Skip to main content
. Author manuscript; available in PMC: 2024 Jan 10.
Published in final edited form as: Stat Med. 2023 Apr 5;42(14):2420–2438. doi: 10.1002/sim.9730

Table 2.

Parameter estimation results: Estimated mean bias (standard deviation) of trajectory parameter estimators from 3-class model of 500 randomly generated datasets with 3 classes and 100 subjects per class by estimation method, assigned class, and correlation structure and level assumed when generating the data.

LCTA Method

Class 1 Class 2 Class 3

True ∑ True ρ Intercept Slope Intercept Slope Intercept Slope

I = AR(1) = CS 0.00 0.000 (0.082) −0.002 (0.034) −0.000 (0.094) −0.007 (0.040) 0.001 (0.082) −0.048 (0.035)
AR(1) 0.05 −0.017 (0.086) 0.002 (0.038) 0.006 (0.092) −0.006 (0.041) 0.009 (0.088) −0.046 (0.037)
AR(1) 0.10 −0.013 (0.095) −0.003 (0.037) −0.000 (0.101) −0.003 (0.042) 0.024 (0.093) −0.051 (0.039)
AR(1) 0.25 −0.057 (0.108) 0.001 (0.044) 0.007 (0.112) −0.005 (0.051) 0.058 (0.104) −0.047 (0.039)
AR(1) 0.50 −0.174 (0.129) 0.009 (0.043) 0.004 (0.118) −0.002 (0.057) 0.178 (0.125) −0.054 (0.044)
CS 0.05 −0.028 (0.095) 0.002 (0.035) −0.003 (0.093) −0.003 (0.041) 0.030 (0.085) −0.049 (0.035)
CS 0.10 −0.061 (0.091) 0.007 (0.034) 0.002 (0.093) −0.001 (0.044) 0.066 (0.089) −0.054 (0.032)
CS 0.25 −0.170 (0.107) 0.021 (0.035) 0.000 (0.100) −0.005 (0.049) 0.161 (0.111) −0.065 (0.033)
CS 0.50 −0.316 (0.135) 0.038 (0.031) 0.013 (0.110) 0.001 (0.049) 0.344 (0.136) −0.085 (0.029)

CPMM Method Modeled as AR(1)

Class 1 Class 2 Class 3

True ∑ True ρ Intercept Slope Intercept Slope Intercept Slope

I = AR(1) = CS 0.00 0.000 (0.082) −0.002 (0.034) −0.000 (0.094) −0.007 (0.040) 0.001 (0.082) −0.048 (0.035)
AR(1) 0.05 0.006 (0.083) −0.003 (0.034) −0.003 (0.098) −0.001 (0.042) 0.002 (0.088) −0.048 (0.036)
AR(1) 0.10 0.002 (0.095) −0.003 (0.037) 0.000 (0.104) −0.003 (0.042) 0.009 (0.093) −0.051 (0.039)
AR(1) 0.25 −0.007 (0.112) 0.003 (0.053) 0.008 (0.130) −0.005 (0.062) 0.008 (0.104) −0.048 (0.041)
AR(1) 0.50 −0.035 (0.213) 0.007 (0.110) 0.008 (0.174) −0.001 (0.102) 0.027 (0.167) −0.047 (0.063)
CS 0.05 −0.024 (0.095) 0.003 (0.035) −0.003 (0.093) −0.003 (0.041) 0.026 (0.086) −0.049 (0.035)
CS 0.10 −0.054 (0.091) 0.007 (0.034) 0.002 (0.094) −0.001 (0.044) 0.058 (0.089) −0.054 (0.032)
CS 0.25 −0.153 (0.108) 0.020 (0.035) −0.001 (0.103) −0.006 (0.051) 0.143 (0.111) −0.064 (0.033)
CS 0.50 −0.294 (0.151) 0.032 (0.033) 0.006 (0.126) −0.002 (0.059) 0.311 (0.151) −0.081 (0.030)

CPMM Method Modeled as CS

Class 1 Class 2 Class 3

True ∑ True ρ Intercept Slope Intercept Slope Intercept Slope

I = AR(1) = CS 0.00 0.001 (0.083) −0.002 (0.034) −0.000 (0.094) −0.007 (0.041) 0.000 (0.084) −0.048 (0.035)
AR(1) 0.05 0.016 (0.089) −0.005 (0.037) −0.002 (0.105) −0.002 (0.057) −0.006 (0.094) −0.048 (0.057)
AR(1) 0.10 0.025 (0.107) −0.005 (0.052) 0.004 (0.122) −0.004 (0.097) −0.013 (0.109) −0.051 (0.081)
AR(1) 0.25 0.116 (0.210) 0.092 (0.262) 0.002 (0.194) −0.014 (0.365) −0.110 (0.214) −0.131 (0.244)
AR(1) 0.50 0.421 (0.166) 0.299 (0.425) 0.006 (0.131) −0.007 (0.453) −0.423 (0.163) −0.345 (0.415)
CS 0.05 −0.002 (0.113) 0.002 (0.088) −0.004 (0.103) −0.003 (0.045) 0.005 (0.102) −0.048 (0.078)
CS 0.10 −0.001 (0.098) 0.000 (0.036) 0.004 (0.114) −0.001 (0.054) 0.008 (0.103) −0.048 (0.070)
CS 0.25 −0.011 (0.115) −0.001 (0.048) −0.002 (0.153) −0.004 (0.100) 0.001 (0.122) −0.044 (0.046)
CS 0.50 −0.016 (0.139) −0.007 (0.051) −0.002 (0.174) −0.010 (0.088) 0.020 (0.134) −0.046 (0.042)

(1) The class output of CPMM and LCTA was aligned to the true classes in the simulation model based on estimated trajectory parameters.

(2) I = Independent; AR(1) = auto-regressive lag 1; CS = compound symmetric; LCTA method always modeled as Independent.