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Abstract 

Novel screening and diagnostic tests based on artificial intelligence (AI) image recognition algorithms are proliferating. Some initial 
reports claim outstanding accuracy followed by disappointing lack of confirmation, including our own early work on cervical 
screening. This is a presentation of lessons learned, organized as a conceptual step-by-step approach to bridge the gap between the 
creation of an AI algorithm and clinical efficacy. The first fundamental principle is specifying rigorously what the algorithm is 
designed to identify and what the test is intended to measure (eg, screening, diagnostic, or prognostic). Second, designing the AI algo
rithm to minimize the most clinically important errors. For example, many equivocal cervical images cannot yet be labeled because 
the borderline between cases and controls is blurred. To avoid a misclassified case-control dichotomy, we have isolated the equivocal 
cases and formally included an intermediate, indeterminate class (severity order of classes: case>indeterminate>control). The third 
principle is evaluating AI algorithms like any other test, using clinical epidemiologic criteria. Repeatability of the algorithm at the 
borderline, for indeterminate images, has proven extremely informative. Distinguishing between internal and external validation is 
also essential. Linking the AI algorithm results to clinical risk estimation is the fourth principle. Absolute risk (not relative) is the crit
ical metric for translating a test result into clinical use. Finally, generating risk-based guidelines for clinical use that match local 
resources and priorities is the last principle in our approach. We are particularly interested in applications to lower-resource settings 
to address health disparities. We note that similar principles apply to other domains of AI-based image analysis for medical diagnos
tic testing.

Recent advances in artificial intelligence (AI)–based image recog
nition technology have led to many potential AI-based clinical 
tests. However, numerous initially promising applications have 
not proven ultimately to be useful, including our group’s early 
success in AI-based analysis of cervical images for cervical 
screening (1-3). Several years of interdisciplinary research and 
redesign have subsequently revealed some important lessons. 
We have developed a step-by-step approach for design and eval
uation of AI (deep learning) algorithms that fit into a risk-based 
screening strategy, based on the principle of “equal management 
of individuals at equal risk” (4). This strategy can be tailored to 
individual settings including low-resource ones, taking into con
sideration their unique risk tolerance and treatment capacity.

We are focusing on visual images, but the same principles can 
also be applied to microscopic images (5). Although our focus in 

this paper centers around cervical cancer screening, other work 
on radiologic diagnostics (6,7) and retinal analyses (8-10) indi
cates that the approach presented here has the potential for 
application in other fields as well.

Background: importance of cervical cancer 
prevention and designing a screening 
program in low-resource settings
For those not familiar with cervical screening and diagnosis, we 
briefly provide the background necessary to understand this 
example. Persistent cervical infection with carcinogenic geno
types of human papillomavirus (HPV) is the main cause of cervi
cal cancer, and the causal pathway from sequential states of 
infection to precancer to invasion is well understood (11). There 
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are prevention and treatment strategies, nevertheless, every year 
more than 300 000 women lose their lives because of this disease. 
Almost 90% of these losses occur in resource-limited countries. 
To address this worsening inequity, there is a critical need for 
streamlined vaccination efforts and the development of cost- 
effective and easily accessible, accurate, screening methods. 
Regarding screening, diagnosing and treating cervical precancer 
is proven to prevent invasive cancer. Currently, the World Health 
Organization recommends testing for high-risk HPV types as the 
primary screening method, ideally from a self-collected cervical– 
vaginal swab sample to permit more rapid population screening 
(12). HPV is common and usually benign at the early phases of 
the infection. Therefore, in high-resource settings, an additional 
triage test is used to further stratify the risk of cervical precancer 
or cancer (will be denoted as precancer/cancer) among HPV- 
positive individuals (ie, screen-triage-treat strategy) thus reduc
ing overtreatment. In lower-resource settings as well, HPV 
screening is recommended if practical. A screen-triage-treat 
strategy may be preferable to treating all HPV-positive individu
als when HPV prevalence is very high, treatment availability is 
limited, and/or there is a desire to balance test sensitivity with 
minimal unnecessary treatment. Progress in creating affordable 
HPV testing is detailed elsewhere (13,14). Currently, there is no 
triage test adequate for resource-limited settings that is rapid, 
simple, and cost-effective and does not require laboratory and 
pathology capabilities.

AI-assisted visual evaluation could help triage HPV-positive 
individuals. Magnified and highly illuminated visual evaluation 
of the cervix by clinicians using colposcopy is considered the 
standard of care in most high-resource settings, primarily to rule 
out cancer and to determine which areas of the cervix to biopsy. 
In resource-limited settings, a simpler unmagnified visual 
inspection with acetic acid is frequently used for triage to assess 
the need for treatment and eligibility for a simple thermal abla
tion procedure, rather than excision. However, visual assessment 
exhibits notable limitations in terms of intra- and interrater 
repeatability, even when magnified and performed by experts 
(12). Nonetheless, if standardized and made more reliable with 
the assistance of an AI algorithm, visual evaluation of the cervix 
could help fulfill the need for a rapid and inexpensive triage test.

We have successfully developed a deep learning–based 
method (a revised version of automated visual evaluation) to 
help recognize the precancerous changes among HPV-positive 
individuals who require treatment to prevent invasive disease 
(15). A large-scale validation initiative is underway. The main les
sons learned to date are detailed below.

Developing an AI-based visual classification 
that fits into a risk-based screening program
Step 1: Defining the purpose of an AI-based 
medical test like automated visual evaluation
Medical tests, whether for screening, diagnosis, or prognosis, are 
used to measure where an individual stands along the pathway 
from healthy to increasingly severe disease and/or death. 
Screening tests find abnormalities within the generally healthy 
population. Among cases (case is defined as an outcome of a par
ticular disease or any transitional state on the pathway to a spe
cific disease, in our example we define cases as cervical 
precancers with a high chance of progressing into cancer or 
worse situation like cervical cancer) with abnormalities, triage 
and diagnostic tests further determine who has abnormalities 
that represent true disease. Among cases with disease, 

prognostic tests predict the outcome. For visual tests, the crea
tion of an AI algorithm comes down to labeling many images to 
“train” the algorithm as to who are the cases and who are the 
controls (control is defined as being disease-free or being at the 
risk of transitioning into a case status on the causal pathway of a 
specific disease) at that point in the causal pathway. Careful con
sideration of case definition, for a given test, is sometimes over
looked in the search for sufficient “big data” sets. But larger 
numbers of cases do not overcome faulty labeling in producing 
statistical power for training an AI algorithm. For example, some 
AI algorithms for evaluation of cervical images have been trained 
to identify cases defined by any abnormal cytology, any grade of 
histologic cervical intraepithelial neoplasia, or visual abnormal
ities defined by gynecologist reviewers. The considerable error 
and imprecision in all of these subjective definitions guarantee 
that the AI algorithm will incorporate misclassification (ie, if the 
labeling of the training set has error, it will be reflected in the 
test performance). The optimal target of cervical screening pro
grams overall, to permit effective treatment to prevent cancer, 
would be precancers that are reasonably likely to invade if 
untreated. No widely available means to define precancers per
fectly are available, but a reasonable pragmatic definition is to 
label as cases those individuals with histologic diagnosis of cervi
cal intraepithelial neoplasia grade 3 (which subsumes carcinoma 
in situ) who also are known to be positive for 1 of the 13 known 
carcinogenic genotypes of HPV. As to the question of “who are 
the controls,” identification of precancer cases among all 
screened individuals implies the controls for training would be 
those without precancer, chosen to represent the broad variety 
of appearances of the healthy or, at most, HPV-infected cervix.

Two additional considerations of the purpose of an AI algo
rithm in clinical testing refer to what AI cannot overcome, as 
novel as the method can seem. First, the value of a test (ie, the 
average risk stratification obtained that justifies using a test), 
whether AI-based or not, depends on how common the case out
come is. The reader is referred for a more complete discussion on 
the topic that the same test of a given accuracy will provide less 
risk stratification when the outcome it is predicting is rare (16- 
18).

Finally, it is possible that an AI visual algorithm might some
day identify (ie, discover for the first time) features predicting 
case status that are currently completely unknown to us. But, for 
cervical screening so far, this has not been evident. The perform
ance of automated visual evaluation as any other visual method 
that evaluates the cervix depends on the adequate visualization 
of the transformation zone bounded by the squamous columnar 
junction (a ring of metaplastic epithelium at greatly increased 
risk for the development of cervical cancer). Thus, to assure 
adequate performance, cervical image analysis performs best at 
a specific age range (ie, approximately 25-45) at which the squa
mous columnar junction is fully visible, which defines our target 
population for triage with automated visual evaluation [for more 
details about our study, please refer to de Sanjose et al. (19)].

Step 2: Building the automated visual evaluation 
model incorporating clinical epidemiologic 
principles
Our early attempts to classify cervical images were vulnerable in 
retrospect to several weaknesses in algorithm development (3). 
Those included lack of repeatability across the replicate images 
captured from the same individual at the same screening visit, a 
fraction of precancer/cancer patients labeled as normal, and 
near-complete failure of what initially seemed to be an accurate 
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algorithm when applied to a dataset from a different source (ie, 
images captured with a different camera type). To address these 
issues, we conducted a series of experiments to determine the 
best performing automated visual evaluation algorithm with dif
fering deep-learning architectures, loss functions, balancing 
strategies, dropout methods, and different ground truth levels 
(20). We evaluated these models according to repeatability (per
centage of agreement in repeat evaluations) and true classifica
tion (percentage of overall true classifications and percentages of 
misclassified precancer/cancers as normal and vice versa) (20).

The most important of the lessons learned through this system
atic approach was to choose a multiclass ordinal classification (posi
tive, indeterminate, negative) rather than binary (positive, negative). 
A large group of equivocal cervical images are neither clear cases 
nor clear controls that arise from difficult or unfamiliar clinical pre
sentations and look-alike lesions. We realized the need to recognize 
an indeterminate class while assessing automated visual evaluation 
repeatability on replicate images of indeterminate cases. In our early 
work, classification of replicates flip-flopped profoundly between 
case and control. For uncertain cervical appearance that would 
ideally be classified repeatedly as indeterminate, one replicate might 
be classified as definitely normal, another image captured at the 
same visit from the same patient might be classified as high- 
probability precancer/cancer (repeatability in Supplementary Table 
1, available online). To reduce severe misclassification and lack of 
repeatability in automated visual evaluation screening tests, we for
malized the indeterminate category to act as a buffer zone. This cat
egory consists of images in between clearly normal and clearly 
precancer/cancer. By having these 3 ordinal classes, we were able to 
increase the distance between the 2 extreme classes (ie, normal and 
precancer/cancer), force equivocal changes into the indeterminate 
class, and have more homogeneous and accurate prediction of 
those images classified as precancer/cancer or normal.

The other fundamental lesson involved external validation 
and avoidance of overfitting. Deep-learning algorithms are 

created by extracting innumerable features of the image, esti
mating multiple parameters (ie, weights and bias terms), and 
back-and-forth iterations of the training process until the algo
rithm’s ability to mimic the labels taught to it are maximized on 
a held-back test set without obvious overfitting. The error term 
between the truth labels given it, and the predictions, is itera
tively minimized. When the fit is good, the algorithm is consid
ered to be well calibrated. Overfitting is common despite 
procedures meant to prevent it (21,22). The resultant area under 
the curve (AUC) of the receiver operating characteristic that 
crosses sensitivity and (1 − specificity) to summarize accuracy 
can be unrealistically high. The algorithms can lack real-world 
generalizability and cannot meet our aim of developing a screen
ing test that can reliably be used in many different settings. 
Therefore, external validation (eg, different settings, different 
camera types) is necessary to evaluate whether the model gener
alizes to the target population (Figure 1).

Incorporating a method called Monte-Carlo dropout [and 
“ensemble learning” not covered here (23-25)] increased repeatabil
ity and reduced overfitting in our algorithm (22). This method 
involves running dozens of replicates of the original deep-learning 
algorithm. At each iteration, some nodes in the neural network are 
masked at random, assuring that the algorithm is not learning itself 
into an unrealistic perfect state of prediction by weighting the vaga
ries of the features peculiar to that dataset. The final result of the 
algorithm, when Monte-Carlo dropout is used, is the average of 
these purposely varied iterations, each with its own idiosyncrasies. 
The average is robust. Another notable enhancement that miti
gated overfitting in our algorithm was the amalgamation of multi
ple distinct datasets (20) for training purposes. This strategic 
integration of diverse image collections, encompassing different 
camera types, populations, and settings, not only aided in diminish
ing model overfitting but also helped accumulate a sufficient num
ber of representative images across all stages of the disease’s 
natural history. Of note, however, if a new image type is still out of 

Training the model:

Training and valida�on sets

Internal valida on
Data source: Test set*
• Repeatability
• Accuracy
• Calibra�on

Fails

Good
performance

External valida on
Data source: External dataset

• Repeatability
• Accuracy
• Calibra�on

Fails
Good

performance

Validated
model

Add a small subset from the external dataset
into the training and valida�on and retrain the model.

Valida on for new se!ng
Data source: External data test set

• Repeatability
• Accuracy
• Calibra�on

Good
performance

Now the algorithm is adapted for
this new se!ng. But it is s�ll not
externally validated. Moving into a
new se!ng, external valida on is
required.

Figure 1. Model validation steps and portability of the algorithm. �Test set is part of the dataset where training and validation sets belong as well. For 
this reason, validation by using this test set is called internal validation. In other words, checking model performance through this test set can only prove 
validation of the model on the dataset it is trained on.
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the varied training distribution, the algorithm may still fail to per
form well when applied to the new set.

Step 3: Evaluation of model performance
AI produces results that arise from a hidden, or latent, combina
tion of weighting predictive features and their interactions. The 
hidden process and apparently exceptional accuracy can make 
AI algorithms seem distinct from usual assays. However, the 
data of all clinical tests regardless of the method must eventually 
pass standard clinical epidemiologic evaluation of the output. 
The key criteria we require in an AI-based medical test include 
the usual ones, in order of sufficiency (as they are all ultimately 
necessary); 1) repeatability, which is required for 2) accuracy, 
which is required in turn for 3) risk stratification (Supplementary 
Table 1, available online).

Repeatability is the first and foremost component to be satis
fied no matter how novel and intricate the test is, whether it is 
molecular biological or clinical or AI (see Supplementary Table 1, 
available online, for how to test for repeatability). If the test is 
repeatable, then we can move on to assess the accuracy of the 
test. The test accuracy is the ability of the test to correctly clas
sify cases (in our case, cervical precancer/cancer) and control 
individuals. For rare diseases, AUC might not be a good measure 
by itself for accuracy; therefore, we also tested the percentages 
of severely misclassified precancer/cancers called normal. 
Finally, the results of the test should separate patients at high 
absolute risk (high positive predictive value) from those at low 
absolute risk (low 1 minus negative predictive value), so we 
assess the average amount of risk stratification that the test pro
vides as a final component.

The assessment of repeatability, accuracy, and predictive val
ues is the goal of validation of algorithm performance. To begin 
the validation of an AI algorithm, the labeled dataset (for which 
the truth of case/control status is known) is typically partitioned 
into 3 randomly divided subsets, that is, for training, validation 
(not to be confused with the process of validation of the finalized 
algorithm described below), and testing. Labels for training and 
validation sets are openly provided to train the algorithm. The 
validation set is used to check on the growing fit of the algorithm 
(eg, adjusting hyperparameters), a technical step beyond this dis
cussion. It is obvious that the model be validated using the test 
set only (not the subsets used during algorithm construction). 
Less obvious is that the 3 sets are identical in terms of features 
except for random variation. It is therefore too easy to show good 
predictive ability in the test set that is so like the training set. 
AUC values near perfection are often achieved in this first, inter
nal validation (with the test set), through the countless iterations 
of try, assess, try again used to build the AI latent model. If inter
nal validation fails, the model must be retrained, as depicted in  
Figure 1. But too often it does not fail although it proves to have 
been overfitted on internal data and nonportable to external 
datasets. Following satisfactory internal validation with respect 
to accuracy, repeatability, and risk stratification (for definition 
and evaluation of each term, refer to Supplementary Table 1, 
available online), it is important to make the same assessments 
for an external dataset (external validation, Figure 1) that is real
istically representative of the target population in which the test 
will be used.

A study showed that only 6% of the studies, evaluating medi
cal images through AI algorithms for diagnostic purposes, pub
lished in 2018 had external validation (26). Recently, guidelines 
have been created to standardize reporting AI project results in 
medical imaging (27-30). External validation plays a crucial role 

in evaluating the generalizability of a model, which means being 
applicable to datasets that the model was not trained on, but 
rather datasets from populations of intended use. Examples of 
factors that make a test set external include geographic diversity 
(including data from various countries or regions), methodologi
cal variations (including images captured using different devices, 
as illustrated in our example), and a wide spectrum of population 
characteristics (such as age or data from immunosuppressed 
populations that are HIV positive) (31). In an early proof-of- 
concept analysis, we failed initially (because of small numbers of 
labeled image collections) to run an external validation test on 
the algorithm (1-3). The internal validation was nearly perfect, 
but the algorithm failed to classify the first external dataset we 
tried to classify.

After developing a new and optimized algorithm (20), we pro
ceeded to perform an external validation of the approach using a 
screening cohort from Zambia (15) with images captured by a 
camera (Samsung Galaxy J8) not included in our training set.

We were able to retrain the algorithm to work on the Zambian 
camera type. In other words, when first applied, the new algo
rithm again failed to distinguish cases from controls. The image 
collection device remains a major barrier to the application of AI- 
based image recognition, and to date, complete portability 
between camera types is not possible. To make our algorithm 
work well on new camera choices required retraining with 
expanded training and validation sets that include a small subset 
from the new (external) dataset (thus making the validation 
mainly but not completely external). Our experiments continue 
to gauge the ideal size of this small subset, but approximately 40- 
80 individuals’ data for each ground truth class proved sufficient; 
this number might vary (15). Thus, on the basis of our experience 
from our studies, we have learned that changing image capture 
device is a powerful factor in AI-based image analysis. However, 
change in geography and disease spectrum (ie, HIV positive in 
our example) does not affect the algorithm performance in our 
experience so far (15).

Figure 1 shows how the model is validated for the new setting 
after retraining. It is worth reiterating that, at this stage (with 
current supervised learning techniques), algorithm validation on 
an external dataset cannot be accomplished without limited 
retraining of the algorithm, and this predicament is a common 
challenge encountered by many deep-learning algorithms 
(32,33). In our automated visual evaluation project, we have 
chosen to use a dedicated camera device designed specifically for 
cervical screening to minimize the need for retraining.

Step 4: Estimating absolute risks from AI 
algorithm results
After validating the performance of the AI algorithm, the next 
step is to translate the results to a form that leads to manage
ment decisions; we estimate absolute risks of having or develop
ing precancer/cancer. The observed risk of precancer/cancer is 
calculated for all possible screening test results generated by our 
screening strategy with HPV genotyping and automated visual 
evaluation tests. Although the common view of AI algorithms is 
that they recognize an object (like a face), estimating the proba
bility of disease status based on disease-related features in 
images, it is important to recognize that the algorithm actually 
learns common features from images with the same ground 
truth values. Consequently, the algorithm outputs classification 
probabilities that reflect the algorithm’s prediction on each 
image belonging to each ground truth class (ie, simply classifica
tion probability). Therefore, one needs to be careful about the 
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interpretation of the probabilities created by the algorithm. 
These probabilities should not be evaluated as the probability of 
having a certain disease. To estimate the risk of having a disease 
status (in our example, having precancer/cancer), a risk model is 
necessary (Supplementary Table 1, available online).

We are building a statistical model to estimate disease risk. It 
can be built either using the AI-based test result alone or adding 
other covariates to obtain more precise estimates. In our exam
ple, we are combining HPV genotype status with the automated 
visual evaluation test result to obtain precancer/cancer risk of 
patients (Figure 2). According to our screening strategy defined 
above, HPV-positive individuals will be assigned to 1 of 4 hier
archical HPV genotype groups (HPV 16 positive, else HPV 18 or 45 
positive, else HPV 31 and/or 33 and/or 35 and/or 52 and/or 58 
positive, else HPV 39 and/or 51 and/or 56 and/or 59 and/or 68 
positive), and their cervix image will be classified as 1 of 3 catego
ries (normal, indeterminate, precancer/cancer) by automated 
visual evaluation. Combining (crossing) HPV genotype and auto
mated visual evaluation class, each individual will be allocated 
to 1 of 12 risk categories, as outlined in Figure 2. Through our ini
tial risk estimation analyses, we have been able to directly assess 
the risk of precancer/cancer occurrence for each of these catego
ries (15). Although the precise rank order (and absolute risk) of 
these 12 categories may vary across different regions, subse
quently consolidating them into 4 groups, as illustrated in  
Figure 2 (highest, high, medium, low) permits consistency of the 
order across various settings.

Step 5: Creating risk-based management 
guidelines
The absolute risks in the risk model can be organized using a 
concentration curve (see Supplementary Methods, available 
online) to display the risk distribution from highest to lowest 
yield of cases. This curve can be used by local decision makers in 
formulating their own risk-based management guidelines tail
ored to their specific setting. We illustrate the use of a concentra
tion curve on a hypothetical population in Figure 3. This 
approach is a visual representation that aids in understanding 
the risk distribution within the population and supports the 

development of context-specific guidelines. Specifically, a con
centration curve shows the percentage of the population that 
needs to be managed to eliminate a certain percentage of pre
cancers or cancers expected in that population (see 
Supplementary Methods, available online). This is a helpful tool 
for local experts to define cutoff points (also called clinical action 
management thresholds) for available management options in 
that setting (34,35). The right side of Figure 2 demonstrates an 
anticipated local management and treatment standard, which is 
based on the principle of “equal management of individuals at 
equal risk” (4). Below a specified risk, individuals will be reas
sured, and the rest will be either treated locally, if eligible for 
ablation, or referred for excision or advanced care as appropriate. 
In Figure 3, the long arrow arrow at the top points to a cutoff 
point for treatment in this example setting. If this threshold is 
chosen, 5.9% of the screening population will be treated resulting 
in eliminating 94% of the expected precancer or cancer cases in 
this population. This could be a reasonable option in settings 
with few planned screens per lifetime, for which treatment is 
favored over expectant management for most patients. The 
remaining 41% of HPV-positive patients (4.1% of the total screen
ing population) have low-risk combinations of HPV genotype and 
automated visual evaluation results and are therefore less likely 
to benefit from treatment. Note that approximately 90% of the 
population has an HPV-negative result and would therefore not 
undergo triage testing.

Our objective is for each setting to establish its own risk-based 
management guidelines, taking into account its specific HPV gen
otyping and disease prevalence, risk tolerance level, and avail
able treatment and screening capacities. This entails defining the 
optimal thresholds for clinical action management, as depicted 
in Figure 2, and aligning them with the local treatment standards 
(36). By tailoring the management guidelines to the unique char
acteristics of each setting, we aim to optimize the allocation of 
resources and enhance the effectiveness of clinical interventions.

AI provides a novel approach to pattern recognition and clas
sification. However, as a clinical test, the output still follows gen
eral epidemiologic and biostatistical principles. This entails 
ensuring the repeatability of results when testing under the 
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Figure 2. Intended screening program with HPV genotyping and automated visual evaluation screening tests. AVE ¼ automated visual evaluation; HPV 
¼ human papillomavirus; LLETZ ¼ large loop excision of the transformation zone; Precancerþ ¼ cervical precancer or cancer.
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same conditions, obtaining accurate results for both disease- 
positive and disease-negative cases, establishing a buffer zone to 
address unavoidably equivocal diagnoses, and most importantly, 
being able to help clinicians make informed clinical management 
decisions that ultimately provide information that is helpful to 
those being tested. Trust in AI-assisted clinical testing depends 
on overcoming understandable skepticism and proving stable 
worth.
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Figure 3. Concentration curve for the estimation of the expected percent of precancer or cancer cases in relation to the percentage of the population 
that would require treatment. This is a hypothetical example of a concentration curve. This curve visualizes the entire population, ranked from the 
highest to the lowest predicted risk, on the x-axis and presents the expected precancers or cancers on the y-axis. The first point on this curve (which is 
labeled as HPV 16þ and automated visual evaluation test result is precancer/cancer, denoted AVE ¼ Precancerþ in the figure) represents the highest 
risk group in this population, which refers to 1.4% of the total screening population. If only this group is referred for treatment, it will result in treating 
1.4% of the total screening population, in return eliminating approximately 37% of the expected precancer/cancer cases from this population. Each 
data point on the curve corresponds to a screening result, arranged in decreasing severity order from the lower left corner to the upper right corner. In 
this example, a favorable cut point for treatment is highlighted by the long arrow at the top of the figure. Choosing this potential cut point means, 
every individual in these risk categories falling in and below this point emphasized with this arrow as a cut point for management  will be treated (they 
correspond to 5.9% of the total screening population) to eliminate approximately 94% of the expected precancer/cancer cases within the population. 
We believe the concentration curve will serve as a valuable tool for local experts and decision makers in formulating their individualized risk-based 
guidelines. AVE ¼ automated visual evaluation; Precancerþ ¼ precancer or worse situation like cancer; HPV- ¼ human papillomavirus negative for 
cervical cancer high-risk types; HPV HR Medium þ ¼ HPV high-risk medium types (any of 18, 45, 31, 33, 35, 52, or 58) positive; HPV HR Low þ ¼ HPV 
high-risk low types (any of 39, 51, 56, 59, or 68) positive. The hierarchical order of the HPV genotype groups is HPV 16 positive, else HPV HR Medium 
positive, else HPV HR Low positive, else HPV negative.
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