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Abstract
HIV’s exceptionally high recombination rate drives its intrahost diversification, enabling immune escape and multi
drug resistance within people living with HIV. While we know that HIV’s recombination rate varies by genomic pos
ition, we have little understanding of how recombination varies throughout infection or between individuals as a 
function of the rate of cellular coinfection. We hypothesize that denser intrahost populations may have higher rates 
of coinfection and therefore recombination. To test this hypothesis, we develop a new approach (recombination ana
lysis via time series linkage decay or RATS-LD) to quantify recombination using autocorrelation of linkage between 
mutations across time points. We validate RATS-LD on simulated data under short read sequencing conditions and 
then apply it to longitudinal, high-throughput intrahost viral sequencing data, stratifying populations by viral load 
(a proxy for density). Among sampled viral populations with the lowest viral loads (<26,800 copies/mL), we estimate 
a recombination rate of 1.5 × 10−5 events/bp/generation (95% CI: 7 × 10−6 to 2.9 × 10−5), similar to existing 
estimates. However, among samples with the highest viral loads (>82,000 copies/mL), our median estimate is ap
proximately 6 times higher. In addition to co-varying across individuals, we also find that recombination rate and 
viral load are associated within single individuals across different time points. Our findings suggest that rather 
than acting as a constant, uniform force, recombination can vary dynamically and drastically across intrahost viral 
populations and within them over time. More broadly, we hypothesize that this phenomenon may affect other 
facultatively asexual populations where spatial co-localization varies.
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Introduction
Recombination is a key evolutionary driver, permitting or
ganisms to purge deleterious mutations and combine 
beneficial ones. These functions are critical in HIV 
(Onafuwa-Nuga and Telesnitsky 2009) where intrahost re
combination promotes viral diversification, immune es
cape (Ritchie et al. 2014), multidrug resistance (Kellam 
and Larder 1995; Moutouh et al. 1996; Nora et al. 2007) 
and the maintenance of genomic integrity in spite of an ex
ceptionally high viral mutation rate (King et al. 2008; Rawson 
et al. 2018). While average HIV recombination rates have 
been previously estimated on the order of 10−5/bp/gener
ation or higher (Shriner et al. 2004; Neher and Leitner 
2010; Batorsky et al. 2011), new investigations have revealed 
that this average fails to capture the full variation in recom
bination rate in multiple settings (Schlub et al. 2010; Smyth 
et al. 2014; Song et al. 2018). Because of recombination’s crit
ical role in HIV’s evolutionary success, it is important to in
vestigate the factors that underlie its variation.

Two processes govern HIV’s recombination rate: cellular 
coinfection and reverse transcriptase template switching 

(Fig. 1A). When multiple viruses co-infect the same cell, 
the virions emerging from that cell can contain two dis
tinct but copackaged viral genomes (as opposed to virions 
produced by singly infected cells which contain two iden
tical genomes) (Jung et al. 2002; Chen et al. 2009). When 
those virions infect new cells, template switching between 
the two copackaged genomes can result in a recombinant 
genome inheriting alleles from both parent strands 
(Panganiban and Fiore 1988; Hu and Temin 1990; Hu 
and Hughes 2012). Increased rates of coinfection should 
result in more virions with distinct copackaged genomes, 
in which recombination can create new viral genotypes, 
while increased rates of template switching should result 
in more recombination events per genome pair.

Variation in the template switching rate has already 
been recognized as an important mediator of viral recom
bination both in vitro and in vivo. Template switching and, 
by extension, recombination can be suppressed by de
creased sequence similarity between the two template 
strands (Balakrishnan et al. 2001; An and Telesnitsky 
2002; Balakrishnan et al. 2003; Nikolaitchik et al. 2011). 
This effect is dose dependent (An and Telesnitsky 2002; 
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Nikolaitchik et al. 2011) and extremely low levels of se
quence similarity (<63%) near fully block template 
switching and recombination, leading to a breakdown of 
genomic integrity (Rawson et al. 2018). Recent sequence 
context aware work from human-derived HIV-1 sequences 
has identified particular genomic positions as hot and cold 
spots for template switching and recombination, which 
impact the ways in which viral populations diversify 
(Moumen et al. 2001; Schlub et al. 2010; Smyth et al. 
2014; Song et al. 2018).

Despite its potential importance, we know little about 
how variation in coinfection rates impacts viral recombin
ation in vivo. While studies of HIV in mouse models and 
cell cultures have demonstrated that increased coinfection 
is associated with an increase in recombinant viruses (Levy 
et al. 2004), it is unknown if this effect persists among nat
urally occurring HIV infections in humans. We expect co
infection to be mediated by the abundances and locations 
of both viruses and the CD4+ T-cells they infect (Jung et al. 
2002; Chen et al. 2009). Therefore, we expect viral load—a 
proxy for overall viral abundance—to be related to the 
rate at which coinfection occurs, even if non-linearly. 
While previous studies have found a weak relationship be
tween viral load and coinfection rate in chronic infection, 
it is unclear how generalizeable this relationship is and 
what effect, if any, it has on viral recombination rate 
(Josefsson et al. 2011). Since viral load and CD4+ T-cell 
count vary across individuals and within them over time, 
we hypothesize that viral intrahost demography modu
lates coinfection rates and may therefore play an import
ant but previously uncharacterized role in determining 
the viral recombination rate in human hosts (Fig. 1B).

Existing statistical approaches to estimate recombin
ation rate have made this effect challenging to detect in 
vivo. Current approaches to estimate the HIV recombin
ation rate fall into two broad categories: identifying specif
ic breakpoints in sequencing data (Siepel et al. 1995; Maydt 
and Lengauer 2006; Song et al. 2018; Martin et al. 2020), or 

employing overall patterns of linkage disequilibrium to in
fer intrahost recombination rates (breakpoint-free) 
(Shriner et al. 2004; Neher and Leitner 2010; Batorsky 
et al. 2011). Both rely on the analysis of single genome 
amplification and sequencing data (Salazar-Gonzalez et 
al. 2008), which substantially limits sampling depth and 
makes quantitative comparisons across different viral 
load groups challenging. Although Song et al. (2018) found 
no differences in recombination breakpoint counts at dif
ferent viral loads, the number of breakpoints visible at any 
specific point in time is small which limits statistical power. 
While bulk-sequencing data enables deeper sampling than 
single genome sequencing, the relatively short reads com
monly used in bulk-sequencing protocols limit linkage 
measurement except between nearby sites. However, 
HIV’s high recombination rate results in significant break
down of genetic linkage even within the relatively short 
length of a typical bulk-sequencing paired-end read. 
Therefore, adapting breakpoint-free methods to work 
with bulk-sequencing data has the potential to more sen
sitively quantify the effects of recombination, even when 
stratifying datasets by viral load.

Here, we test for viral load-associated differences in re
combination rate through developing a new approach 
called recombination analysis via time series linkage decay 
(RATS-LD) which quantifies recombination rates from lon
gitudinal bulk-sequencing data. We validate that this 
method can successfully recover recombination rates in si
mulated short read paired-end data. To test for positive as
sociations between HIV viral loads and recombination rate, 
we apply RATS-LD to longitudinal intrahost HIV bulk- 
sequencing data from individuals with varying viral loads 
sequenced with careful controls for polymerase chain reac
tion (PCR) recombination (Zanini et al. 2015, 2017). We 
find that while HIV populations with viral loads in the low
est third of dataset (<26,800 copies/mL) have recombin
ation rates in line with previous estimates 
(1.5 × 10−5/bp/generation), populations with viral loads 

Fig. 1. Drivers of HIV recombination rate. A) Cartoon schematic of HIV replication cycle leading to recombination between distinct viral gen
omes. Steps that determine the rate of recombination are shown in bold. B) HIV populations with higher viral loads (lower box) may experience 
higher rates of viral coinfection and therefore higher rates of recombination than HIV populations with lower viral loads (upper box). C) Linkage 
decay patterns enable recombination rate estimation. D′ values quantify genetic linkage between pairs of SNPs at a given time point. Negative log 
ratios of D′ values (here termed linkage decay measures or LDMs) across two sampled time points are positively associated with the product of 
the time between sample points and distance between SNPs. The slope of this relationship can be used to estimate the recombination rate, ρ. We 
call this method RATS-LD.
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in the upper third (>82,000 copies/mL) have a median re
combination rate that is nearly 6-fold higher. Furthermore, 
within single individuals we observe patterns of viral load 
and effective recombination rate increasing concurrently. 
These findings demonstrate that recombination rate is 
not a static parameter, and intrahost conditions can medi
ate the strength of its effect both across and within indivi
duals over time. Since recombination mechanisms 
generally require that two genomes physically find each 
other in space, such contact-network mediated effects 
are also likely to occur in populations beyond HIV.

Results
Measuring Intrahost Recombination Rates Using 
Short Read Data
We developed an approach to leverage short read sequen
cing data to quantify recombination rates in longitudinally 
sampled intrahost viral populations. To do so, we exploit 
the decay in genetic linkage over time between pairs of sin
gle nucleotide polymorphisms (SNPs) with elevated D′ va
lues (Lewontin 1988). D′ quantifies the difference between 
the expected haplotype frequencies of two SNPs at linkage 
equilibrium and the observed haplotype frequencies, 
equaling 0 when the frequencies match and 1 when they 
diverge maximally. Many factors govern the equilibrium 
value of D′ in a population, including recombination, mu
tation, and genetic drift and draft (Kimura and Ohta 1971; 
Charlesworth and Charlesworth 2010). Linkage-increasing 
forces can elevate D′ between pairs of loci at specific points 
in time, but recombination will disassociate these linked 
mutations back towards linkage equilibrium. This disasso
ciation will be faster if the SNPs are separated by greater 
physical distances (d, measured in nucleotides), as the in
creased distance provides more opportunities for recom
bination events between the SNPs. Specifically, for a pair 
of segregating SNPs with elevated linkage, the linkage de
cay after a period of time Δt with a recombination rate 
ρ and no countervailing forces is given as follows (Hartl 
et al. 1997):

D′(t + Δt) = D′(t)e−ρdΔt. (1) 

At long time intervals, this approximation breaks down, 
failing to account for increases in linkage caused by muta
tion, selection and drift (Kimura and Ohta 1971; 
Charlesworth and Charlesworth 2010). However, over 
shorter timescales, equation (1) captures the temporal de
cay of D′ between two initially highly linked SNPs, and po
tentially permits estimation of ρ as follows:

Linkage decay measure (LDM)

= − log
D′(t + Δt)

D′(t)

􏼒 􏼓

= ρdΔt. (2) 

We compute the negative log ratio on the left-hand side of 
equation (2) (which we call the linkage decay measure or 

LDM) over many pairs of SNPs between multiple time 
points. We can then use these LDMs to derive an empirical 
relationship between the linkage decay and the time and 
distance separating each LDM’s corresponding pair of 
SNPs (Fig. 1C). The slope of this empirical relationship is 
the estimated recombination rate ρ̂. This approach, which 
we call recombination analysis via time series linkage decay 
(RATS-LD), is a generalization of existing methods for re
combination rate estimation (Neher and Leitner 2010) 
which permits application in short read sequencing data.

Validating RATS-LD on Simulated Data under 
Neutrality
RATS-LD relies on capturing differential rates of linkage 
decay at different distances within a given time interval 
to estimate the recombination rate. Because it relies on 
an approximation [equation (1)] that diverges from the 
expected linkage behavior at long time-scaled distances, 
we first sought to assess if RATS-LD could accurately esti
mate ρ given the sampling time intervals (150 to 300 gen
erations), detectable distances between SNPs (1 to 400 bp), 
and evolutionary dynamics observed in longitudinal viral 
sequencing studies (Shankarappa et al. 1999; Zanini et al. 
2015). We simulated intrahost evolution (initially neutral
ly) with a range of different recombination rates and tested 
RATS-LD’s ability to recover these rates. We centered our 
simulated recombination rates around existing HIV intra
host estimated recombination rates [ ρ = 2 × 10−6 to 10−3 

(Shriner et al. 2004; Neher and Leitner 2010; Batorsky et al. 
2011), see Materials and methods for full simulation and 
sampling details]. In these simulations, we observed that 
within our sampling times, the relationship between the 
linkage decay measure for a pair of initially highly linked 
SNPs (D′(t) > 0.2) and the time-scaled physical distance 
(dΔt) initially increased, reflecting the breakdown of 
linkage at greater distances. This suggests that over the ex
amined sampling time intervals, nearby sites contain infor
mation about recombination driven linkage breakdown. 
Following this initial increase, the linkage relationship 
asymptotically approached a given LDM at large dΔt values, 
indicating a return to background linkage levels. The rate at 
which this asymptote is approached depends strongly on 
the recombination rate (Fig. 2A, supplementary Fig. S1, 
Supplementary Material online).

To account for this asymptotic return to equilibrium, 
we modified our approach for estimating ρ by fitting a 
function of the form

􏽤LDM(dΔt) = c0 + c1(1 − e−c2dΔt). (3) 

The behavior of 􏽤LDM near dΔt = 0 represents the portion 
of the curve shaped most strongly by recombination- 
driven linkage breakdown, as opposed to population equi
librium linkage levels which are governed by several forces 
in addition to recombination. Therefore, in analog to using 
the slope of equation (1), we use the derivative of 􏽤LDM 
with respect to dΔt at 0 as our estimator of ρ, and find 
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that it recaptures the true recombination rate in simulated 
data from neutrally evolving populations (Fig. 2B). We 
noted that estimation at high or low values of ρ was biased 
downward or upward, respectively.

This minor bias emerged due to challenges fitting link
age decay curves with limited paired-end data in scenarios 
where the degree of linkage breakdown on the sampling 
timescale returned too quickly or too slowly to equilibrium 
to accurately measure the rate. To demonstrate that the 
slope of the linkage decay measure at 0 does indeed recap
ture the true recombination rate, we fit linear relationships 
between dΔt and the linkage decay measure for subsets 
of the data near dΔt = 0 (i.e. precurve saturation). We 
found that these linear fits accurately recaptured the 
true recombination rate when only presaturation data 
was included in the fit (supplementary Figs. S2 and S3, 
Supplementary Material online). However, the linkage de
cay curves saturate at different dΔt for different values of ρ, 
rendering these linear fits unsuitable when the true recom
bination rate is unknown (Fig. 2A and supplementary Fig. 
S3, Supplementary Material online). In contrast, the 
curve-fitting approach can be applied without a known 

dΔt saturation point. For low recombination rates, the 
linkage decay curves do not saturate in the time-scaled dis
tances available from the relatively short simulated reads 
(all pairs of SNPs less than 700 bp apart) (Fig. 2A). As a re
sult, RATS-LD underestimates the asymptote of equation 
(3), which results in a slight overestimation of ρ (Fig. 2B). 
Among very high recombination rates, little data is avail
able before curve saturation, resulting in challenges fitting 
the behavior of equation (3) near dΔt = 0 and underesti
mation of ρ. For full details on how these fits were per
formed, see Materials and methods. See Discussion for a 
description of best practices for assessing whether or not 
a RATS-LD fit should be considered reliable.

Despite the challenges of quantifying the recombin
ation rate at more extreme ρ values, we found that 
RATS-LD could readily discriminate between differences 
in recombination rates in simulated data, particularly in 
the range of previously estimated HIV recombination rates 
(10−5 to 10−4). We assessed this in two ways: first, we com
pared RATS-LD estimates (ρ̂ values) across pairs of simula
tions and checked if the simulation with the higher true 
ρ also had the higher estimated ρ̂ (Fig. 2C and D). In the 

Fig. 2. RATS-LD recaptures true recombination rates in simulated data and accurately distinguishes between different rates. A) Linkage decay 
curves calculated from simulated data exhibit saturation patterns with respect to dΔt that depend on the underlying recombination rate, ρ 
(moving average displayed, window size = 500 bp × generations). B) The slopes of these curves at dΔt = 0 serve as RATS-LD’s estimates and 
recapture the known ρ value in simulated data. Each point represents the median of a bootstrapped distribution of 1,000 estimates. C) We 
performed a discrimination analysis to confirm that RATS-LD can distinguish different recombination rates. We simulated data with set recom
bination rates and estimated ρ̂ using RATS-LD. We then randomly paired simulations with recombination rates that differed by a factor of 1, 1.1, 
1.2, 1.5, 2, or 5 to assess how often RATS-LD correctly distinguished underlying recombination rates via simple rank order D) and non- 
overlapping bootstrapped 95% confidence intervals E).
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range of 10−5 to 10−4, we found that pairs of simulations 
with a 1.5-fold or greater difference in ρ were nearly always 
ordered correctly using RATS-LD. Outside of this range (at 
values of 10−6 and 10−3), recombination rate differences 
must be larger for RATS-LD to successfully order them 
due to lower method resolution in these regimes. 
Second, for each pair of simulations, we checked whether 
their bootstrapped ρ̂ confidence intervals overlapped 
(Fig. 2E). We found that we had a low probability of type 
I errors (i.e. assessing differences in recombination rates 
when no such differences existed). At recombination rates 
of 10−3 and 10−6, RATS-LD could often discriminate simu
lations with true ρ values separated by a factor of 2 or 5. In 
the range of 10−5 to 10−4, RATS-LD could nearly always 
discriminate simulations with true ρ values a factor of 5 
apart and could often discriminate ρ values a factor of 2 
apart, but was not well powered to detect more subtle dif
ferences in recombination rate.

Validating RATS-LD under Settings That Better 
Recapitulate Intrahost HIV
While RATS-LD can discriminate between recombination 
rates in neutrally simulated populations, intrahost HIV is 
under strong selective pressures which will affect the equi
librium linkage levels and could consequently affect the 
rate of linkage decay under a given ρ. We therefore ex
tended our simulations to mimic these pressures, adding 
both positive and negative selection (s ranges from −0.1 
to 0.05, see Materials and methods for full distribution of 
fitness effects). We chose these values based on estimates 
from the literature (Zanini et al. 2017), and confirmed 
that they match in vivo intrahost divergence and diversity 
over the first 8 years of infection in a longitudinally 
sampled cohort (Zanini et al. 2015, supplementary Fig. 
S4, Supplementary Material online). We found that 
selection simulations produced noisier linkage decay 
curves than neutral simulations (supplementary Fig. S5, 
Supplementary Material online), but RATS-LD was still 
able to recapture underlying recombination rates (Fig. 3A). 
Similar to the neutrally simulated data, RATS-LD successfully 
estimated recombination rates in the 10−5 to 10−4 range but 
lost resolution at more extreme values.

Another complication of intrahost HIV evolution is 
population structure between different viral subpopula
tions in the body, which can maintain longer range linkage 
and potentially affect estimation. To examine the impact 
of population structure, we simulated two subpopulations 
of HIV interconnected by migration at rate m. We chose a 
range of m values to broadly encompass extremely low mi
gration rates considered in the literature (Lythgoe et al. 
2016) up to well-mixed populations.

We found that RATS-LD estimation was minimally im
pacted by migration rates greater than 10−4, although ex
tremely low migration rates (m = 10−5) did depress 
estimates slightly (Fig. 3B). To understand if this underesti
mation was likely to impact application of RATS-LD to in 
vivo data with an unknown amount of population 

substructure, we compared the average linkage in the simu
lated structured data to the in vivo data from Zanini et al. 
(2015) used above as a reference for genetic divergence 
and diversity. Notably, this dataset contained two superin
fected individuals who displayed long range linkage suggest
ive of population structure. Even in these individuals, D’ 
decayed faster over distance than the simulated m = 10−5 

populations (supplementary Fig. S6, Supplementary 
Material online). This suggests that these participants did 
not possess migration rates low enough to substantially al
ter RATS-LD’s performance.

Finally, we considered whether variation in effective 
population size (Ne) would change linkage patterns strong
ly enough to alter RATS-LD’s accuracy. We therefore ran 
selection simulations for four additional values of Ne span
ning the range of 5 × 103 to 5 × 105, which captures vari
ation in estimated short-term Ne of intrahost HIV in the 
literature (Achaz et al. 2004; Feder et al. 2017).

Generally, we found that while increases in the effective 
population size resulted in moderately faster linkage 
breakdown, the effect on our estimation was relatively 
small, especially in the range of recombination rates sur
rounding existing HIV estimates (Fig. 3C). For example, 
the average estimated recombination rates for Ne values 
a factor of 100 apart only differed by a factor of ≈ 2.5 
[Ne = 5 × 103 vs. 5 × 105 at ρ = 2 × 10−5/bp/generation, 
a rate near the prevailing estimate (Neher and Leitner 
2010)]. We do note that at very high values of Ne and ρ, 
very rapid linkage decay renders the sampling scheme 
(time points 150 to 300 generations apart) too coarse to 
collect a baseline measurement of linkage decay near 
d = 0. As a result, our fits for the linkage decay curve’s 
y-intercept are pushed upwards which biases our esti
mates for the recombination rate downwards for these si
mulations. We note more broadly that these values are 
unlikely to be relevant for the intrahost data, as simula
tions with very high Ne fail to match key metrics of the 
Zanini et al. (2015) in vivo dataset in terms of population 
diversity and divergence (supplementary Fig. S4, 
Supplementary Material online). These findings indicate 
that while RATS-LD estimates are not agnostic to differ
ences in effective population size, variation in effective 
population size is unlikely to be the sole driver of large dif
ferences in RATS-LD estimates, especially in conditions 
similar to intrahost HIV dynamics.

Applying RATS-LD to In Vivo HIV Data
Thus established, we sought to use RATS-LD to quantify 
how recombination rate varied within and across intrahost 
HIV populations with different viral loads. We analyzed vir
al sequences from a cohort of 10 people living with HIV, 
who were sampled longitudinally over 6 to 12 years and 
were not on antiretroviral therapy (ART) (Zanini et al. 
2015), using a workflow illustrated in supplementary Fig. 
S7, Supplementary Material online. Although the sampling 
scheme spans a much longer time period, nearly all 
(≈ 96%) of the time point pairs included in the analysis 
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were separated by fewer than 300 generations since very 
few alleles segregated for longer. We chose this dataset be
cause the authors recorded contemporaneous viral load 
measurements and sequenced these data via a workflow 
that minimized PCR recombination (see Discussion) 
(Zanini et al. 2017). Therefore, we expect the detected sig
nals of recombination in these data to be driven by in vivo 
processes, rather than amplification artifacts. This 
dataset also had a sampling depth (median ≈ 800) far dee
per than was necessary for accurate RATS-LD estimation 
(supplementary Fig. S8A, Supplementary Material online). 
RATS-LD estimated the average recombination rate across 
this dataset to be 3.6 × 10−5 events/bp/generation (95% 
CI 2.8 × 10−5 to 4.7 × 10−5) which is slightly higher than 
previous estimates (Shriner et al. 2004; Neher and 
Leitner 2010; Batorsky et al. 2011), but consistent under 
RATS-LD’s slight upward bias in this range.

Within this dataset, viral loads varied within and be
tween individuals (supplementary Fig. S9, Supplementary 
Material online), as has been observed in other cohorts 
(Shankarappa et al. 1999; Robb et al. 2016). For each pair 
of time points within an individual, we computed the 
mean viral load (supplementary Fig. S10A, Supplementary 
Material online). Time points did not need to be consecu
tive to be compared, but we excluded any time point pairs 
where an intervening viral load measurement did not fall 
between the measurements at the two compared time 
points (see Materials and methods). Next, we associated 
each linkage decay measure to the mean viral load between 
the two time points (t and t + Δt). The distribution of 
LDMs and their associated average viral load measures is 
shown in supplementary Fig. S10B, Supplementary 
Material online. Then, we split the data based on the viral 

load tertiles which divided the data into three groups 
with approximately equal numbers of LDMs. This provided 
a sufficient number of loci for estimation (supplementary 
Table S1; Fig. S11B and C, Supplementary Material online). 
In Fig. 4A, we show the viral load time courses for each par
ticipant with shading corresponding to the viral load 
tertiles.

We used RATS-LD to compute ρ̂ separately for each of the 
viral load groups (Fig. 4B–C). We found that ρ̂ among time 
point pairs below the first tertile (<26,800 copies/mL) was 
1.5 × 10−5 recombination events/bp/generation (boot
strapped confidence interval 7 × 10−6 to 2.9 × 10−5), a 
rate nearly identical to existing recombination rate esti
mates for HIV (Neher and Leitner 2010). However, among 
pairs of time points with the highest average viral loads 
(>82,000 copies/mL), the estimated median recombination 
rate was nearly 6 times higher: 8.9 × 10−5 recombination 
events/bp/generation (bootstrapped confidence interval 
6.5 × 10−5 to 1.2 × 10−4). The middle tertile fell between 
the other two, although substantially closer to the lower ter
tile (bootstrapped confidence interval 2 × 10−5 to 
4 × 10−5).

We performed several analyses to ensure the robustness 
of this result. First, we demonstrated that the observed dif
ferences were not solely driven by the data of any individ
ual participant by conducting a leave-one-out analysis 
(supplementary Fig. S12, Supplementary Material online). 
Second, we performed a variation of this analysis where 
we left out data from two superinfected individuals 
(Participants 4 and 7). These individuals exhibited long 
range linkage patterns that are potentially consistent 
with population substructure maintained by limited mi
gration, although the degree of linkage does not suggest 

Fig. 3. RATS-LD can estimate recombination rates in conditions that mimic HIV intrahost evolution. A) Recombination rate estimates from 
simulations performed with HIV-like selective conditions recapture known ρ values. B) Recombination rate estimates from simulated subdivided 
populations interconnected by bidirectional migration. Each generation, a proportion m of each subpopulation emigrates from the other sub
population (m = 10−2, 10−3, 10−4, 10−5). C) Recombination rate estimates in datasets simulated under a range of effective population sizes 
(Ne = 5 × 103 to 5 × 105). We plot ten estimation groups for Ne values <105 and five estimation groups for Ne values ≥ 105. In all three panels, 
each point represents the median estimate over 1,000 bootstraps. For full details on all of the specific simulation scenarios, see Materials and 
methods.

Romero and Feder · https://doi.org/10.1093/molbev/msad260 MBE

6

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad260#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad260#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad260#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad260#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad260#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad260#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad260#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad260#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad260#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad260#supplementary-data


that we are outside of the range of population structure 
where RATS-LD can estimate accurately (supplementary 
Fig. S6, Supplementary Material online, Fig. 3B). 
Regardless, the results from this analysis were also consist
ent with the findings displayed in Fig. 4 and showed a sig
nificant difference between the lower and upper viral load 
tertile estimates (supplementary Fig. S12, Supplementary 
Material online). Third, we attempted to verify this result 
with a biological replicate from a different dataset 
(Caskey et al. 2017). Caskey et al. (2017) sequenced HIV 
from longitudinally sampled viral populations rebounding 
after an infusion of broadly neutralizing antibodies. As a re
sult of this context, populations possessed relatively low 
viral loads (12,766 ± 9,859 copies/mL, mean ± SD). The 
amount of data available and low sampling depth permit
ted only a single, noisier estimate as opposed to the viral 
load-segregated analysis of Zanini et al. (2015). However, 
the estimate from Caskey et al. (2017) was consistent 
with the lowest tertile data from Zanini et al. (2015), in 
line with their comparable viral loads (supplementary 
Fig. S8B, Supplementary Material online).

Fourth, to further quantify the relationship between 
viral load and estimated recombination rate, we also con
ducted an analysis in which we grouped LDMs depending 
on their average viral load meeting a given threshold 
(supplementary Figs. S13 and S14, Supplementary 
Material online). This permitted us to further determine 
if viral load has a dose-dependent effect on recombination 
rate. The estimated recombination rate became more 
extreme at higher viral load thresholds, and time points 
with a mean viral load above 200,000 copies/mL showed 
an estimated ρ̂ nearly an order of magnitude higher than 
prevailing estimates (1.1 × 10−4, confidence interval 7.5 × 
10−5 to 1.6 × 10−4), although small sample sizes led to sub
stantial variation in curve fitting and correspondingly large 

bootstrapped confidence intervals at more extreme 
thresholds. Taken together, these results suggest that 
HIV populations at high viral loads may be recombining 
significantly more often than previous estimates.

The analyses above suggest that higher viral loads are 
correlated with faster recombination across individuals, 
but viral loads can also vary significantly within individuals 
over time. We therefore set out to examine if RATS-LD 
could detect differences in recombination rates within sin
gle individuals. Only one individual (Participant 1) in our 
dataset had enough data above the threshold at which 
we saw substantial differences in ρ̂ (>50k copies/mL, 
supplementary Fig. S13, Supplementary Material online) 
to perform recombination rate estimation according to 
our power analysis. Participant 1 possessed both extensive 
genetic variation (≈ 12,000 LDMs) and a broad range of 
viral load measurements (<103 to >106 copies/mL). We 
divided the LDMs for Participant 1 into two equally sized 
groups based on their viral loads and found a significant 
difference in recombination rates between time points 
with viral loads above and below the median of 165,500  
copies/mL (ρ̂<165k = 2.8 × 10−5, confidence interval = 
1.7 × 10−5 to 4.5 × 10−5 and ρ̂>165k = 1.3 × 10−4, confi
dence interval = 7.4 × 10−5 to 2 × 10−4) as shown in 
Fig. 5. Although we did not expect to be well powered 
to detect recombination rate differences in any other par
ticipants, we repeated this analysis with Participants 3, 4, 
and 7, who had the next largest numbers of LDMs available 
for estimation (supplementary Tables S1 and S2, 
Supplementary Material online). Consistent with the re
sults from Participant 1, time points with viral loads below 
the median had lower estimated recombination rates than 
those with viral loads above the median (supplementary 
Fig. S15, Supplementary Material online), although the 
bootstrapped confidence intervals between the high and 

Fig. 4. Elevated recombination rates are associated with high viral load in vivo. A) Viral load time courses for each participant are plotted. The 
background shading and horizontal demarcations indicate the viral load tertiles: <26,800 (lower/blue), 26,800 to 82,000 (middle/gray), and 
>82,000 (upper/orange) which divide the linkage decay measures (LDMs) into three approximately equal sized groups (≍ 20k LDMs per group). 
While viral loads at single time points are shown here, pairs of time points were used to form the groups for estimation and were sorted based on 
their average viral load (see supplementary Figs. S9 and S10, Supplementary Material online). B) Curve fits used by RATS-LD for estimation. Curve 
fits representing the median estimates of the bootstrap distribution (1,000 bootstraps) for each group are overlaid on the binned average of the 
LDMs from the in vivo data (moving average used for display purposes only, window size = 500 bp × generations). C) Recombination rate es
timates ρ̂ with 1,000 bootstraps are shown separately for the three tertiles. Each box represents the quartiles of the ρ̂ distribution and the median 
is indicated by the central line.

Elevated HIV Viral Load · https://doi.org/10.1093/molbev/msad260 MBE

7

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad260#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad260#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad260#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad260#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad260#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad260#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad260#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad260#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad260#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad260#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad260#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad260#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad260#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad260#supplementary-data


low viral load groups overlapped in all three participants. 
These results are not unexpected as Participants 3, 4, and 7 
had much narrower ranges of viral loads than Participant 
1 and RATS-LD is not well powered to detect small differ
ences in recombination rate (Fig. 2) especially at smaller sam
ple sizes (supplementary Fig. S11, Supplementary Material
online). Nevertheless, the analyses within individuals collect
ively suggest that as a population’s viral load varies over time, 
evolutionarily important parameters such as the recombin
ation rate can vary concurrently.

Discussion
HIV evolution within a host is a complex process driven by 
shifting selection pressures and variation in mutational 
availability as viral loads expand and contract over orders 
of magnitude. Here, we show that the recombination 
rate of HIV in vivo can also change dynamically over the 
course of infection in concert with changes in the viral 
load and effective population density. We introduce an ap
proach, RATS-LD, which estimates significantly elevated 
recombination rates in viral populations with the highest 
viral loads. In addition to quantifying differences across vir
al populations, we also detect a nearly order of magnitude 
difference in recombination rates within a single viral 
population as its viral load increases over time. Although 
HIV recombination has long been appreciated to be a 
common event, these results suggest that in certain intra
host contexts, rates of recombination can be even more 
extreme than previously recognized (Shriner et al. 2004; 
Neher and Leitner 2010; Batorsky et al. 2011).

Our simulations with varying effective population sizes 
(Ne) suggest that these higher recombination rates among 

higher viral load populations are not simply caused by 
positive correlations between Ne and viral load. We found 
that changing HIV Ne within a plausible range of values re
sulted in much smaller differences in estimated recombin
ation rates than the ones we observed between high and 
low viral load groups in vivo (Fig. 3B). That being said, an 
increase in Ne in populations at high viral loads may be 
one contributing factor to the increased estimate of ρ.

We find that recombination rate increases most drastic
ally in populations with the highest viral loads, consistent 
with a study that found only modest variation in in vivo 
CD4+ T-cell coinfection rates among viral populations 
with viral loads less than 105 copies/mL, but elevated coin
fection rates in a population with viral load above 106 cop
ies/mL (Josefsson et al. 2011). Our study not only suggests 
that these results hold in an independent cohort, but fur
ther links variable rates of coinfection to quantitatively dif
ferent viral recombination rates in vivo. While this effect 
has previously been demonstrated in cell culture where 
viral density can be experimentally manipulated (Levy 
et al. 2004), this represents the first evidence that intrahost 
viral density varies extensively enough to cause substantial 
changes to the recombination rate in vivo in human hosts.

This previously unappreciated recombination rate vari
ation likely impacts both intrahost evolutionary dynamics 
and also interpretations of intrahost viral data. While most 
of the sequencing data we investigated were not from 
acute infection, the initial HIV expansion brings the viral 
load its most extreme values (Selik and Linley 2018). If 
elevated recombination rates broadly accompany high 
viral loads, recombination may drive the creation of novel 
viral haplotypes to a previously unrecognized extent, 
particularly in populations with multiple founders. The 

Fig. 5. High viral load is also associated with elevated recombination rate in Participant 1. A) Viral load trajectory over the number of days since 
estimated date of infection (EDI) for Participant 1. The background shading indicates the two groups (above the horizontal median line in orange 
and below the line in blue) that pairs of time points were divided into based on their average viral load. Each group contains approximately 6,000 
LDMs. B) Curve fits representing the median estimates from each group’s corresponding bootstrap distribution (1,000 bootstraps) are overlaid 
on the binned average of the LDMs in the in vivo data for Participant 1 (moving average used for display purposes only, window size = 1,000 bp × 
generations). C) Recombination rate estimates for times with average viral load measurements above or below the median using only data from 
Participant 1. Each box indicates the interquartile range of the bootstrapped distribution of ρ̂ for the given viral load group (1,000 Bootstraps). 
The median estimate is indicated via the central line. Identical analyses for Participants 3, 4, and 7 are shown in supplementary Fig. S15, 
Supplementary Material online.
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importance of this effect may be counteracted by relatively 
low population diversity in the early stages of infection 
(Zanini et al. 2015). This interaction merits future investi
gation. Recent work has also suggested that elevated re
combination rates could mask signatures of spatial 
compartmentalization in intrahost HIV populations 
(Sarkar et al. 2023). In contrast, low viral loads in individuals 
on incompletely suppressive ART may lead to correspond
ingly low recombination rates, mitigating recombination of 
distinct drug resistance mutations on different genetic 
backgrounds as a path to multidrug resistance (speculated 
in Feder et al. 2021). Lower rates of recombination in lower 
viral load populations may also make phylogenetic ap
proaches that rely on treelike evolutionary divergence 
more tractable to apply without requiring ancestral re
combination graphs (Castro et al. 2023). While we did 
not have access to samples with extremely low viral loads 
near the limit of detection, future investigations could de
termine if previously reported average recombination 
rates (≈ 1.4 × 10−5) can explain low viral load patterns 
of linkage decay.

Viral load is the most accessible proxy for measuring 
population density, but it does not capture the complex 
dynamics of HIV metapopulations which can span distinct 
anatomical locations and may operate differently across 
individuals (Lythgoe et al. 2016). Since most T-cells in a 
person living with HIV are uninfected, local population 
density of infected cells is likely critically important for de
termining ρ. Future investigation into this hypothesis 
would be best served by localized measurements of coin
fection and gene exchange in lymphatic tissues at different 
viral densities. These samples are invasive to collect, espe
cially longitudinally, so approaches that consider aggregate 
measurements at the population level are valuable proofs 
of principle. The fact that positive associations with re
combination rate can be observed even for high level mea
surements like viral load underscores density’s importance 
as a mediator of in vivo recombination.

Like other in vivo methods, RATS-LD relies on naturally 
segregating sites as genetic markers to track the break
down of linkage. While the rate of this breakdown is not 
affected by population diversity, our ability to accurately 
quantify its average does depend on the number of segre
gating sites we can identify. Therefore, having more or few
er mutations stands only to impact the confidence of 
RATS-LD rather than bias the estimated recombination 
rates themselves. Less diverse populations require more 
pooling to have the requisite number of pairs of data 
points. This limits our ability to powerfully estimate re
combination rates in smaller, less diverse populations.

Importantly, we cannot detect recombination events 
between identical sequences. If genetically identical viral 
bursts are largely confined to a given spatial location, rates 
of coinfection and recombination may be high but un
detectable to this method. Similar effects could be driven 
by cell-to-cell transmission (Kreger et al. 2021). While im
portant for understanding the viral life history and phe
nomena like complementation (Gelderblom et al. 2008) 

and replication fidelity (King et al. 2008; Rawson et al. 
2018), these undetectable recombination events are un
likely to contribute meaningfully to the population’s evo
lution because they do not generate new viral haplotypes. 
As such, our estimated ρ̂ values reflect the effective rates of 
recombination and mixing discounting population 
structure.

Although we analyzed data with careful controls for 
PCR recombination, we cannot completely rule it out as 
a complicating factor (Salazar-Gonzalez et al. 2008). In or
der to minimize PCR recombination, Zanini et al. (2015, 
2017) only used one round of PCR (rather than a more 
standard nested approach) and optimized polymerases 
and extension times, among other measures. They vali
dated this approach by comparing linkage decay in a 50/ 
50 mix of two laboratory strains. While no linkage decay 
was observed in this mixture, the reduced sequence simi
larity between the two strains may also have discouraged 
recombination (Balakrishnan et al. 2001, 2003). As further 
validation, they analyzed a natural control of an intrahost 
population founded by two distinct viruses. Despite the 
distinct founder viruses having high sequence similarity, 
nearly complete linkage was preserved after a single round 
of PCR amplification. Additionally, these control samples 
were from relatively high viral load time points (≈ 105 cop
ies/mL) indicating that PCR recombination is extremely 
low even in the high viral load samples we analyzed. The 
agreement between the estimates from the Caskey et al. 
(2017) data (produced via single genome sequencing) 
and the low viral load tertile of the Zanini et al. data also 
supports this point. While we cannot definitively say 
that PCR recombination did not in any way affect our re
sults, these controls provide reassurance that rates of in vi
tro PCR recombination were extremely low.

It is important to note several additional caveats with 
our analysis: (i) Correlation does not imply causation. 
Although we report an association between recombin
ation rate and viral load, it is possible that rapid recombin
ation potentiates a higher viral load, and not that higher 
viral loads cause more coinfection and subsequent recom
bination. It is also possible that a third underlying factor 
causes both higher viral load and more frequent recombin
ation. While we cannot directly disentangle causation in 
this study, the association still suggests that we must con
sider how recombination rates vary within and between 
individuals. (ii) We analyzed a relatively small cohort of un
treated participants, many of whom showed some degree 
of virologic control (Zanini et al. 2015). The same features 
that may permit these individuals to control the virus may 
also affect recombination processes within these viral po
pulations. However, we note that individuals with low viral 
loads showed recombination rates consistent with other 
estimates in the literature (Neher and Leitner 2010; 
Batorsky et al. 2011), while time points with less control 
exhibited elevated recombination rates more consistent 
with in vitro studies (Levy et al. 2004; Schlub et al. 2010). 
(iii) Most of our analysis derives from only a single data 
set (Zanini et al. 2015) and we could not locate other 
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datasets with the necessary characteristics (longitudinal, 
deeply sequenced, abundant segregating sites, minimal 
PCR recombination, range of viral loads) for a full biologic
al replicate. However, application to Caskey et al. (2017)
did produce a consistent estimate with the low viral load 
group. We are hopeful that as sequencing technologies 
proliferate, new data will be collected that permit further 
verification.

While RATS-LD is a broadly useful technique for quan
tifying rapid recombination from time series data, the 
sequencing strategy (especially the read length and sam
pling time intervals) limits the recombination rates that 
can be effectively inferred. Similar limitations about read 
lengths have been noted in other work estimating linkage 
structure from pooled read data (Feder et al. 2012). Low 
recombination rates may permit few or no recombination 
events to occur within the context of single reads. As a re
sult, little breakdown of linkage will be observable and 
longer read sequencing data might be necessary to capture 
these events. As these sequencing approaches proliferate 
(Gallardo et al. 2021), we expect the utility of linkage-based 
techniques for quantifying recombination and other evo
lutionary forces to expand, even in populations with lower 
recombination rates. In the opposite direction, high re
combination rates can result in extremely rapid decay of 
linkage which may saturate even between nearly adjacent 
loci if the sampling time points are insufficiently dense (see 
ρ = 10−3). This problem is potentially resolvable by denser 
sampling, although we note that the recombination rates 
explored here are some of the highest measured in vivo 
(Pérez-Losada et al. 2015). More broadly, if intervals be
tween samples are too long and the population has re
turned to equilibrium, differential rates of recombination 
between SNPs separated by different distances will not 
be visible. In this way, distance and time affect linkage sig
nals differently, despite appearing together in equation (1). 
For the purpose of HIV, RATS-LD is well suited to the cur
rent state of short read paired-end next generation se
quencing data and the 150-300 generation time intervals 
examined.

Although we found that RATS-LD was appropriate for 
our uses in this paper, we offer a series of recommenda
tions for assessing its appropriateness in other settings 
and the trustworthiness of its estimates. (i) Assess sampling 
characteristics: we found RATS-LD performed best with at 
least 500 segregating sites and a sampling depth above 40 
(supplementary Figs. S8A and S11, Supplementary 
Material online). (ii) Understand the ρ̂ performance range: 
with paired-end data spanning approximately 700 base 
pairs sampled on the order of 150 to 300 generations apart, 
we found that RATS-LD can discriminate well among re
combination rates in the range of 5 × 10−6 to 5 × 10−4. 
Rates estimated outside of this range are generally untrust
worthy under these sampling conditions. Longer range or 
temporally denser sequencing data may expand this accur
acy range in the future. (iii) Visualize linkage decay curves: 
the raw data underlying these curves can be noisy, so we 
found binning by 500 bp × generation moving windows 

for visualization balanced stochasticity and signal. If these 
running average curves appear flat, RATS-LD will likely be 
unable to accurately estimate recombination rates. 
(iv) Examine bootstraps: bimodal bootstraps or those span
ning multiple orders of magnitude reflect poor curve fit
ting and should be treated with caution.

More broadly, the biological phenomenon that we re
port here - association between higher recombination 
rate and higher population density - could be much 
more widespread in facultatively asexual populations 
where physical proximity can mediate the rate of recom
bination. Potentially relevant cases include viral homolo
gous recombination (as shown here) and reassortment, 
but also rates of plasmid conjugation in bacteria, or sexual 
reproduction in hermaphroditic organisms or plants that 
do not self or outcross exclusively. Explicit attention to 
population density in mediating recombination rates 
stands to impact our understanding of species diversifica
tion in viruses and more broadly.

Materials and Methods
Measuring Linkage Decay over Time to Estimate ρ
RATS-LD quantifies the linkage between pairs of segregat
ing loci using D′ (Lewontin 1988):

D′ =
|p12 − p1p2|

Dmax
(4) 

where p1 and p2 are the frequencies of the majority nu
cleotide at the corresponding locus, p12 is the frequency 
of the haplotype made up by the majority nucleotides at 
the two loci, and Dmax is given by

Dmax = min(p1p2, (1 − p1)(1 − p2)) if p12 < p1p2

min(p1(1 − p2), (1 − p1)p2) if p12 > p1p2.

􏼚

Estimation of ρ can also be performed using D rather than 
D′, but we found D′ was less affected by noise 
(supplementary Fig. S16, Supplementary Material online). 
Because linkage information is necessary to compute D′, 
pairs of SNPs must be close enough to be spanned by a se
quencing read.

We applied stringent filtering criteria (see below) to 
build a set of SNPs separated by a given distance 
(d) and sampled at two different times Δt generations 
apart for which time point-specific D′ values could be 
computed. We computed LDMs for each pair of SNPs 
across two time points using the negative log ratio of 
their D′ values, as given in equation (2). For the in vivo 
analysis, we converted the number of days between 
samples to generations by assuming an approximate 
rate of 1 generation per 2 days (Perelson et al. 1996; 
Rodrigo et al. 1999).

Using this set of SNP pairs, RATS-LD quantifies the re
combination rate by fitting the relationship between 
LDM and time-scaled distance (dΔt) then calculating the 
derivative of the fit near dΔt = 0. Because the linkage 

Romero and Feder · https://doi.org/10.1093/molbev/msad260 MBE

10

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad260#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad260#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msad260#supplementary-data


decay between any individual pair of SNPs is noisy over 
time, we aggregate LDMs across many pairs of SNPs over 
different distances to improve the fit. Instead of fitting 
the simple decay equation given in equation (2), we fit 
LDMs in simulated and in vivo data to the form of equa
tion (3) which better captures the stationary linkage dy
namics between two loci at longer time-scaled distances. 
Our estimate of the recombination rate ρ is the derivative 
of equation (3) at dΔt = 0, which is given by c1 × c2.

Curve Fitting
For all analyses except those shown in supplementary Figs. 
S2 and S3, Supplementary Material online, we fit the curve 
form (3) to the LDM data via non-linear least squares 
(Virtanen et al. 2020). Prior to performing the fits, we re
stricted the data to pairs of SNPs with dΔt < 5 × 104bp × 
generations to boost RATS-LD’s performance in the 
range of previous HIV recombination rate estimates 
(supplementary Fig. S11A, Supplementary Material
online).

To confirm that the slope of the linkage decay curve 
near dΔt = 0 does capture the true recombination rate, 
we performed linear fits to the LDM data which are shown 
in supplementary Figs. S2 and S3, Supplementary Material
online. Since the linear fits are only accurate when 
considering LDMs prior to saturation, we performed 
these fits to data only including LDMs with dΔt < 
500, 1,000, 2,000, 10,000, or 50,000bp × generations so 
that at least one dΔt fit threshold would capture the pre
saturation behavior for each value of ρ in the simulated 
data. We fit these relationships with linear regression 
(Virtanen et al. 2020) and the slope of the fit was the esti
mated ρ̂.

Bootstrapped Confidence Intervals
To create bootstrapped confidence intervals for RATS-LD’s 
recombination rate estimates, we sampled the segregating 
loci with replacement and repeated estimation using only 
the LDMs where both loci were sampled. Each bootstrap 
sample included the same number of segregating loci as 
was initially used for estimation. The example fits displayed 
for the bootstrapped confidence intervals use the set of 
coefficients that provided the estimate at the given quan
tile (2.5%, 50%, 97.5%) of the ρ̂ distribution (rather than 
the quantiles of the coefficient distributions themselves). 
The primary ρ̂ reported for each analysis is the median 
of the bootstrapped distribution.

Simulated Data
To validate RATS-LD’s ability to quantify recombination 
rates, we simulated populations with known recombin
ation rates using SLiM (Haller and Messer 2019). We per
formed RATS-LD’s initial validation on a simulated 
genomic region of length 700 bp, with a mutation rate of 
μ = 10−6 mutations/bp/generation (Achaz et al. 2004; 
Abram et al. 2010; Sanjuán et al. 2010) and effective popu
lation size of Ne = 104 (Achaz et al. 2004; Feder et al. 2017). 

The simulated recombination rates ρ ranged from 2 × 
10−6 to 10−3 recombinations/bp/generation to broadly 
encapsulate the range of previously estimated HIV recom
bination rates (Shriner et al. 2004; Neher and Leitner 2010; 
Batorsky et al. 2011). For the purpose of the discrimination 
analysis only (Fig. 2D and E), we also ran neutral simula
tions in an expanded range of ρ = 10−6 to ρ = 5 × 10−3. 
Each simulation was run for 5 × 104 generations before 
samples from five evenly spaced time points were col
lected at intervals of 150 generations. Each sample con
tained M = 800 genomes to approximately match the 
median number of templates in each of the in vivo sequen
cing reactions (Zanini et al. 2015). RATS-LD requires many 
pairs of SNPs across multiple time points to fit equation 
(3). Therefore, data pooling across simulations is required 
for estimation. Since our power analysis indicated that 
estimation is most accurate when there are >500 loci 
available for estimation (supplementary Fig. S11C, 
Supplementary Material online), for each recombination 
rate estimate we grouped 5 simulations and sampled 
200 segregating loci from each simulation to form groups 
with ≈ 1,000 segregating loci (supplementary Table S1, 
Supplementary Material online).

To assess RATS-LD’s performance in the presence of se
lection, we performed additional simulations with selec
tion coefficients designed to mimic intrahost HIV 
evolution more closely. These selection simulations in
cluded a genomic region of length 700 bp, mutation rate 
μ = 10−5 mutations/bp/generation (Achaz et al. 2004; 
Abram et al. 2010; Sanjuán et al. 2010), and effective popu
lation size Ne = 104 (Achaz et al. 2004; Feder et al. 2017). 
Selection coefficients were drawn from the following dis
tribution of fitness effects: a small number of mutations 
(≈ 0.1%) were strongly beneficial with s = 0.05. Most mu
tations (≈ 70%) were non-synonymous mutations 
(Kimura 1968) and were strongly deleterious with selec
tion coefficient s = −0.1 (Zanini et al. 2017). The remain
ing ≈ 30% of mutations represented synonymous 
mutations and were neutral with s = 0 (frequency ≈ 10%) 
or slightly deleterious with s = −0.01 (frequency ≈ 20%) 
(Zanini et al. 2017). Each simulation was run for 50 gen
erations before 9 evenly spaced samples of M = 800 tem
plates each were collected at intervals of 150 generations. 
The number of sampling time points was increased to 9 
so that the datasets would encompass the maximum 
length of sampling for participants in the in vivo data 
set (Zanini et al. 2015). Under these simulated conditions, 
the proportion of segregating sites per time point pair 
in the selection simulations matched the in vivo 
data much more closely than the neutral simulations 
(supplementary Fig. S17, Supplementary Material online). 
For each estimate, we grouped 50 simulation runs which 
provided 700 to 2,000 segregating loci to ensure that 
RATS-LD was well powered (supplementary Table S1, 
Supplementary Material online). Due to the simulations’ 
shorter genomic length (700 bp) vs. the average in vivo 
fragment length (mean ≍ 1,800 bp), a group of 10 simu
lations is approximately equivalent to the data from one 
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participant. The selection simulations described in this 
paragraph are referred to as the “baseline selection 
simulations.”

We also performed selection simulations to test for im
pacts of other population factors on RATS-LD estimates. 
First, we tested the impact of population substructure 
by simulating populations consisting of two separate sub
populations at ρ = 10−4 and ρ = 10−5. Viruses migrated 
between the two subpopulations with backward migra
tion rates of m = 10−5, 10−4, 10−3, and 10−2. The extremes 
of these values were drawn from the literature (Lythgoe 
et al. 2016; Feder et al. 2019). Each subpopulation had 
size 5 × 103 resulting in full population sizes of Ne = 104 

(consistent with the baseline selection simulations). Both 
subpopulations contributed equally to the sampled 
viruses. All other parameters in the substructure simula
tions matched those in the baseline selection simulations. 
Second, we tested the impact of varying effective popula
tion size. These simulations had the same parameters 
as the baseline selection simulations except that we 
simulated a wider range of effective population sizes 
(Ne = 5 × 103, 104, 5 × 104, 105, and 5 × 105) for a subset 
of recombination rates (ρ = 2 × 10−6, 10−5, 2 × 10−5, 
10−4, 2 × 10−4, and 10−3). These Ne values were selected 
based on variation in estimates of short-term Ne of intra
host HIV in the literature (Achaz et al. 2004; Feder et al. 
2017). An Ne value of 103 was also tested, but these simu
lations yielded linkage decay curves that were too noisy for 
estimation under RATS-LD’s standard filtering conditions. 
Third, we tested the impact of varying sampling depths. 
These simulations have the same parameters as the base
line selection simulations, but we varied the sampling 
depth of M to be 10, 20, 40, and 80. At lower sampling 
depths, many more simulations (up to 5,000 per estima
tion at M = 10) were required to form groups of 500 to 
1,000 segregating loci. Since larger numbers of independ
ent observations reduce noise and improve RATS-LD ac
curacy, these estimates represent best case scenarios for 
each sampling depth.

To match the sequencing coverage in the in vivo data, 
we created a procedure to downsample the simulations 
to mimic the pairwise coverage of two loci d nucleotides 
apart. To do this, we created an empirical distribution of 
reads overlapping a locus at an arbitrary position 0 
(supplementary Fig. S18A, Supplementary Material on
line). First, we simulated the expected positions of 105 

reads with start positions uniformly distributed between 
genomic positions −700 and 0 (in bp). For each start pos
ition, we uniformly sampled a total end to end read length 
between 400 and 700 bp, which was the observed read 
length distribution in Zanini et al. (2015). In addition, we 
only considered 300 bp of coverage extending inwards 
from each end of the read, to match the paired-end se
quencing study design (Zanini et al. 2015, 2017). As a re
sult, longer reads did not have coverage in their centers. 
We discarded any simulated reads that did not capture 
genomic position 0. At this point, we formed the empirical 
distribution by computing the number of reads that 

overlapped position 0 and a position d nucleotides away 
in either direction. The resulting empirical distribution 
had high coverage for nearby loci and decreasing coverage 
as d increased (supplementary Fig. S18C, Supplementary 
Material online). This paired-end read sampling technique 
mimicked the in vivo sampling scheme and provided 
coverage similar to the in vivo data (Zanini et al. 2015) 
(supplementary Fig. S18B, Supplementary Material online). 
Then, for each pair of SNPs in the SLiM data at a distance of 
d nucleotides apart, we downsampled their coverage to 
match the empirical number of overlapping reads for 
two SNPs at a distance of d nucleotides. This procedure 
was used to downsample coverage for all simulation scen
arios described.

In Vivo Data
We used longitudinal HIV deep-sequencing data from 
Zanini et al. (2015) for in vivo recombination rate estima
tion. The samples were collected from the blood plasma of 
11 participants who were diagnosed with HIV-1 in Sweden 
from 1990 to 2003 and were not on antiretroviral treat
ment. Six to twelve time points are included per partici
pant with both sequencing and viral load information at 
most time points. The sequences span the full HIV genome 
and were generated using 6 overlapping amplicons, but we 
excluded fragment 5 (which contains env) in our analysis 
due to its lower rates of template recovery. The sequencing 
reactions used paired-end reads amplified via a protocol 
designed to minimize PCR recombination (see Discussion). 
In particular, the protocol used only a single round of PCR 
(rather than a nested approach). We used arrays of 
co-occurrences of alleles across pairs of loci (available at 
https://hiv.biozentrum.unibas.ch), which had undergone 
Zanini et al.’s quality assurance process for read mapping 
and filtering. This process included rigorous checks for 
base quality, mapping errors, and sample contamination. 
We also used the estimated dates of infection (EDIs) as 
provided by Zanini et al., and each time point was mea
sured relative to the EDI for the corresponding participant.

To assess if higher viral load is associated with a differ
ence in recombination rate, we sorted pairs of time points 
into groups based on their average viral load. We started 
by matching genotype information from each sampling 
time point with a viral load measurement near the same 
time. For the majority of the data, the date of sample col
lection exactly matched the date of the viral load measure
ment. However, some samples from participants 4 and 7 
did not have a concurrent viral load measurement and 
were therefore matched to viral load measurements within 
100 days of the sample’s collection. Additionally, data from 
Participant 10 was omitted from the analysis due to nearly 
all of the time points lacking viral load measurements 
within 100 days. For each pair of time points, we calculated 
the average viral load by taking the mean of the viral load 
measurements matched to those two samples. For pairs of 
time points with intervening viral load measurements, we 
required that those viral loads stayed within the bounds of 
the viral loads measured at the starting and ending time 
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points. Pairs of time points with an intervening measure
ment that violated these boundaries were excluded from 
the analysis to ensure that the average viral loads used 
to group the data are as accurate as possible.

For the quantile analyses, the LDMs were labeled with 
the average viral loads across their corresponding time 
point pairs and divided based on average load to make 
two (Fig. 5 and supplementary Fig. S15, Supplementary 
Material online) or three (Fig. 4 and supplementary 
Fig. S12, Supplementary Material online) groups with ap
proximately equal numbers of LDMs (supplementary 
Table S1, Supplementary Material online). Since a single 
pair of time points could have many corresponding 
LDMs, the size of the groups sometimes varied by ≈ 
1,000 measurements since all LDMs per time point pair 
were included in the same group. For the threshold 
analysis shown in supplementary Figs. S13 and S14, 
Supplementary Material online, the pairs of time points 
were placed into groups based on whether their average 
viral load was above or below a given threshold, and we 
then applied RATS-LD separately to the high and low vir
al load groups.

We also performed three additional checks to confirm 
our observations. First, to ensure the pattern observed in 
Fig. 4C was not solely driven by data from a single partici
pant, we performed a leave-one-out analysis in which we re
peated estimation excluding all data from one participant at 
a time. Second, to ensure that our results were not driven by 
two individuals who experienced superinfection, we per
formed an analysis leaving out both of these individuals sim
ultaneously. Third, we analyzed a dataset of viral sequences 
described in Caskey et al. (2017), which served as a partial 
biological replicate. These sequences were collected from 
15 study participants with rebounding viral populations 
after a single infusion of a broadly neutralizing antibody 
treatment. All participants were either ART naive or were 
off ART for 8 weeks prior to the study start. We used only 
the data produced via single genome sequencing, which 
provided an average sequencing depth of ≈ 23 reads. We 
aligned the sequences using the LANL Codon Alignment 
v2.1.0 tool (https://www.hiv.lanl.gov) and manually checked 
alignments before proceeding with the estimation process. 
Additionally, we used only the data starting at 4 weeks post- 
treatment, when viral populations were rebounding. Prior 
to the estimation, we grouped the full data set due to the 
low sequencing depth and relatively low viral loads 
(supplementary Fig. S8B, Supplementary Material online).

Data Filtering
We started with data from all time points and all pairs of 
SNPs which were close enough to be spanned by sequen
cing reads. Then, we used several filtering steps in both the 
simulated and in vivo datasets to reduce noise. (i) We re
quired that at least 10 reads span a pair of loci for that pair 
to be included in the analysis. (ii) SNPs at each time point 
were included only if the minor allele had a frequency 
>1% at that time point. We chose this cutoff since 
Zanini et al. (2015) report that SNP frequencies can be 

estimated down to 1% accuracy in the in vivo dataset 
we analyzed. Any SNPs transiently under 1% frequency 
were not included in the analysis at the corresponding 
time point, but were included at other time points where 
they reached the frequency threshold. In the Caskey et al. 
dataset, we used a >10% allele frequency cutoff due to its 
lower sampling depth. For the linkage analysis displayed in 
supplementary Fig. S6, Supplementary Material online, we 
required a minor allele frequency >20% to replicate the fil
tering conditions used to generate supplementary Fig. 7 of
Zanini et al. (2015). Filtering step 2 prevented false linkage 
signals from very low frequency alleles appearing and disap
pearing between time points. (iii) All four possible haplo
type combinations of the major and minor alleles at a 
pair of loci had to be observed at a given time point to 
be included in the analysis at that time point. Exception: 
for the analysis with the D statistic (supplementary Fig. 
S16, Supplementary Material online), we did not require 
that all four possible haplotypes were present. (iv) 
Because the investigation focused on the decay of linkage 
across pairs of time points, we required that D′ > 0.2 at 
the first time point in each pair (or D > 0.0075 for the ana
lysis using D). RATS-LD’s ability to discriminate between 
underlying recombination rates is robust to changes in 
this threshold. (v) Lastly, we excluded a small number of 
time point pairs that spanned less than 50 days, since the 
signal of linkage decay at such short timescales is also very 
susceptible to noise. While we did not explicitly filter out 
large time step differences between time point pairs, nearly 
all LDMs (92% of the in vivo LDMs, 99.29% of the neutral 
simulated LDMs, and 99.53% of the selected simulated 
LDMs) were from SNP pairs separated by 130 to 300 genera
tions. An additional 4% on in vivo LDMs were separated by 
50 to 130 generations. For counts of segregating loci and 
their corresponding LDMs which passed these filtering 
steps, consult supplementary Tables S1 and S2, 
Supplementary Material online.

Discrimination Analysis
To validate that RATS-LD can discriminate between differ
ent recombination rates, we randomly paired simulations 
with recombination rates that were a factor of 1, 1.1, 1.2, 
1.5, 2, or 5 apart. For each value of ρ we used 20 datasets 
of ≈ 1,000 neutrally evolving loci which were simulated 
in SLiM as described above. We applied RATS-LD to 
each simulated dataset to produce a ρ̂ estimate given by 
the median of its corresponding bootstrapped distribution 
(1,000 bootstraps). To compare two given ρ values, we ran
domly paired these estimates to create 20 matched pairs. 
For each matched pair with true recombination rates 
ρ1 and ρ2, we computed two comparison metrics. 
(i) Simple rank order: we determined whether the individ
ual estimates ρ̂1 and ρ̂2 were correctly ordered such that 
ρ̂1 > ρ̂2 if ρ1 > ρ2. If ρ1 = ρ2, we checked agreement against 
an arbitrary ordering. (ii) Bootstrapped significance: we de
termined whether the bootstrapped ρ̂ distributions from 
the datasets overlapped. We reshuffled the pairings and re
computed the two metrics 500 times.
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