the similarity of network modules composed of different
herbs belonging to the same formula can be evaluated by inte-
grating relationships between herb targets [61]. It is also possible
to evaluate the similarity between network modules composed
of formulas and the clinically intervened syndromes [62, 63].
Ruan et al. [63] proposed a novel deep auto-encoder model called
AMNE to automatically detect the specific herbs for symptoms in
TCM formulas. In addition, the network analysis of diseases/syn-
dromes and herbs/formulas demonstrates that network nodes of
multilevel have modular properties and that there are similar
relationships between network modules of different levels. This
rule is an important implication of the ‘network target’ theory and
serves as the basis for the development of methodology for TCM-
NP.

As the size and heterogeneity of network nodes increase, char-
acterizing and low-dimensional representation of the network
are key aspects of network relationship mining. The core of net-
work representation is to vectorize or low dimensionally repre-
sent the network nodes, thereby analyzing the potential relation-
ships of different network nodes from a systematic perspective.
In this aspect, network embedding methods such as node2vec
have become the main tools for network representation [63–
71]. For example, Tian et al. [67] achieved accurate predictions
of drug-targets interactions by low-dimensional representation
and fusion of features. Furthermore, Hou et al. [65] integrated
diseases/syndromes phenotypes, tissues, cell types and molecular
interaction data and established a human multilevel heteroge-
neous biological network based on a graph embedding algorithm,
achieving high performance in multiple tasks.

Network target positioning
The core of AI-based network target positioning is to solve the
following two important problems: (i) how to predict genes related
to phenotypes/syndromes; and (ii) how to predict targets related
to herbs/formulas, as shown in Figure 3.

Disease/syndrome-related gene prediction
The syndrome can be regarded as a personalized clinical pheno-
type characterization. Individualized clinical phenotype-related
gene prediction is an important way to achieve personalized diag-
nosis and treatment. The core idea of the phenotype/syndrome-
related gene prediction algorithms based on biological networks
is to use the ‘multilevel modular relationship’ law and predict
based on the network topology features. In this regard, traditional
ML methods such as regression [14]and random walk (RW) [72,
73] were first applied to phenotypes/syndromes-gene prediction.
For example, the CPHER algorithm [14] proposed by Wu et al. is

considered one of the most representative algorithms [74], which
provides a paradigm for research on AI algorithms related to
macro- and micro-level biological networks. The CIPHER algo-
rithm has been successfully applied to the mechanism analysis of
complex diseases [40, 75, 76]. Inspired by the CIPHER algorithm, a
series of network-based gene prediction algorithms for syndrome-
related phenotypes or clinically relevant symptoms have been
proposed. For example, PTsGene [77] combined TCM clinical phe-
notypes with experimental results to establish a TCM symptoms-
genes dataset and achieved high-precision prediction of diseases-
syndromes genes. In recent years, with the proposal of GNN learn-
ing algorithms, it has gradually become a hot topic and achieved
excellent performance for considering the phenotype-molecule
networks as complex graph structures for learning and inference.
For example, CIPHER-SC [78] fused single-cell information to build
a multilevel biological network to achieve disease gene prediction
based on a graph convolution neural network. Collectively, these
studies demonstrate that AI-based network analysis models could
address the issue of gene predictions for TCM syndrome, paving
the way to understand the biological basis of complex TCM terms.

Target prediction of herb compounds
Similar to genes prediction of diseases/syndromes, it is also a
prerequisite to revealing the pharmacology of TCM through accu-
rately predicting the related targets of herbs/formulas and their
compounds. From the methodological perspective, the predic-
tion of compound-related targets can be divided into traditional
ML prediction methods based on network topology analysis (e.g.
regression) [15–81] and prediction methods based on deep learn-
ing models [64, 69, 82–89]. Among them, the drug-target prediction
algorithm DrugCIPHER [15] proposed by Zhao et al. is a represen-
tative algorithm that applies network-based regression analysis
to achieve high-precision prediction of compound-related targets.
In addition, genomics data have also been integrated into the
network-based analysis to achieve high-precision predictions [80]
[81]. Compared with traditional ML methods, deep learning mod-
els can integrate a large amount of heterogeneous information
such as drug similarity structure, treatment information of dis-
eases and drug activity to conduct more complex drug-targets
prediction tasks while improving prediction accuracy [64, 69, 82,
85–89].

Network target navigating
TCM has the significant characteristics of ‘multiple components,
multiple targets and systemic regulation.’ Another key challenge
in deciphering the biological basis of TCM is how to understand
the relationships between various TCM terms from the per-
spective of biological networks, i.e. network target navigating,
including the disease–syndrome relationships, herb/formula–
disease relationships, the compatibility rules of formulas and
the synergy rules of their components. In this regard, it is an
important methodology for the network modularity analysis,
where traditional ML and deep learning models play an important
role (Figure 3).

Disease-syndrome relationships navigating
Both phenotypes and syndromes are clinical description of the
complex human body. From a macro perspective, by analyzing the
network topology similarity between disease-related phenotypes
and syndrome-related clinical features, the relationships between
diseases and syndromes can be revealed [60, 90]. In this regard,
Zhou et al. [60] established a CPN, providing a basis for personal-
ized diagnosis and treatment of TCM. From a micro perspective,
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Figure 3. Framework of network target analysis. The network target positioning and navigating analysis mainly involve using classical ML-based
methods and deep learning-based methods to dissect the multilayer biological networks involving phenotype, cells, molecules and drugs.

we can achieve the integration of disease diagnosis and syndrome
differentiation by performing relevant gene prediction or omics
data analysis based on the disease phenotypes and syndrome
characteristics, followed by the construction of similarity metrics
and correlation analysis based on biological molecular networks
[40, 42, 65, 91–93, 94]. For example, mining the relationships
between Cold/Hot syndromes and neuro-endocrine-immune
(NEI) biological networks [91], analyzing the biological basis of
spleen deficiency syndrome and its relationships with digestive
diseases [92], analyzing the biological basis of PBS syndrome in
coronary heart disease (CHD) and establishing diagnostic markers
to achieve ‘same disease with different treatments’ [42].

Herb/formula–disease relationship navigating
Navigating the herb/formula–disease relationships in TCM-NP
mainly refers to network-based precision recommendation of
herb/formulas in the context of specific diseases or syndromes.
Usually, the AI-based formula recommendation methods infer
relationships between herbs/formulas modules and specific
symptoms/syndromes based on the macro-level information
from prior knowledges [95–98]. With the accumulation of
multi-omics and micro-level network analysis, more accurate
recommendation methods have been proposed by integrating
herbs/formulas-target network and disease/syndrome-gene
network. For example, Zhou et al. proposed an intelligent formula
recommendation system FordNet [99] integrating multilevel
information, which can be considered one of the representative
works of integrating macro and micro information. Moreover, new
indications of TCM formulas could also been discovered through
inter-module association analysis based on the herbs/formulas-
target network and the disease/syndrome-gene network [100–
103]. For example, Chen et al. [100] utilized a NP-based approach
to investigate TCM candidates that can dock well with multiple
targets and successfully found the optimal TCM formula for
treatment of Alzheimer’s disease.

TCM formula-related MoA navigating
The general research framework for the TCM formula-related
MoA navigating with TCM-NP includes: identification of active
ingredients from the TCM formula; construction of the network

underlying the disease/syndrome that TCM formula intervenes;
discovery of the network target of the active ingredients of the
TCM formula based on the disease/syndrome-related network.
To date, this framework has been widely applied in the MoA
analysis of many formulas [104–107]. Moreover, studying the
compatibility law of herbs/formulas is also an important issue
in TCM-NP. The essence of studying the compatibility law of
formulas is also to explore the modular law of component–target
relationships, and to further establish the association rules of
formulas by identifying the herb–herb relationships [108–112].
Li et al. [109] established a distance-based mutual information
model (DMIM) to measure the interaction between herbs and
constructed a herb network, thus identifying useful relationships
between herbs in many formulas. In addition, Yang et al. [112]
discovered a reusable drug combination for COVID-19 from 480
Chinese herbal medicines. In summary, analyzing the herb–herb
relationships between herbs/formulas modules is achieved by
mining the MoA of multiple components in herbs/formulas, as
well as through the application of AI methods for mining the
compatibility rules of formulas.

REPRESENTATIVE APPLICATION OF TCM-NP
IN COLD/HOT SYNDROMES
Cold/Hot syndromes are fundamental concepts in TCM, which
has been widely applied in personalized clinical practice. In this
section, we would present the representative application of TCM-
NP in Cold/Hot syndromes, where we would emphasize the bio-
logical basis of Cold/Hot syndromes and its potential in precision
diagnosis and treatment of diseases, as shown in Figure 4.

Cold/Hot syndromes are characterized by a series of clinical
features in patients. Revealing syndrome-related biological basis
involves understanding the micro-level biological molecules
related to macro-level clinical features. As early as 2007, Li
et al. firstly utilized literature mining and network topology
analysis methods to construct the molecular network underlying
Cold/Hot syndromes in the context of the NEI system [91].
It revealed that the Cold syndrome-related sub-network was
primarily characterized by hormone-related factors, whereas
the Hot syndrome-related sub-network was dominated by
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Figure 4. Construction, analysis and application of TCM-NP in Cold/Hot syndromes and herbs. With collection and dissection of Cold/Hot syndrome-
related multi-omics data, the Cold/Hot syndrome-related molecular network has been firstly constructed to facilitate the precise diagnosis and therapy
for gastric diseases [113, 115, 116].

immune-related factors, and these two networks are connected
by neuro-transmitters. This study created a precedent to reveal
biological basis of TCM syndromes by using TCM-NP approaches.
Subsequently, by integration of the network target positioning
algorithm CIPHER [14] and Cold/Hot syndrome-related tran-
scriptomics data, Li et al revealed that the Cold/Hot syndromes
involved the network imbalance underlying metabolism-immune
regulation and identified syndrome-related biomarkers, including
Cold syndrome-related ones, such as LEP and NOS1, and Hot
syndrome-related ones, such as CCL2 [40]. Thus, these findings
indicated that the issue of the biological basis of Cold/Hot
syndromes could be addressed with TCM-NP methodologies.

Then, network target navigating analysis could be used to
understand the relationships between Cold/Hot syndrome-
related genes and the occurrence and development of diseases,
thereby guiding individualized disease diagnosis and treatment.
Specifically, network target navigating analysis based on network
topology can be used to analyze the network relationships
between Cold/Hot syndrome-related genes and disease-related
molecules, from which network modules could be identified
and further analyze their clinical value [113]. Then, a deep
learning model was established, which indicated that the
tongue coating image features related to Cold/Hot syndromes
exhibited predictive value for early gastric cancer risk [114].
In addition, Cold/Hot syndrome-related network nodes might
show associations with tumor development and progression. For
example, by integrating network-based prediction with omics
data, the pancreatic cancer prognosis-related biological network
has been established, where several nodes involved in Hot-related
TGFbeta signaling pathways have been uncovered [75]. Thus,
these studies highlight the important role of understanding
Cold/Hot syndromes in facilitating disease precision diagnosis
and treatment, by combining TCM-NP-based computational
analysis with biological and clinical experiments.

Another important issue of revealing the biological network
basis of Cold/Hot syndromes is to guide the precise use of TCM

formulas. According to the principle of syndrome differentiation
and treatment, the use of TCM formulas in different populations
should be based on the patient’s personal syndromes and clini-
cal characteristics. Therefore, through network target navigating
analysis, which is the analysis of the topological relationships
between the molecular network related to Cold/Hot syndromes
and the target networks of Cold/Hot herbs, we can reveal the
MoA of different Cold/Hot herbs and guide their precise use. As
expected, through network topology analysis, we found that the
Cold syndrome-related herbs tended to be enriched in the Hot
syndrome-related network modules, while the Hot syndrome-
related herbs tended to be enriched in the Cold syndrome-related
network modules [91]. This distribution pattern is consistent with
the principle of ‘Warming the Cold and Cooling the Hot’ in TCM.
In addition, combining network analysis with experimental veri-
fication can also reveal the pharmacological mechanisms of for-
mulas, guiding individualized treatment for patients. For example,
based on gastritis Cold/Hot syndrome-related biological network,
we uncovered different MoAs for two representative TCM formu-
las for the treatment of gastritis, WeiFuChun (WFC) and MoLu-
oDan (MLD),where WFC [115] focused on regulating inflamma-
tory pathways, while MLD [116] focused on inhibiting fatty acid
metabolism, which would aid precision treatment of gastritis in
clinical practice.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES
TCM emphasizes treatment based on syndrome differentiation
and the usage of formulas, and has the characteristics of holistic
regulation. TCM-NP, as an emerging interdisciplinary discipline,
has been widely accepted in TCM research and has been widely
used in the research of various traditional medicines around the
world. In the era of AI algorithms and multi-omics, TCM-NP has
ushered in new development opportunities and is expected to lead
to some breakthroughs.
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Importantly, we would present several profound and insightful
perspectives for the development of TCM-NP methodologies in
the era of AI and multi-omics technologies, including: (i) Network-
based integration with AI techniques; (ii) Deep network relation-
ships mining; (iii) Network target quantitative positioning and
navigating; (iv) Developing deep interpretable network pharma-
cological models.

Firstly, the integration of multi-modal data with AI techniques
is an important research direction and hotspot in the NP method-
ologies. In summary, AI-based network integration analysis
mainly includes the following three aspects: integration of multi-
omics data, integration of omics data with prior knowledge and
integration of multi-source heterogeneous biological networks. As
for the first aspect, it mainly involves using biological networks to
mathematically represent multilevel information within omics
data, such as cell–cell, cell–molecule and molecule–molecule
relationships. For example, the Scissor algorithm developed by
Sun et al. [117] could infer the ‘phenotype-cell’ relationships
by proposing a network regularized sparse regression model
on the correlation matrix that integrated phenotype-associated
bulk and single-cell expression data. In the future, we could
expect the emergence of TCM-related integration algorithms
with the accumulation of multi-omics data. As for the second
aspect, it is pivotal to perform network-based integration of
prior knowledge with omics data to reduce the effects of noise
and limited samples of omics data. In this regard, Bayesian
network is the commonly-used AI model that usually views
the knowledge-derived relationships as prior distributions, while
those omics-derived ones as posteriors. For example, Greene et al.
[50] utilized the Bayesian model to construct a tissue-specific
network with integrating tissue-level relationships from the Gene
Ontology database and co-expression ones from transcriptomic
data. In recent years, several deep learning models, including
transfer learning, have been employed to integrate relationships
between prior knowledge and omics data, such as Geneformer
[11]. As for the third aspect, although different biological
networks may represent heterogeneous information, they can be
mathematically modeled as adjacency matrices, and thus could
be integrated under unified AI algorithms, which provides the
possibility to integrate heterogeneous biological networks from
the NP perspective.

Secondly, Molecules are typically expressed in a tissue-specific
and even a cell type-specific manner, which demonstrates the
pivotal role of construction of tissues/cells-specific networks in
elucidating mechanisms of syndromes/diseases as well as MoA
of herbs/formulas. Thus, new AI methods are needed to system-
atically mine the tissue-level and/or cellular-level relationships
between phenotypes and molecules [118, 119]. For example, Chen
et al. [118] proposed a transfer learning framework to predict
cancer drug response at the single-cell level. scDEAL could infer
cell-specific network and interpret features related to drug resis-
tance by using the transfer learning models pre-trained on the
collected bulk and single-cell RNA-seq data. We hope that using
AI methods to deeply mine relationships between cells and cell-
type specific molecules with diseases/syndromes or formula/herb
intervention-related single-cell multi-omics data would be a new
perspective for understanding the MoA of TCM in NP.

Thirdly, we are keenly aware of the inevitability of the network
target mode moving toward quantitative research. Thus, it is
essential for TCM-NP to design quantitative indicators to measure
network target effects, including intervention dosages and drug
responses, and then propose AI models to quantitatively predict
network targets from the established network. In this regard,

the quantitative intervention model of drug combinations on the
diseases/syndromes biological network proposed early as 2015
[120] might pay way for the development of new quantitative AI
models.

Finally, traditional AI models are usually hampered by the
‘large scale, diverse modalities’ network data and model inter-
pretability. Therefore, we emphasize the importance of devel-
oping deep interpretable network relationship inference frame-
works, which aim to uncover network relationships among fea-
tures derived from multi-omics and multi-modal biological data
and identify the key network modules by integrating both macro-
and micro-level information [10]. The deep interpretable network
relationship inference framework offers two main advantages: (i)
the network hierarchy and nodes in the model possess clear bio-
logical implications, allowing for interpretable feature learning,
and (ii) the model not only learns the features of the network but
also their associations, thereby expanding the feature space and
facilitating the low generalization and insufficient interpretability
problems of AI-based methods in biological network. Moreover,
the rapid advancement of Language Model (LM) technologies,
such as Large Language Models (LLMs), has overcome the limita-
tions of computational resources and data volume, which might
help develop deep interpretable network relationship inference
models and facilitate the development of methodologies in NP.

Key Points

• We give an overview of the origin and development of
TCM-NP, and explain in detail the core theories and
methods of TCM-NP, especially the analysis of net-
work targets by integrating AI methods and multi-omics
sequencing technology;

• We summarize TCM-NP-involved AI methods into three
categories: network relationship mining, network target
positioning and network target navigating, where repre-
sentative methodological cases are introduced in each
category.

• We present the typical application of TCM-NP in
Cold/Hot syndromes (a.k.a. TCM ZHENG), two basic con-
cepts of TCM, for dissecting network relationships and
their clinical value among syndromes, diseases and for-
mulas.
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