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Abstract

The prediction of peptide amyloidogenesis is a challenging problem in the field of protein folding. 

Large language models, such as the ProtBERT model, have recently emerged as powerful tools 

in analyzing protein sequences for applications such as predicting protein structure and function. 

In this letter, we describe the use of a semi-supervised and fine-tuned ProtBERT model to predict 

peptide amyloidogenesis from sequence alone. Our approach, which we call AggBERT, achieved 

state-of-the-art performance, demonstrating the potential for large language models to improve 

the accuracy and speed of amyloid fibril prediction over simple heuristics or structure-based 

approaches. This work highlights the transformative potential of machine learning and large 

language models in the fields of chemical biology and biomedicine.

Graphical Abstract

1. INTRODUCTION

Biologics, namely proteins and peptides, have found numerous applications in 

biotechnology and medicine, serving as catalysts, antibodies, and signaling molecules.1–4 

Peptides in particular have demonstrated efficacy as therapeutics, serving as hormones 

or modulators of protein-protein interactions.5 However, the formation of amyloid-like 

structures through a process called amyloidogenesis is a persistent challenge in the 
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development of novel peptide therapeutics.6 Amyloidogenesis leads to a significant decrease 

in half-life, and therapeutic agents that aggregate when administered in vivo have shown 

significantly more immunogenicity than their nonaggregating counterparts.7 Furthermore, 

amyloidogenesis of native polypeptides is a threat to human health, as many prevalent 

diseases including type II Diabetes Mellitus, Alzheimer’s Disease, and Parkinson’s Disease 

are associated with protein or peptide amyloidogenesis.8

While amyloidogenesis is often associated with unfolded or misfolded proteins, recent 

evidence suggests that even natively folded, globular proteins can undergo amyloid-like 

aggregation.9, 10 Characteristics such as general hydrophobicity, β-strand propensity, and 

low net charge have been commonly attributed to amyloid-like sequences and have been 

used to develop many of the predictive models for amyloid-like aggregation.11 However, 

functional amyloids found in bacteria and yeast have challenged this view, as they possess 

properties that do not conform to the traditional heuristics for predicting amyloidogenic 

sequences.8 Further investigation has revealed that globular proteins additionally contain 

a significant number of aggregation-prone regions (APRs) throughout their polypeptide 

sequences.9, 10 These short, buried peptide sequences stabilize protein tertiary structure 

and can contribute to amyloid formation when exposed to solvent. To better understand 

amyloid structure and identify APRs, alternative models have investigated residue-specific 

propensities for native folding versus aggregation.12

For instance, Waltz13 makes predictions of pro-amyloidogenicity simply from a position 

specific scoring matrix derived from the WaltzDB14 itself. The Aggrescan model11 is 

similarly based on the presence of motifs from sliding windows in experiments involving 

amyloid-beta mutant fusion proteins. Other models like Tango15 are simpler and are built 

upon beta-sheet secondary structure prediction. On the other hand, MetAmyl, Pasta 2.0 

and GAP utilized machine learning to predict peptide pro-amyloidogenicity. MetAmyl16 is 

a logistic regression model built on sequence and physiochemical property features. Pasta 

2.017 and GAP18 are very similar methods to MetAmyl, but both utilize support vector 

machines for prediction rather than logistic regression. However, a unique approach by 

Louros et al. demonstrated that a logistic regression machine learning model constructed 

from energetic terms in the FoldX empirical forcefield (Cordax) was most effective in 

predicting amyloidogenic peptides compared to prior methods.19 These findings highlight 

the potential for new approaches to improve the prediction of pro-amyloid sequences to 

understand their potential implications in human disease and drug design.

Large language models (LLMs), such as the ProtBERT model, have revolutionized the 

field of natural language processing and have recently been applied to the analysis of 

protein sequences.20, 21 ProtBERT is a transformer-based language model that has been 

pre-trained on a massive corpus of protein sequences (UniRef 90, ~106M sequences) and 

has shown remarkable performance in predicting protein structure and function.22 In this 

work, we utilize a semi-supervised and fine-tuned ProtBERT model to predict peptide 

amyloidogenesis, taking advantage of its ability to learn complex sequence-phenotype 

relationships.23, 24 Our approach, which we call AggBERT, represents a significant 

improvement in F1 score over traditional heuristics or structure-based methods and 
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demonstrates the potential for LLMs to accelerate the discovery of new insights into protein/

peptide amyloid formation.11, 19

2. COMPUTATIONAL METHODS

2.1 DATABASE AND MACHINE LEARNING STRATEGIES

To train and evaluate our LLMs for prediction of peptide amyloidogenesis, we used the 

Waltz-DB 2.0 database, which is the largest publicly compiled database of peptides with 

curated annotations of amyloidogenesis.14 The Waltz-DB 2.0 database of 6-mer peptides 

contains 1399 peptides (when sequences present in both classes are removed), of which 507 

are amyloidogenic and 892 are non-amyloidogenic.

Although previously published methods utilized heuristics or Leave-One-Out Cross 

Validation (LOO-CV) to benchmark their predictions, in this study, we employed a rigorous 

training and testing set that was constructed by unbiased sampling from a manifold 

of peptide 6-mer space.25 This approach allows for a more accurate assessment of the 

generalizability of our model compared to the LOO-CV strategy which has been commonly 

used. Enumeration of our datasets can be found on our GitHub at https://github.com/ejp-lab/

EJPLab_Computational_Projects/tree/master/AmyloidPrediction.

2.2 MANIFOLD LEARNING AND DATASET CURATION

In order to develop a manifold of 6-mer space useful for rigorous dataset curation, we began 

by generating a list of all 64 million possible 6-mer sequences. To featurize these sequences, 

we employed two strategies: one-hot encoding and bioinformatic features from the pySAR 

library.26 One-hot encoding was employed using the single letter codes for the standard 

20 amino acids as there are no positional ambiguities in the WaltzDB 2.0 database. The 

resulting feature files were too large for manifold learning directly, as the database files were 

on the order of tens of gigabytes. Therefore, we utilized the dask python library to create 

partitions that could be batch processed in memory.27

We trained two dense autoencoders using Keras and TensorFlow 2 to learn a low-

dimensional manifold for sequence and bioinformatic features.28, 29 The model architecture 

and other hyperparameters of these autoencoders were tuned using the Optuna python 

library to minimize reconstruction error (mean squared error loss, MSE loss) over 25 trials 

of Bayesian optimization.30 Model embeddings were extracted from the bottleneck layers of 

the autoencoders.

To curate the training and testing datasets, we utilized the k-means clustering algorithm from 

scikit-learn on the combined one-hot encoded sequence features and pySAR manifold.31, 32 

The clustering was performed using the CuDF/CuML python libraries for faster processing 

on GPUs. The number of clusters was selected by optimizing for the minimum of the 

Davies-Bouldin score as the number of clusters increased.33 Once a suitable k was 

identified, we constructed stratified samples from each cluster to create the training and 

testing datasets with a testing set size of 20%. Visualization of the manifolds were 

performed using the Uniform Manifold Approximation (UMAP) decomposition strategy 

from CuML.34 The small number of outliers (~5) produced by GPU instability were 
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removed if the point was 3 standard deviations from the manifold centroid and the resulting 

embeddings were plotted with matplotlib.35

2.3 SUPERVISED TRANSFORMER

We utilized a supervised transformer model as our first approach to predicting protein 

amyloidogenicity. This involved fine-tuning the ProtBERT model from the Hugging Face 

library on our curated training set.36 To optimize the model’s performance, we employed 

Optuna to tune its hyperparameters over 25 trials, with the F1 score from 5-fold cross-

validation serving as the tuning metric. We also applied regularization to the binary 

cross-entropy loss function by incorporating the expected calibration error. Calibration was 

accomplished using a temperature term, which prevented the model’s logits from becoming 

too hard early in the training phase. Once the models were tuned, we applied hard vote 

bagging with the five cross-validation models to label the curated testing set.37

2.4 SEMI-SUPERVISED TRANSFORMER

To further improve the quality of our supervised transformer model, we implemented a 

semi-supervised training approach. The entire space of 6-mer peptides, consisting of 64 

million sequences, were labeled using the supervised transformer model. Highly confident 

predictions with a probability greater than 0.8 were selected to train a large semi-supervised 

transformer model. Given the size and training times for this model, we did not perform 

tuning, and training occurred for only one epoch. Finally, as before, the trained semi-

supervised model was used to label the testing set for the final predictions.

RESULTS AND DISCUSSION

In this study, we developed a workflow to predict 6-mer peptide amyloidogenicity using 

LLMs. As shown in Figure 1, our workflow begins with manifold learning, which maps 

the high-dimensional representation of the peptides (one-hot encoded sequences plus 

bioinformatic descriptors) into a lower-dimensional space more suitable for analysis. We 

then curated training and testing datasets to train and benchmark a supervised transformer 

classification model on the Waltz-DB 2.0 database as detailed in the methods section. 

Finally, we improved the performance of the supervised transformer by using a semi-

supervised training procedure that learned from both the labeled and unlabeled 6-mer 

peptide possibilities. We call this final model AggBERT.

To evaluate the characteristics of the Waltz-DB 2.0 database, we performed exploratory 

data analysis and investigated the relationship between sequence composition and amino 

acid type effects on amyloidogenicity. As shown in Figure 2, we observed that peptides 

containing valine and isoleucine were more likely to be pro-amyloidogenic whereas peptides 

including glutamine, serine, asparagine, arginine, glycine, and proline were more likely to be 

nonamyloidogenic. This is further supported from the by-group analysis demonstrating that 

nonpolar amino acids (Asp, Ilu, Leu, Met, Val) are more likely to be involved in amyloid 

aggregation whereas polar amino acids (Cys, Asn, Gln, Ser, Thr) are not. While these simple 

heuristics are consistent with previous studies, they incompletely describe amyloid space.
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An important hypothesis that we wanted to test was that the Waltz-DB 2.0 database is 

representative of the greater 6-mer space and that models trained on this database would 

generalize well to novel amyloid sequences. Therefore, we employed a strategy of learning 

low-dimensional manifolds for 6-mers. In total, we learned three different manifolds for the 

64 million 6-mer peptides according to one-hot sequence features (Supporting Information, 

SI, Figure S4), pySAR features (SI Figure S5), and the concatenation of the two embeddings 

(Figure 3). We observed that the one-hot sequence manifold was circular and uniform, 

which is unsurprising given that every possible combination of 6-mer was represented. 

However, the manifold for the pySAR features, which includes chemical, physiochemical, 

and autocorrelation features, exhibited unique and structured characteristics. Nevertheless, 

we found that the Waltz-DB 2.0 database had strong coverage across the combined 

manifold, and the response class labels were relatively separated by the Davies-Bouldin 

metric for 22 clusters. Additionally, we noted enrichment of class labels within the two-

dimensional representation of embedding space. This indicates that our manifold learning 

approach effectively represents the high-dimensional sequence and bioinformatic space in a 

lower-dimensional space. This dataset curation method enabled us to robustly assess model 

generalization and learn more about amyloid space.

We performed model training and benchmarking after curating our datasets, which included 

a comparison of both the final AggBERT model and our supervised transformer model’s 

performance against other literature benchmarks. Our models outperformed the benchmarks 

for the overwhelming majority of classification metrics, as shown in Table 1. Particularly 

noteworthy was the large improvement in F1 score for the positive class, which is a 

significant step forward as it enables the model to better identify novel amyloid sequences 

from the greater 6-mer space. It is important to note that our models were evaluated 

using a held-out testing set, while the other literature benchmarks used a leave-one-out 

validation strategy. Therefore, the difference in model metrics between our approach and 

other literature benchmarks is more pronounced, providing a strong argument for our 

LLM method. The AggBERT semi-supervised approach further improved the benchmarking 

metrics over the supervised transformer model, indicating that the learned representations 

from Waltz-DB 2.0 were capable of labeling meaningful patterns in the greater 6-mer space, 

leading to further improvements in generalization.

In order to better understand the behavior of our two LLMs, we performed the following 

three analyses: classification histograms, receiver operating characteristic (ROC) plots, 

and visualized model embeddings. As shown in Figure 4, the classification histograms 

for the supervised transformer and the AggBERT semi-supervised transformer show good 

separation between the positive and negative classes, with probabilities near 0 and 1. The 

AggBERT semi-supervised model shows a slight decrease in model confidence which may 

serve as targets for future dataset expansion in an active learning approach. Additionally, 

as shown in Figure 5, the ROC plots for both models show strong performance, with 

area under the curve (AUC) values of 0.90. Finally, we visualized the embeddings of the 

supervised and semi-supervised transformer models. Displayed in Figure 6, the embeddings 

of the AggBERT semi-supervised transformer appear more continuous than those of the 

supervised transformer. This potentially suggests that larger scale training on more diverse 

sequences of the AggBERT semi-supervised transformer may be better at capturing a 
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presumed gradient between amyloidogenic and non-amyloidogenic sequences (Figure S8). 

This gradient could hint that an accumulation of amylogenic features that increases the 

likelihood of amyloidogenicity. These model properties may be more useful in downstream 

analyses such as identifying novel amyloid sequences.

CONCLUSION

In this letter, we present a novel approach to predict peptide amyloidogenesis using 

AggBERT, a semi-supervised and fine-tuned ProtBERT model benchmarked on diligently 

generated datasets from the Waltz-DB 2.0 database. Our method achieves state-of-the-art 

performance and demonstrates the potential of LLMs to improve the accuracy and speed of 

amyloid aggregation prediction over structure-based approaches. This work highlights the 

transformative potential of machine learning and LLMs in the fields of chemical biology and 

biomedicine.

Furthermore, our approach is the first to use a rigorous testing set generated by 

unsupervised autoencoders, rather than simple leave-one-out cross-validation, to evaluate 

the performance of amyloidogenesis predictive models. This ensures that our results are 

robust and reliable, providing a basis for future work in this area. Additionally, the 

AggBERT model has the potential to be used for identifying new amyloid sequences within 

proteins, which could lead to important discoveries in disease diagnosis and treatment. 

We have made available the predictions of AggBERT for all possible hexamer sequences 

on our GitHub at https://github.com/ejp-lab/EJPLab_Computational_Projects/tree/master/

AmyloidPrediction/ProspectivePredictions.

Overall, this work represents a significant step forward in the field of amyloidogenesis 

prediction, providing a powerful tool for academics and those in biologics drug discovery. 

In the future, we hope to combine the model presented here with models based on other 

experimental data sets for specific proteins, such as the collection of in vitro aggregation 

data for α-synuclein that we collected in Pancoe et al.38 or the α-synuclein yeast screening 

data from Newberry et al.39 More broadly, we are working to combine LLMs with molecular 

simulations in order to make further improvements on the customized score functions that 

we have previously developed for predicting the effects of mutations on the stability of 

protein interfaces,40 identifying tolerated sites for unnatural amino acid incorporation,41 

and designing peptide probes based on modest-sized data sets.42 We believe that there is a 

tremendous opportunity to develop highly effective predictive models by combining LLMs 

with simpler machine learning methods. By utilizing these techniques at their respective 

scales, LLMs can extract a vast amount of information from large unlabeled corpuses, 

while simpler physics-based ML (often involving de novo simulation) approaches can 

produce highly relevant features for describing smaller local datasets. With these tools at 

our disposal, we can improve our approaches in situations where we have previously only 

used one of these tools, such as identifying small molecule binding sites on α-synuclein 

fibrils43 or designing protease inhibitors.44 Of course, these represent just a small subset 

of the many biological applications of LLMs in combination with other machine learning 

methods and molecular simulations which can revolutionize our ability to interpret and 

predict biochemical phenomena.
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Figure 1. 
Workflow schematic for the development of AggBERT, a semi-supervised ProtBERT-based 

model for predicting peptide amyloidogenicity.
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Figure 2. 
Sequence composition of the WALTZ DB 2.0. The left panel displays amino acid frequency 

in the positive (aggregating and in blue) vs. negative (nonaggregating and in red) class. The 

right panel displays the frequency of amino acid types. Specific amino acid groupings are 

listed Table S1.
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Figure 3. 
Visualization of the 6-mer peptide space manifold using a combination of one-hot encoded 

sequence and pySAR features. The unlabeled data are shown in greyscale while the Waltz 

DB 2.0 points are displayed in red and blue according to their class label.
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Figure 4. 
Histograms representing the probabilistic confidence versus normalized frequency for the 

supervised transformer (Left) and AggBERT semi-supervised transformer (Right). Bars 

colored blue are pro-amyloidogenic, while those colored red are non-amyloidogenic. The 

vertical dashed line represents the probabilistic threshold of 0.5 which separates the 

classification of a sequence as pro-amyloid or not.
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Figure 5. 
Receiver Operating Characteristic curves for Waltz DB 2.0 models for the supervised 

transformer (Transformer) and AggBERT semi-supervised transformer (SS-Transformer). 

The dashed line in the center represents a random classifier.
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Figure 6. 
UMAP visualizations of the model embeddings of the Waltz DB 2.0 datapoints from the 

fine-tuned ProtBERT model (Left) and the semi-supervised ProtBERT model (AggBERT, 

Right). The points colored in blue display the pro-amyloidogenic sequences while the red 

points display the non-amyloidogenic sequences.
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Table 1.

Classification metrics from Leave-One-Out cross validation of literature models vs the methods trained in this 

study (bolded). Models are ordered by F1 score.

Algorithm Accuracy Precision Recall FPR MCC F1 AUC

AggBERT: Semi-supervised transformer 0.83 0.78 0.74 0.12 0.63 0.76 0.90

Supervised transformer 0.83 0.78 0.72 0.11 0.63 0.75 0.90

Cordax19 0.81 0.74 0.72 0.14 0.57 0.73 0.87

MetAmyl16 0.79 0.72 0.69 0.15 0.54 0.70 0.78

Pasta2.017 0.76 0.74 0.52 0.10 0.46 0.61 0.84

Tango15 0.73 0.82 0.31 0.04 0.38 0.45 0.64

Waltz14 0.67 0.54 0.65 0.33 0.34 0.60 0.73

AGGRESCAN11 0.57 0.60 0.85 0.54 0.29 0.71 0.84

Dummy 0.56 0.40 0.38 0.33 0.04 0.38 0.52

GAP18 0.51 0.42 0.94 0.74 0.25 0.58 0.70
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