Table 2.
Parameter estimation results: Estimated mean bias (standard deviation) of trajectory parameter estimators from 3-class model of 500 randomly generated datasets with 3 classes and 100 subjects per class by estimation method, assigned class, and correlation structure and level assumed when generating the data.
LCTA Method | |||||||
---|---|---|---|---|---|---|---|
| |||||||
Class 1 | Class 2 | Class 3 | |||||
| |||||||
True ∑ | True ρ | Intercept | Slope | Intercept | Slope | Intercept | Slope |
| |||||||
I = AR(1) = CS | 0.00 | 0.000 (0.082) | −0.002 (0.034) | −0.000 (0.094) | −0.007 (0.040) | 0.001 (0.082) | −0.048 (0.035) |
AR(1) | 0.05 | −0.017 (0.086) | 0.002 (0.038) | 0.006 (0.092) | −0.006 (0.041) | 0.009 (0.088) | −0.046 (0.037) |
AR(1) | 0.10 | −0.013 (0.095) | −0.003 (0.037) | −0.000 (0.101) | −0.003 (0.042) | 0.024 (0.093) | −0.051 (0.039) |
AR(1) | 0.25 | −0.057 (0.108) | 0.001 (0.044) | 0.007 (0.112) | −0.005 (0.051) | 0.058 (0.104) | −0.047 (0.039) |
AR(1) | 0.50 | −0.174 (0.129) | 0.009 (0.043) | 0.004 (0.118) | −0.002 (0.057) | 0.178 (0.125) | −0.054 (0.044) |
CS | 0.05 | −0.028 (0.095) | 0.002 (0.035) | −0.003 (0.093) | −0.003 (0.041) | 0.030 (0.085) | −0.049 (0.035) |
CS | 0.10 | −0.061 (0.091) | 0.007 (0.034) | 0.002 (0.093) | −0.001 (0.044) | 0.066 (0.089) | −0.054 (0.032) |
CS | 0.25 | −0.170 (0.107) | 0.021 (0.035) | 0.000 (0.100) | −0.005 (0.049) | 0.161 (0.111) | −0.065 (0.033) |
CS | 0.50 | −0.316 (0.135) | 0.038 (0.031) | 0.013 (0.110) | 0.001 (0.049) | 0.344 (0.136) | −0.085 (0.029) |
| |||||||
CPMM Method Modeled as AR(1) | |||||||
| |||||||
Class 1 | Class 2 | Class 3 | |||||
| |||||||
True ∑ | True ρ | Intercept | Slope | Intercept | Slope | Intercept | Slope |
| |||||||
I = AR(1) = CS | 0.00 | 0.000 (0.082) | −0.002 (0.034) | −0.000 (0.094) | −0.007 (0.040) | 0.001 (0.082) | −0.048 (0.035) |
AR(1) | 0.05 | 0.006 (0.083) | −0.003 (0.034) | −0.003 (0.098) | −0.001 (0.042) | 0.002 (0.088) | −0.048 (0.036) |
AR(1) | 0.10 | 0.002 (0.095) | −0.003 (0.037) | 0.000 (0.104) | −0.003 (0.042) | 0.009 (0.093) | −0.051 (0.039) |
AR(1) | 0.25 | −0.007 (0.112) | 0.003 (0.053) | 0.008 (0.130) | −0.005 (0.062) | 0.008 (0.104) | −0.048 (0.041) |
AR(1) | 0.50 | −0.035 (0.213) | 0.007 (0.110) | 0.008 (0.174) | −0.001 (0.102) | 0.027 (0.167) | −0.047 (0.063) |
CS | 0.05 | −0.024 (0.095) | 0.003 (0.035) | −0.003 (0.093) | −0.003 (0.041) | 0.026 (0.086) | −0.049 (0.035) |
CS | 0.10 | −0.054 (0.091) | 0.007 (0.034) | 0.002 (0.094) | −0.001 (0.044) | 0.058 (0.089) | −0.054 (0.032) |
CS | 0.25 | −0.153 (0.108) | 0.020 (0.035) | −0.001 (0.103) | −0.006 (0.051) | 0.143 (0.111) | −0.064 (0.033) |
CS | 0.50 | −0.294 (0.151) | 0.032 (0.033) | 0.006 (0.126) | −0.002 (0.059) | 0.311 (0.151) | −0.081 (0.030) |
| |||||||
CPMM Method Modeled as CS | |||||||
| |||||||
Class 1 | Class 2 | Class 3 | |||||
| |||||||
True ∑ | True ρ | Intercept | Slope | Intercept | Slope | Intercept | Slope |
| |||||||
I = AR(1) = CS | 0.00 | 0.001 (0.083) | −0.002 (0.034) | −0.000 (0.094) | −0.007 (0.041) | 0.000 (0.084) | −0.048 (0.035) |
AR(1) | 0.05 | 0.016 (0.089) | −0.005 (0.037) | −0.002 (0.105) | −0.002 (0.057) | −0.006 (0.094) | −0.048 (0.057) |
AR(1) | 0.10 | 0.025 (0.107) | −0.005 (0.052) | 0.004 (0.122) | −0.004 (0.097) | −0.013 (0.109) | −0.051 (0.081) |
AR(1) | 0.25 | 0.116 (0.210) | 0.092 (0.262) | 0.002 (0.194) | −0.014 (0.365) | −0.110 (0.214) | −0.131 (0.244) |
AR(1) | 0.50 | 0.421 (0.166) | 0.299 (0.425) | 0.006 (0.131) | −0.007 (0.453) | −0.423 (0.163) | −0.345 (0.415) |
CS | 0.05 | −0.002 (0.113) | 0.002 (0.088) | −0.004 (0.103) | −0.003 (0.045) | 0.005 (0.102) | −0.048 (0.078) |
CS | 0.10 | −0.001 (0.098) | 0.000 (0.036) | 0.004 (0.114) | −0.001 (0.054) | 0.008 (0.103) | −0.048 (0.070) |
CS | 0.25 | −0.011 (0.115) | −0.001 (0.048) | −0.002 (0.153) | −0.004 (0.100) | 0.001 (0.122) | −0.044 (0.046) |
CS | 0.50 | −0.016 (0.139) | −0.007 (0.051) | −0.002 (0.174) | −0.010 (0.088) | 0.020 (0.134) | −0.046 (0.042) |
(1) The class output of CPMM and LCTA was aligned to the true classes in the simulation model based on estimated trajectory parameters.
(2) I = Independent; AR(1) = auto-regressive lag 1; CS = compound symmetric; LCTA method always modeled as Independent.