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Abstract

Spray-induced gene silencing (SIGS) is a powerful and eco-friendly method for crop protection. 

Based off the discovery of RNA uptake ability in many fungal pathogens, the application of 

exogenous RNAs targeting pathogen/pest genes results in gene silencing and infection inhibition. 

However, SIGS remains hindered by the rapid degradation of RNA in the environment. As 

extracellular vesicles are used by plants, animals, and microbes in nature to transport RNAs 

for cross-kingdom/species RNA interference between hosts and microbes/pests, nanovesicles and 

other nanoparticles have been used to prevent RNA degradation. Efforts examining the effect of 

nanoparticles on RNA stability and internalization have identified key attributes that can inform 

better nanocarrier designs for SIGS. Understanding sRNA biogenesis, cross-kingdom/species 

RNAi, and how plants and pathogens/pests naturally interact are paramount for the design of SIGS 

strategies. Here, we focus on nanotechnology advancements for the engineering of innovative 

RNA-based disease control strategies against eukaryotic pathogens and pests.

Introduction

Plant pathogens and pests are a significant and devastating problem for the agricultural 

industry, resulting in average crop losses between 10 and 40% across major food security 

crops, even with conventional disease mitigation methods [1]. Due to global warming, the 

range of ecological niches and spread of plant-pathogenic fungi and pests are increasing [2]. 

Therefore, the development of novel, robust, and eco-friendly antifungals and insecticides is 

urgently needed.

Effective pathogen control strategies have been developed by exploiting naturally occurring 

phenomena in host–pathogen interactions. RNA interference (RNAi) has been identified as 
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a critical regulatory mechanism in eukaryotes in which small RNAs (sRNAs), including 

microRNAs (miRNAs) and small interfering RNAs (siRNAs), silence the expression 

of target genes with certain complementary sequences. sRNAs are processed by the 

Ribonuclease III-like enzyme Dicer or Dicer-like (DCL) proteins and loaded into Argonaute 

(AGO) proteins to enable silencing of target genes by mRNA cleavage and degradation, 

translational inhibition, or transcriptional gene silencing [3-5].

In addition to endogenous regulation, sRNAs are transported between interacting organisms 

in a mechanism deemed “cross-kingdom RNAi”. Cross-kingdom RNAi is part of plant 

defense responses in which plants produce and transfer sRNAs to silence pathogen genes 

and inhibit infection. Host-induced gene silencing (HIGS) is to engineer plants to express 

double stranded RNAs (dsRNAs) or sRNAs that target essential or virulence-related 

genes in pathogens/pests [6]. Although effective, generation of HIGS-modified crops is 

time-consuming, challenging, and unfeasible for some plant species. HIGS plants are also 

classified as genetically modified organisms, which have an arduous regulatory approval 

process and are unfavorable in some consumer markets [6,7].

Recently, it was discovered that many organisms, including fungi and oomycetes, can 

efficiently take up RNA from the environment [8]. Exogenous dsRNAs can be processed by 

native host or pathogen/pest RNAi machinery into siRNAs that silence genes in the pathogen 

or pest [9-11], a process known as ‘environmental RNAi’. This prompted the development 

of spray-induced gene silencing (SIGS), in which sRNA or dsRNA targeting pathogen/pest 

genes are topically applied to plant surfaces for specific and effective crop protection. 

Since then, dsRNA has been applied for plant protection through various methods including 

spraying, infiltrating, root soaking, spreading on leaves, and injection with success [11,12]. 

In addition to the targeting of pathogen, pest, and viral sequences, SIGS approaches have 

been used to modify endogenous plant genes and phenotypes [13-15]. This ability to alter 

gene expression can provide a powerful tool for investigating plant genetics.

Although promising, sRNA and dsRNA molecules have a short period of environmental 

stability and variable uptake rates in pathogens and pests [8]. To improve the efficacy 

of SIGS, recent advances have been made in nanoparticle-based protection of RNAs that 

drastically increase the feasibility of RNA-based crop protection strategies. Here, we discuss 

important considerations for generating successful SIGS strategies against plant pests and 

pathogens that emphasize both nanoparticle and dsRNA attributes. These include analysis of 

effective gene targets and their pathways, and new insights into nanoparticle characteristics 

and dsRNA properties that highly influence cellular uptake and silencing efficiency.

The conserved nature of cross-kingdom RNAi

Cross-kingdom RNA trafficking is an important facet of host–microbe interactions as shown 

by numerous discoveries of functional RNA transfer between interacting species. In the 

plant kingdom, cross-kingdom RNAi was observed between the model plant Arabidopsis 
thaliana and the fungal pathogen Botrytis cinerea, in which fungal sRNAs enter host cells 

and hijack Arabidopsis AGO1 to silence plant immunity genes, weakening host immunity 

to promote fungal infection [16]. Like B. cinerea, other plant pathogens such as Fusarium 
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oxysporum [17], Verticillium dahliae [18,19], the oomycete Hyaloperonospora arabidopsidis 
[20], and the rust fungus Puccinia striiformis [21,22] all send sRNAs into plant host cells 

to silence host immunity target genes and facilitate infection. Conversely, plant hosts such 

as A. thaliana [23], cotton [24], tomato [25,26], and wheat [27] transport sRNAs to silence 

pathogen virulence-related genes and inhibit infection, emphasizing the bidirectional nature 

of cross-kingdom RNAi.

In addition, the mechanisms of cross-kingdom RNAi seem heavily conserved. Many of 

the sRNA effectors from plant pathogens utilize host AGO proteins, such as AGO1 and 

AGO4, to silence plant immunity genes as evidenced by studies of B. cinerea [16], V.dahliae 
[18,19], F. oxysporum [17,28] and H. arabidopsidis [20]. Moreover, the parasitic plant 

Cuscuta campestris delivers sRNAs into host plants during parasitism [29]. Cross-kingdom 

RNAi occurs in symbiotic plant-microbe relationships as well. The ectomycorrhizal fungus 

Pisolithus microcarpus delivers a microRNA into the host Eucalyptus grandis and induces 

cross-kingdom gene silencing during symbiosis [30]. Strikingly, although bacteria lack 

traditional RNAi machinery, tRNA-derived RNA fragments (tRFs) from nodule-forming 

Rhizobia bacterium are transferred into host soybean root cells, bind to soybean AGO1, and 

induce silencing of plant host nodulation-related genes [31].

Cross-kingdom RNAi has also been observed in several animal pathogen/parasite 

interactions such as between the nematode parasite Heligmosomoides polygyrus and mouse 

cells [32] and between the yeast pathogen Candida albicans and human monocyte cells 

[33]. As well, the insect pathogenic fungus Beauveria bassiana transfers sRNAs that bind to 

host mosquito AGO1 to silence host genes [34]. Cross-kingdom RNAi is conserved among 

a wide range of interacting organisms, and many microbial sRNAs function similarly by 

loading into host AGO proteins to silence host genes, either to promote infection or maintain 

symbiosis. Despite the prevalence of RNA translocation between species, how these RNAs 

move through extracellular spaces in different organisms is not yet fully understood.

Plant extracellular vesicles are a critical mechanism for sRNA transport

There is significant evidence for the role of extracellular vesicles (EVs) in RNA 

translocation between interacting organisms. In mammalian systems, diverse cell types 

including monocytes [33], adipocytes [35], cancer cells [36,37] and immune cells [38,39] 

all use EVs to protect and transport sRNAs, mRNAs, and other RNAs to specific target 

cells. Plant fungal pathogen B. cinerea also transports sRNAs in fungal EVs, which are 

taken up by A. thaliana cells through clathrin-mediated endocytosis [40]. Furthermore, 

bacteria, algae, and nematodes utilize EVs for RNA transport to interacting microbes or 

host tissues [32,41,42]. In plants, the presence of many ribonucleases in the apoplast [43] 

suggests that extracellular RNAs must have a means of protection. Indeed, Arabidopsis 
EVs, especially TET8-positive EVs have been shown to protect their RNA cargo from 

degradation from both proteases and RNases, illustrating how plant EVs are an efficacious 

route of RNA protection and transport within plants [23,47]. It has been speculated that 

RNA-binding proteins may protect RNAs from degradation. However, most RNA binding 

proteins only bind to specific motifs of RNA, which is evidenced by methods that use RNase 

treatment to cleave RNA in RNA-protein complexes to identify RNA-binding sites [44]. 
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The apoplast also contains many proteases that can disrupt the stability of RNA-protein 

complexes [45,46]. Therefore, it is questionable whether protein binding is a prevalent or 

sufficient strategy for extracellular RNA protection in plants. Similar observations in plant, 

microbial and mammalian cell systems demonstrate how conserved the use of EVs for RNA 

protection and transport is across kingdoms [37,40,48-50].

The isolation of high quality EVs is critical for studying EVs and their RNA cargo. 

Three methods have been used for plant EV isolation: differential centrifugation followed 

by ultracentrifugation, density gradient ultracentrifugation, or immunoaffinity capture. Of 

the three methods, differential centrifugation followed by ultracentrifugation results in the 

highest yield of EVs while the other two methods enable isolation of specific EV densities 

or subtypes. Importantly, the use of swinging-bucket rotors during ultracentrifugation is 

recommended for collecting high-quality intact EVs, as this type of rotor minimizes vesicle 

disruption [35,36]. Two ultracentrifugation speeds have been used to pellet plant EVs: 

40,000 ×g (P40 fraction) and 100,000×g (P100 fraction) (Figure 1). The P40 fraction 

enriches for PEN1-positive EVs, which contain tiny RNAs and proteins [51,52], and 

non-vesicular RNAs with unknown mechanisms of degradation protection [43,45,46]. 

Centrifugation of the supernatant of P40 at 100,000×g (P100–P40 fraction) collects TET-

positive EVs, which are enriched in functional sRNAs and proteins [23,47,53]. In density 

gradient ultracentrifugation, different EV subtypes are separated by density [47,51]. Most 

reliably, immunoaffinity purification can isolate specific EV subtypes by using antibodies 

against EV subtype-specific protein markers [46,47]. Unfortunately, few plant EV markers 

have been characterized to date, so there is a strong need to identify additional markers.

Differences in plant conditions and extraction methods of apoplastic washing fluid can 

greatly affect the EVs that are captured. Collection of apoplastic washing fluid from 

detached leaves rather than whole plants alone can reduce contamination from cell debris 

and cytoplasmic content [47]. Therefore, it is important to avoid generalizations about the 

function of all plant EV subtypes based on individual methods of capture. Studies of native 

extracellular RNA protection are paramount in the design of effective RNA application for 

SIGS. Indeed, mimicking plant EVs using artificial vesicles to protect dsRNA was shown to 

prolong SIGS-based plant protection against B. cinerea [54].

Leveraging RNAi to control plant pathogens and pests

Fungi and oomycetes are highly amenable to RNAi-based control strategies. More than 

50 proof-of-concept studies have demonstrated the viability of HIGS-mediated control of 

ascomycetes, basidiomycetes, and oomycetes, with an average disease resistance of 60% 

[6]. The success of HIGS is positively correlated with the quality and quantity of sRNA 

transport from plant cells [55] and uptake by pathogens/pests [6]. Efforts to elucidate 

these mechanisms are ongoing. Sustainably produced dsRNA/siRNA in HIGS leads to 

long-lasting RNAi, which is important for organisms that do not have RNAi amplification or 

transitivity mechanisms [56]. HIGS also eliminates the need for repeated dsRNA application 

as is the case with SIGS [57]. However, for some phloem-sucking insects and necrotrophic 

pathogens, dsRNA processing by plant RNAi machinery can limit HIGS efficacy [58,59]. 

Several studies have highlighted how dsRNA is more effective for gene silencing and 
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inducing phenotypic changes in pests/pathogens than siRNA [60,61]. As such, SIGS has 

been demonstrated to have similar or higher efficacy than HIGS against some fungi and 

insects [61-63]. It may be partially due to the lower stability of sRNAs than long dsRNAs.

The generation and secretion of sRNA effectors is important for virulence in many fungal 

and oomycete pathogens, so RNAi pathway components, such as DCL genes, represent 

effective SIGS targets. Although a few examples of Dicer-independent sRNA biogenesis 

in fungi and mammals have also been reported [64-66], successful disease control through 

SIGS of pathogen DCL genes has been demonstrated with B. cinerea [19,67], Fusarium 
graminearum [68,69], and Plasmopara viticola [70]. As well, mutation of fungal DCL 
genes attenuated the virulence of F. graminearum [69], Penicillium italicum [71], P. viticola 
[70] and Valsa mali [72], and both the virulence and growth of B. cinerea [16,19,67] 

and Colletotrichum gloeosporioides [73]. Fungal-derived phased siRNAs were recently 

discovered at the Blumeria hordei-barley interface, suggesting a role in endogenous sRNA-

directed fungal gene regulation through the fungal RNAi pathway during infection [74]. 

Phased siRNAs are mostly generated by DCLs and RNA-dependent RNA polymerases 

(RdRPs), suggesting that RdRPs could be good potential targets for SIGS. However, in SIGS 

against Fusarium asiaticum [75] and V. dahliae [56], RdRPs were found to be less critical 

for secondary amplification than in plants, indicating the importance of targeting genes from 

other pathways in tandem. Genes involved in fungal vesicle trafficking such as vacuolar 

protein sorting 51 (VPS51), dynactin complex large subunit (DCTN1), and suppressor of 

actin (SAC1) [54,76], as well as other essential genes for fungal growth and development 

have emerged as effective dsRNA targets [9,77].

Improving RNAi-based plant protection through smarter dsRNA designs

Selecting the appropriate target genes for HIGS or SIGS is the most essential factor for 

successful pest/pathogen control; however, additional features such as dsRNA stability, 

transport, length, and processing are key for improving efficacy. Clathrin-mediated 

endocytosis (CME) is a primary mechanism for dsRNA uptake in fungal pathogens and 

insect pests [78-80]. Consequently, it has become apparent that chimeric dsRNA designs, 

rather than dsRNA cocktails, are more effective for SIGS and should be considered for use 

in future studies [81-83]. Chimeric dsRNAs avoid the potential oversaturation of endocytic 

components and competitive inhibition of target genes observed during combinatorial 

delivery of multiple dsRNAs [82] and can enable multiplexed targeting of different genes, 

pathways and organisms in a single construct [81,83].

Co-opting clathrin-independent endocytosis pathways in addition to CME can further drive 

SIGS improvement. Design of short (23 nt) “paperclip” RNAs with partially closed ends 

bypassed CME inhibition in the yellow fever mosquito Aedes aegypti to enter cells via a 

clathrin-independent pathway and facilitate transcript knockdown [79]. Suggested resistance 

mechanisms that pests/pathogens may evolve to evade SIGS includes mutations of RNA 

uptake pathways. Therefore, accessing multiple uptake routes is important. Chemically 

modifying dsRNA can affect how it is enzymatically processed, leading to increased 

resistance to nuclease degradation and improved RNAi [84]. dsRNA lengths of ~500 

nucleotides are also the most optimal for SIGS in balancing efficient cellular uptake/
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processing and minimizing potential degradation and off-target effects [85,86]. Off-target 

RNAi has been observed with dsRNA that contains matching sequences of 29–32 bp with 

non-target genes [87], so rational design of dsRNA sequences to minimize these effects and 

maximize silencing efficiency is of utmost importance.

Nanoparticles as RNA carriers for protection

The vulnerability of dsRNA to environmental factors (e.g., rainfall, UV light), enzymatic 

degradation, and undesirable processing by the plant RNAi machinery substantially limits 

SIGS as a technology [88-90]. However, nanoparticles, which are materials with dimensions 

between 1 and 100 nm in diameter, can assist in overcoming these challenges and are 

becoming increasingly common in plant protection schemes. Nanoparticles can also be 

designed with unique physicochemical and biological properties that further augment the 

efficacy of SIGS (Figure 2).

For some pathogens and pests, undesirable processing of dsRNA into siRNA by plant 

machinery can result in lower HIGS and SIGS efficacy. Several examples have demonstrated 

how direct application of exogenous RNA is sufficient for targeted suppression of transgenes 

in Arabidopsis [91,92]. Sprayed dsRNA can be internalized by plant cells and processed 

into siRNAs by plant RNAi machinery or left intact and translocated to other tissues 

[93]. It is currently unknown what factors dictate the amount of internalized dsRNA that 

is translocated rather than processed into siRNAs. In RNAi efforts against agricultural 

pests, noted variations in RNAi efficacy have been attributed to differences in the levels 

of unprocessed dsRNA available for pest/pathogen uptake [59]. Plant chloroplasts lack 

RNAi machinery and accordingly, the use of chloroplast-mediated RNAi was more effective 

against chewing [94] and nonchewing insects [95] versus traditional HIGS approaches using 

nuclear-expressed dsRNA. Artificial miRNAs containing insect pre-miRNA backbones also 

eluded processing by plant Dicer, culminating in enhanced gene silencing and mortality of 

Helicoverpa armigera relative to pre-miRNAs with plant backbones [96].

Furthermore, it has been shown that necrotrophic fungi, at least F. graminearum, can take 

up long, unprocessed dsRNA precursors from plant tissues in addition to the dsRNAs 

sprayed on the surface [93,97]. This may explain why SIGS is more effective than HIGS 

in the barley-F. graminearum pathosystem [61,86]. Like in some insects, dsRNA must 

be processed by pathogens to result in gene silencing [97,98]. Supportively, mutation of 

fungal DCL genes in F. graminearum desensitized the fungus to dsRNA-mediated gene 

silencing, but susceptibility to siRNAs was unaffected [97]. For pathogenic fungi, nitrogen 

and phosphate fertilization has been shown to promote their growth relative to mutualists 

and saprotrophs [99]. Several bacterial species can also utilize extracellular DNA as a carbon 

and phosphate source [100,101]. Therefore, fungal pathogens could be motivated to take up 

exogenous RNA as nutrients through mechanisms such as endocytosis [78], although this 

remains to be experimentally demonstrated.

Use of nanoparticles to stabilize dsRNA can prevent detrimental dsRNA internalization, 

enzymatic degradation, and processing by plant cells [45,46]. In several cases, RNA release 

from nanoparticles is facilitated by acidic conditions that are induced by pathogens upon 
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invasion, enabling direct and targeted delivery of dsRNA to the pathogen [102,103]. 

Moreover, nanoparticle compositions can be engineered for RNA delivery to specific 

tissues and organs [104-106]. Efficient RNA delivery can also be achieved with non-

cell-internalizing nanoparticles as siRNA can be released from the nanoparticle surface 

by surrounding biofluids [107]. Therefore, nanoparticles can improve RNAi efficacy by 

increasing the local concentration and residence time of dsRNA available for cellular uptake 

by preventing its cytoplasmic processing or degradation.

Use of nanoparticles in insects overcomes endosomal accumulation and 

extreme pHs

Efforts to control insect pests using naked dsRNA have had variable results due to the 

challenges of RNA instability, limited cellular uptake, overcoming endosomal accumulation 

after ingestion, and extreme pH modalities in the insect that lead to dsRNA degradation. As 

such, encapsulation of dsRNA in nanoparticles can improve SIGS efficacy by addressing 

these challenges. This is critical since dsRNA is often taken up by cells through endocytosis, 

and if it cannot exit endosomes, the dsRNA will eventually be degraded in lysosomes, 

resulting in inefficient RNAi [108,109]. Consequently, RNA loaded into layered double 

hydroxide (LDH) clay nanosheets [81,110], chitosan [111-113], carbon-based materials 

[114,115], liposomes [116-118] or star polycations [119,120] resulted in more severe 

physical deformations, retarded larval growth, and increased mortality up to 90% relative to 

naked dsRNA. Nanoparticle use further critically prevented salivary degradation of dsRNA 

[117,118,121] and degradation in pHs up to 11 [122]. Although for some insects, additional 

surface modifications are required to facilitate effective SIGS. In A. aegypti, conjugation 

of chitosan nanoparticles with sodium tripolyphosphate (TPP) was required to induce a 20–

65% mortality rate [123]. Addition of a phenolic coating on dsRNA-biodegradable polymers 

similarly enhanced endosomal escape and increased cellular uptake in Spodoptera frugiperda 
(Sf9) cells to facilitate RNAi [118]. These modifications imparted greater size control, 

a more positive charge, and stronger dsRNA binding that provided greater stability and 

internalization [118,123]. Nanoparticle-dsRNA treatment can also upregulate endocytosis-

related genes in plant [124] and insect [125] cells relative to naked dsRNA, which further 

contributes to the enhanced RNA delivery and gene silencing effects observed.

Nanoparticles in SIGS against microbial pathogens

Although not as extensively studied as insects, progress is being made in utilizing 

nanoparticles in SIGS-based control of fungal and microbial pathogens [54,76,126-128]. 

Topical application of LDH containing dsRNA targeting sRNA effector biogenesis genes 

DCL 1 & 2 or vesicle trafficking genes VPS51, DCTN1, and SAC1 (VDS) genes extended 

pathogen protection on pre-harvest materials for up to 4 weeks and on postharvest materials 

for up to 10 days [54,76,129]. Nanoparticle use can also overcome the constraint of limited 

RNA uptake rates shown by a subset of fungal/oomycete pathogens [8], which extends 

SIGS-based control strategies to previously inaccessible organisms. Using carbon dots (CD), 

Wang et al. enabled SIGS-based control of wild-type and fungicide-resistant Phytophthora 
pathogens by improving dsRNA stability, release, and internalization through CME [127]. 
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In Rhizoctonia solani, star polymer-complexed chitosan nanoparticles outperformed other 

formulations, including unmodified chitosan nanoparticles, in terms of dsRNA stability and 

cellular uptake with plant protection observed up to 20 days later [128]. Importantly, these 

efforts highlight the importance of nanoparticles and their surface chemistry for extending 

SIGS as a control strategy to a broader range of pests/pathogens.

Metal nanoparticles have previously been used alone or in combination with conventional 

fungicides to control fungicide-sensitive and -resistant pathogens such as B. cinerea 
and Alternaria alternata [130-132]. Therefore, combining these nanoparticles with RNA 

delivery could enable multipronged control of fungal pathogens by integrating RNAi-based 

control with traditional fungicides. In voriconazole fungicide-resistant Aspergillus flavus, 
treatment with Lipofectamine™3000 +siRNA complexes lowered the minimum inhibitory 

concentration of voriconazole 2- to 4-fold [133]. Similarly, complimenting fungicide 

application with dsRNA-CD treatment reduced the amount of fungicide needed to achieve 

protection from Phytophthora by 90% compared to the fungicide alone [127].

Systemic and sustained protection can be achieved by tuning nanoparticle 

properties

In 2017, a seminal study demonstrated how dsRNA-LDH application enabled dsRNA 

persistence on plant leaves for up to 30 days and protection against plant viruses for 

up to 20 days on sprayed and newly emerged leaves [102]. Concomitantly, a single 

foliar spray of lipid-modified polyethylenimine (lmPEI) loaded with siRNA targeting 

grapevine leafroll associated virus-3 (GLRaV-3) was sufficient to reduce GLRaV-3 titers in 

grapevine. Furthermore, multiple doses of the treatment could facilitate recovery of infected 

grapevines and berries [134]. This ability of SIGS to provide protection to newly emerged 

and distant plant tissues is critical for long-term protection and is supported by studies 

demonstrating long-distance trafficking of RNA through the vasculature [135]. Therefore, 

understanding how nanoparticle-RNA complexes are transported within plants and taken up 

by plant pathogens and pests will greatly advance the development of systemic RNAi-based 

protection methods.

Investigations on LDH, CDs, CeO2, and silica nanoparticles have all illustrated how small 

(<50 nm), hydrophilic, and more positively charged nanoparticles exhibited the highest 

foliar delivery efficiencies into organelles, diverse cell types, and the extracellular space 

[105,136,137]. As such, size-dependent silencing effects can be observed after spray 

application with carbon dots [138]. Furthermore, foliar application of smaller (~6 nm) 

star polymer nanocarriers favored symplastic unloading in young leaves, while larger 

particles (~35 nm) improved apoplastic unloading in roots [139]. Modulating nanoparticle 

compactness and bending stiffness can enable nanomaterials to easily move through the 

plant cell wall to further improve plant uptake [107,140]. Finally, nanoparticle zeta potential 

(ζ) strongly influences gene silencing efficiency and impacts internalization and mobility 

as well. Conditions that induced a net negative zeta potential of chitosan-dsRNA or star 

polycation complexes, including high pH [>7] media conditions or high natural organic 
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matter, abolished dsRNA-mediated gene knockdown in Caenorhabditis elegans [141] and 

limited nanocarrier mobility to young leaves and roots [139].

Many of these nanoparticles are likely translocated via the vascular system through 

energy-dependent and independent processes, as their small size allows them to pass 

through the plant cell wall [105,137]. This mechanism also extends to trees, where 

trunk injection of fluorine- and ruthenium-labelled polymer nanoparticles resulted in their 

translocation throughout the trunk tissue via the xylem sap [142]. Therefore, targeted 

protection of specific plant tissues will be achieved by designing nanomaterials that promote 

translocation through the plant vasculature or co-opt specific uptake routes. For example, 

spray application of siRNA complexed with cell-penetrating peptides enabled efficient and 

targeted gene silencing through stomata-dependent-uptake and delivery to plant nuclei and 

chloroplasts [106].

Bacterial-based systems facilitate sustained SIGS in pests and pathogens

In contrast to the nanomaterial systems described above, the use of bacterial-based systems 

for RNAi can allow for simultaneous synthesis and delivery of dsRNA. This can lower the 

cost of SIGS by providing sustained dsRNA delivery, eliminating the need for repeated 

dsRNA application. Furthermore, since insects lack RdRPs, engineering bacterial symbionts 

for dsRNA delivery can provide sustained RNAi throughout the host’s life and overcome 

challenges associated with feeding or injecting dsRNA. Bacterial-based RNAi already shows 

great promise against viruses and fungal pathogens with topical treatment of Escherichia 
coli-encapsulated dsRNA, or the dsRNA-producing bacteria itself, protecting plant material 

against infection as effectively as chemically synthesized naked dsRNA [143,144]. In 

addition, in vitro application of E. coli-derived anucleated minicells loaded with dsRNA 

targeting chitin synthase class III (Chs3a, Chs3b) and the DCL1 and DCL2 genes of 

Botryotinia fuckeliana halted disease progression on strawberries for up to 12 days in 

greenhouse conditions [145]. Efforts to utilize bacterial symbiont-mediated RNAi (smRNAi) 

for insect control, however, have yielded mixed results.

In thrips and kissing bugs, smRNAi was effective in reducing gene expression and providing 

greater protection of cucumber seedlings [146], and in honeybees, smRNAi improved bee 

survival against parasitic mites [147]. The engineered symbionts could be detected more 

than 250 days after initial uptake and were horizontally transmitted [146,147]. In contrast, 

application of smRNAi to aphids using E. coli and the native symbiont, Serratia symbiotica 
CWBI-2.3T, was unable to induce reproducible aphid phenotypes or even gene knockdown 

[148]. This discrepancy could be partially attributed to selection of an appropriate symbiont. 

Genetically tractable laboratory strains like E. coli are foreign to the host, which can 

induce immune responses and reduce colonization of these transgenic bacteria. Other 

important caveats are the need for bacterial RNase III mutants, which promote stable dsRNA 

production, and localization of the symbiont within the host as how dsRNA is delivered by 

the symbiont during smRNAi remains unknown [148].

A similar but parallel approach for insect control termed pathogen-mediated RNAi has also 

emerged. Building upon their discovery of cross-kingdom RNAi between B. bassiana and 
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mosquito [34], Cui et al. engineered B. bassiana to produce immunosuppressive miRNAs 

against A. aegypti and Galleria mellonella [149]. Topical application of transgenic B. 
bassiana expressing A. aegypti miR-8 and miR-375, negative regulators of the Toll immune 

signalling pathway, resulted in a 20–30% reduction in survival time for insecticide-resistant 

A. aegypti and G. mellonella larvae [149]. Importantly, miR-8 and miR-375 are conserved 

in several agricultural insect pests so this technology can be easily translated for control 

of other organisms. While the use of bacterial-based systems is relatively new compared to 

topical application of exogenous dsRNA, there is immense promise in this technology.

Conclusions and future directions

Nanotechnology is becoming increasingly popular in modern agriculture as a tool to address 

major food security challenges but has only recently been leveraged with powerful RNAi-

based strategies such as SIGS to control and combat plant pests and pathogens. Specifically, 

the use of nanocarriers in SIGS has alleviated previous limitations with RNA uptake and 

stability in the environment and after ingestion (Figure 2). Many hosts and interacting 

microbes actively exchange sRNAs for reciprocal gene silencing, but these sRNAs must 

be protected from degradation to remain intact and functional. As characterized across 

different kingdoms of life, the use of EVs is a prevalent strategy for RNA transport and 

protection, and considerations of these mechanisms of native host RNA trafficking are 

crucial in guiding the design of effective and robust SIGS applications.

The use of nanocarriers for RNAi-based control will greatly improve the efficacy of 

SIGS; however, before this technology can be wholly adopted, studies must be performed 

examining the lifespan and fate of nanocarriers in the environment, the impact on non-target 

organisms, and the potential transfer to other plant hosts. A study on the rice-hopper-spider 

food chain found that ingestion of treated plant tissues or guttation droplets was sufficient 

to trigger both targeted and off-target RNAi in consumer hoppers and predator spiders 

[87]. Some reports have made headway in including non-target organisms when testing 

new dsRNA constructs or dsRNA-nanoparticle complexes, and this practice should be 

incorporated into future SIGS studies [81,112,113]. Modelling the fate of nanocarrier 

compounds after degradation and their interactions with soil and water will also complement 

these efforts [150,151].

Encapsulation of RNA in nanocarriers provides extensive protection from environmental 

conditions and nuclease degradation. Many of these nanocarriers further promote cellular 

uptake in target organisms by facilitating endosomal escape which significantly improves 

RNAi efficiency. Importantly, recent studies have generated not only preventative plant 

protection using RNA-nanocarrier complexes but also curative treatment of ongoing, 

systemic viral infections. It will be interesting to see if curative protection against microbial 

pathogens can be achieved. Material features including a positive zeta potential, small 

size, and hydrophilicity have been identified as key parameters that can be tuned to 

optimize RNA delivery. Thus, the development of novel and effective SIGS approaches 

can be accomplished by complementing these nanocarrier advances with improvements in 

dsRNA design and target gene selection. The costs of these technologies, both financial 

and environmental should continue to be considered. As well, additional work is needed 
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to understand the environmental fate of dsRNA and nanocarriers during and after plant 

protection. Overall, the current interest and emphasis on nanocarrier design strongly 

supports the potential of nanotechnology to propel SIGS to be a comprehensive plant 

protection system against multiple pests and pathogens.
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Figure 1. Centrifugation speed impacts the EV subtype that is isolated from plants.
Different ultracentrifugation speeds differentially pellet distinct plant EV subtypes. In 

Arabidopsis, 40,000×g collects the P40 fraction which is enriched in PEN1-positive EVs, 

extravesicular RNAs, and RNA-protein complexes, and misses a large portion of TET-

positive EVs [51,53,54]. PEN1-positive EVs are enriched in tiny RNAs and stress-response 

proteins [53]. Centrifugation at 100,000×g (P100) is necessary to pellet plant exosomes 

such as TET-positive EVs [51]. The supernatant of the P40 fraction can be centrifuged at 

100,000×g to collect TET-positive EVs in the P100–P40 fraction [51]. TET-positive EVs are 

enriched in sRNAs involved in cross-kingdom RNAi and RNA-binding proteins [38].
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Figure 2. RNA-nanoparticle complexes provide enhanced RNA stability and uptake, leading to 
greater efficiency in SIGS-based crop protection strategies.
This schematic illustrates how RNA can be encapsulated in various nanocarriers to form 

RNA-nanoparticle complexes. Important features for dsRNA and nanocarrier design that 

could improve SIGS efficacy are highlighted along the side. Use of RNA-nanoparticle 

complexes in SIGS results in improved and prolonged gene silencing relative to naked 

dsRNA due to better endosomal escape, nuclease protection, and cellular uptake. RNA-

nanoparticle complexes can be topically applied to plant surfaces where they are directly 

taken up by pests and pathogens or internalized by plant cells. After internalization, RNA 

is released from RNA-nanoparticle complexes and taken up by plants or pests/pathogens, 

translocated, and/or processed to siRNAs. RNA-nanoparticle complexes can also be directly 

transported to other plant tissues to provide systemic protection.
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