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Simple Summary: Urogenital cancers (prostate, bladder, kidney) have significant global health im-
pacts. Proteomic biomarkers are emerging tools that aim to improve early detection and personalized
treatments. Our study conducted a comprehensive review and meta-analysis of the literature on
these biomarkers in plasma, tissue, and urine samples. We found 1879 unique proteins from 37 stud-
ies, suggesting their potential as cancer markers. A meta-analysis and pathway analysis revealed
their roles in various processes, enhancing our understanding of these cancers. These findings offer
promise for improved detection, treatment, and patient outcomes.

Abstract: Urogenital cancers, which include prostate, bladder, and kidney malignancies, exert a
substantial impact on global cancer-related morbidity and mortality. Proteomic biomarkers, emerging
as valuable tools, aim to enhance early detection, prognostic accuracy, and the development of
personalized therapeutic strategies. This study undertook a comprehensive systematic review and
meta-analysis of the existing literature investigating the role and potential of proteomic biomarkers
in plasma, tissue, and urine samples in urogenital cancers. Our extensive search across several
databases identified 1879 differentially expressed proteins from 37 studies, signifying their potential
as unique biomarkers for these cancers. A meta-analysis of the significantly differentially expressed
proteins was executed, accentuating the findings through visually intuitive volcano plots. A func-
tional enrichment analysis unveiled their significant involvement in diverse biological processes,
including signal transduction, immune response, cell communication, and cell growth. A pathway
analysis highlighted the participation of key pathways such as the nectin adhesion pathway, TRAIL
signaling pathway, and integrin signaling pathways. These findings not only pave the way for
future investigations into early detection and targeted therapeutic approaches but also underscore
the fundamental role of proteomics in advancing our understanding of the molecular mechanisms
underpinning urogenital cancer pathogenesis. Ultimately, these findings hold remarkable potential
to significantly enhance patient care and improve clinical outcomes.

Keywords: prostate cancer; bladder cancer; kidney cancer; proteomics biomarkers

1. Introduction

Urogenital malignancies, which include prostate, bladder, and kidney cancers, present
a significant challenge to global public health systems due to their prevalence and sig-
nificant morbidity and mortality [1]. Prostate cancer in particular ranks as the second
most prevalent cancer among men, with many cases eventually progressing to aggressive
stages of disease [2]. Similarly, bladder and kidney cancers feature among the top ten
most common cancers, thereby exacerbating the worldwide cancer burden [3]. Although
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advances in diagnostic techniques and therapeutic interventions have enhanced patient
outcomes, these malignancies are frequently diagnosed at advanced stages, attributable to
their asymptomatic presentation during early stages and the absence of sensitive, specific
screening tools, especially for bladder and kidney cancers [4,5]. Urogenital cancers are
characterized by a complex and heterogeneous pathophysiology which can be attributed
to a diverse range of genetic and epigenetic alterations [6]. These alterations can impact
critical biological pathways, leading to a range of phenotypic changes and clinical out-
comes [7]. The identification of biomarkers that can reliably capture the heterogeneity of
urogenital cancers and predict their course remains a significant challenge in the field of
oncology [7]. In urologic malignancies, Crocetto et al. highlighted the compelling need
for effective biomarkers to personalize treatment strategies and improve clinical outcomes
and highlighted the importance of ongoing research into biomarkers that can enhance
the precision of therapeutic interventions in urogenital cancers [8]. In addition, these
malignancies often exhibit resistance to conventional treatment approaches, leading to poor
prognosis and reduced survival rates [9]. Therefore, the identification of novel biomarkers
that can aid in the early detection, prognosis, and personalized treatment of these cancers
is an urgent need.

Proteomics has recently emerged as a powerful analytical tool in advancing our un-
derstanding of cancer biology. Proteomic biomarkers, which reflect dynamic physiological
and pathological changes in the disease state, hold significant promise for early detection,
prognosis, and the development of personalized treatment strategies in urogenital can-
cers [10,11]. Proteomics has several advantages over traditional approaches, including its
ability to provide a comprehensive snapshot of the protein complement of a cell, tissue, or
organism at a given time. This offers valuable functional evidence of genome expression
and enables the identification of molecular alterations that drive cancer progression [12].
Furthermore, proteomics facilitates the elucidation of signaling pathways and the identi-
fication of therapeutic targets. Several recent studies have demonstrated the potential of
proteomics in the identification of biomarkers and therapeutic targets in urogenital cancers,
highlighting the importance of conducting further research in clinical settings [13–15].
While a number of studies on the role of proteomics in urogenital cancers have begun to
be published, a comprehensive synthesis and analysis of these findings is lacking. Unan-
swered questions remain about the consistency of these potential proteomic biomarkers
across different studies and their functional significance in disease pathways. Moreover,
given the rapid advancement of proteomic technologies and the increasing complexity of
generated data, the methodological quality of these studies warrants close scrutiny.

Considering the significance of proteomic biomarkers in urogenital cancers, this sys-
tematic review and meta-analysis aims to systematically identify and analyze studies that
investigate proteomic biomarkers in urogenital cancers. Our objectives include summariz-
ing the potential biomarkers identified thus far, examining their differential expression in
cancerous versus control samples, elucidating their biological significance through func-
tional enrichment and pathway analyses, and evaluating the methodological quality of
the included studies using the QUADOMICS tool, a version of QUADAS-2 specifically
adapted for omics studies. By conducting this comprehensive analysis, we aim to provide
a more coherent understanding of the current state of proteomic biomarker research in
urogenital cancers and highlight potential directions for future investigations.

2. Materials and Methods
2.1. Study Design

This systematic review and meta-analysis aimed to synthesize and analyze the existing
literature on proteomic biomarkers in urogenital cancers. This study followed the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to ensure
transparency and rigor in the conduct and reporting of the review.
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2.2. Search Strategy and Selection Criteria

A comprehensive search strategy was developed to identify relevant studies published
as of May 2023. The following databases were searched: PubMed, MEDLINE, CINAHL
Scopus, and any additional relevant sources. The search terms and keywords used included
variations of “proteomics” and specific cancer types such as “prostate cancer”, “bladder
cancer”, and “kidney cancer”. Studies were included if they met the following criteria:
(1) investigated proteomic biomarkers in urogenital cancers, (2) reported on differential
protein expression between cancerous and control samples, (3) included human subjects,
and (4) were published in English. Studies were excluded if they were reviews, conference
abstracts, or did not meet the inclusion criteria.

2.3. Data Extraction

Articles from all databases were combined, and duplicates were removed using the
JabRef tool (version 5.11). A non-redundant list of articles was screened based on title and
abstract for eligible articles. Data were independently extracted from the eligible studies by
three authors (AAK, NM, and AY) in a Google spreadsheet. The following information was
extracted: study characteristics (e.g., authors, publication year), participant demographics
(e.g., sample size, cancer type), proteomic biomarker data (e.g., fold changes, p-values),
type of proteomics technique used, and other validation techniques, if available.

2.4. Quality Assessment

The methodological quality of the included studies was assessed using a modified ver-
sion of the QUADAS-2 tool specifically adapted for omics studies, known as QUADOMICS.
The QUADOMICS tool considers the quality of study design, sample collection and prepa-
ration, proteomic profiling methods, and data analysis procedures. Two independent
reviewers (NM, AY) assessed the quality of each study, and any discrepancies were re-
solved through a discussion or consultation with a third reviewer (AAK).

2.5. Meta-Analysis

A comprehensive meta-analysis was executed, utilizing the statistical data delineated
in the individual studies using the Amanida R-package (version 0.2.3) [16]. This package
incorporated both p-values and fold-change values from individual studies and employed
the Fisher test to combine p-values, considering sample sizes in each study. This approach
squared p-values and compared them to a chi-squared distribution, accounting for their
uniform distribution assumption. Weighting by sample size was applied to enhance
result reliability. Larger studies carried greater weight, ensuring that proteins exhibiting
consistent changes across multiple studies with larger sample sizes were prioritized for a
significance assessment. The fold-change values underwent a logarithmic transformation,
and a weighted average was calculated contingent on the study’s sample size. In an effort
to uphold the directionality of the results, data entries were stratified into categories of
upregulated and downregulated entities.

2.6. Functional Enrichment and Pathway Analysis

A list of significantly differentially expressed proteins was extracted from the dataset
using the following criteria. Firstly, proteins were considered for inclusion if their expres-
sion levels were at least two-fold greater in cancer samples compared to control samples.
Secondly, the p-value associated with protein expression had to be equal to or less than
0.05, indicating statistical significance. In cases in which only one mass-spectrometry-based
study supported the differential expression, validation using alternative techniques such as
immunohistochemistry (IHC), Western blotting, or an enzyme-linked immunosorbent assay
(ELISA) was necessary. To gain further insights into the biological functions and pathways
associated with the differentially expressed proteins, functional enrichment and pathway
analyses were performed using the Functional Enrichment Analysis (FunRich) tool (version
3.1.4) [17]. An exploration of functional associations among proteins identified through an
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MS analysis was conducted using the String v. 9.1 database (http://string-db.org/, URL
accessed on 10 November 2023). STRING operates as a comprehensive resource compiling
available data on protein–protein associations, scoring and weighting them, supplement-
ing with predicted interactions, and extracting results from automated literature-mining
searches. The search parameters for a minimum interaction were set to a high confidence
level (0.7) with a limit of 10 interactors.

3. Results

A total of 3561 articles were identified after removing duplicates from all databases.
After screening these articles based on their titles and abstracts, 288 relevant articles were
selected for a full-text review. Finally, based on our inclusion and exclusion criteria, 37 arti-
cles met the requirements and were included in this systematic review. A detailed search
strategy is depicted in Figure 1. These included articles were comparative studies in which
the authors compared urogenital cancer patient samples with control samples. The total
sample size of cancer patients was 733, while 993 control samples were included. Various
pieces of useful information from the included studies were annotated which included
the name and symbol for differentially expressed proteins, cohort information, MS and
validation methods, and fold change and p-values for differential proteins (Supplementary
Table S1). In total, we identified 1879 differentially expressed proteins from all three cancer
types, of which 823 were significantly differentially expressed. There were 61 differential
proteins that were common between all three cancer types, as shown in Supplementary
Figure S1. For these common proteins, an analysis of protein–protein interactions using the
STRING network was carried out to recognize proteins that are functionally interconnected
(Figure 2). The interaction study included differentially expressed proteins along with
10 additional interactors. The generated network was visualized in a confidence view in
which the strength of associations was indicated by the thickness of the lines or edges
connecting the nodes, which represented the proteins. Thicker lines suggested stronger
associations, and thinner lines indicated weaker ones.
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Figure 2. STRING network analysis of commonly differentially expressed proteins in prostate,
bladder, and kidney cancers. This network includes 61 commonly differentially expressed proteins in
prostate, bladder, and kidney cancers identified in this systematic review. Interacting proteins are
connected by lines, and line thickness corresponds to a strong interaction.

3.1. Functional Enrichment Analysis

A gene ontology and pathway enrichment analysis of significantly expressed proteins
in prostate, bladder, and kidney cancers was carried out using FunRich. The most enriched
biological processes from the significantly expressed proteins in prostate cancer were en-
ergy pathways (20.4%), metabolism (20.4%), cell growth and/or maintenance (14.8%), and
transport (13%), while in bladder cancer, signal transduction (32.6%), cell communications
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(30.2%), immune response (20.9%), and transport (14%) were enriched. A kidney cancer
data analysis for biological processes showed the enrichment of metabolism (45.9%), energy
pathways (45.2%), protein metabolism (11.5%), and cell growth and/or maintenance (9%).
Providing a comprehensive overview, the enriched biological processes across all three can-
cer types are depicted in Figure 3. In prostate cancer, an analysis of significantly expressed
proteins revealed the most enriched molecular functions to be related to cytoskeleton I
protein binding (9.3%), transporter activity (9.3%), and the structural constituents of cy-
toskeleton (5.6%). Similarly, in bladder cancer, the enriched molecular functions included
calcium ion binding (18.6%), transporter activity (16.3%), and complement activity (9.3%).
For kidney cancer, the data analysis highlighted the catalytic activity (18.6%), oxidore-
ductase activity (7.5%), and hydrolase activity (4.2%). A comprehensive overview of the
enriched molecular functions across all three cancer types can be found in Supplementary
Figure S2, and cellular localizations of the significantly differentially expressed proteins are
depicted in Supplementary Figure S3.
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Figure 3. GO biological processes for significantly expressed proteins in prostate, bladder, and
kidney cancers: (A) 108 proteins from prostate cancer included; (B) 143 proteins from bladder cancer
included; (C) 248 proteins from kidney cancer included.

3.2. Pathway Analysis

For a pathway analysis, gene identifiers for significantly expressed proteins from
prostate, bladder, and kidney cancer studies were exported into FunRich, and the top
10 enriched biological pathways from each cancer were identified. In prostate cancer, the
altered pathways include smooth muscle contraction, muscle contraction, the epithelial-to-
mesenchymal transition, semaphorin interactions, endosomal sorting complex required
for transport (ESCRT), and membrane trafficking. The top 10 enriched pathways from
prostate cancer, along with their p-values, are represented in Table 1. Similarly, in bladder
cancer, the top enriched biological pathways include the immune system, complement
cascade, beta3 integrin cell surface interactions, the mesenchymal-to-epithelial transition,
the epithelial-to-mesenchymal transition, and signaling by FGFR (Table 2). In kidney
cancer, the enriched pathways include the metabolism of amino acids and derivatives,
the metabolism of lipids and lipoproteins, fatty acid, triacylglycerol, and ketone body
metabolism, pyruvate metabolism and citric acid (TCA) cycle, fatty acid beta-oxidation, and
glucose metabolism (Table 3). A pathway analysis of prostate and bladder cancer proteomic
data with stringent false discovery rate (FDR) correction led to the observation that initial
pathway enrichments do not maintain statistical significance. This result is indicative of the
rigorous nature of FDR correction applied to minimize the false-positive rate, which can
also increase the likelihood of type II errors, potentially overlooking biologically pertinent
pathways. A combined pathway analysis of significantly expressed proteins from all three
cancer types showing common altered pathways is depicted in Figure 4, while individual
cancer pathway alterations are shown in Supplementary Figure S4.

Table 1. Top 10 enriched pathways in prostate cancer. Pathway analysis of 108 significantly differen-
tially expressed proteins from prostate cancer was carried out using FunRich.

No. Pathway Number of Proteins
from the Dataset

Proteins from
Background Dataset p-Value FDR

p-Value
Altered Proteins
from the Dataset

1 Smooth muscle
contraction 3 24 0.0001 0.1999 CALD1; MYL6;

TPM4

2 Muscle
contraction 3 50 0.0011 1 CALD1; MYL6;

TPM4
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Table 1. Cont.

No. Pathway Number of Proteins
from the Dataset

Proteins from
Background Dataset p-Value FDR

p-Value
Altered Proteins
from the Dataset

3
Epithelial-to-
mesenchymal

transition
3 185 0.0396 1 PTGDS; CALD1;

TAGLN

4 Semaphorin
interactions 2 64 0.0283 1 MYL6;

HSP90AA1

5

Endosomal
sorting complex

required for
transport
(ESCRT)

2 28 0.0058 1 CHMP4C;
CHMP2B

6 Membrane
trafficking 2 84 0.0466 1 CHMP4C;

CHMP2B

7
Integrin family

cell surface
interactions

7 1375 0.3354 1

TGM2; STMN1;
HSP90AA1;

BAIAP2; LAMA2;
HMGB1; TAGLN

8 IFN-gamma
pathway 4 1293 0.8127 1

STMN1;
HSP90AA1;

BAIAP2; TAGLN

9

Syndecan-1-
mediated
signaling

events

4 1297 0.8148 1
STMN1;

HSP90AA1;
BAIAP2; TAGLN

10 Regulation of
CDC42 activity 3 768 0.6314 1

STMN1;
HSP90AA1;

BAIAP2

Table 2. Top 10 enriched pathways in bladder cancer. Pathway analysis of 143 significantly differen-
tially expressed proteins from bladder cancer was carried out using FunRich.

No. Pathway Number of Proteins
from the Dataset

Proteins from
Background Dataset p-Value FDR

p-Value
Altered Proteins
from the Dataset

1 Immune system 6 522 0.009438 1 C3; C1R; C6; C7;
NRAS; PVR

2 Innate immune
system 4 183 0.00398 1 C3; C1R; C6; C7

3 Complement
cascade 4 22 0.00000095 0.001587 C3; C1R; C6; C7

4
Beta3 integrin

cell surface
interactions

3 43 0.000479 0.799287 FGA; LAMA4;
PVR

5
Mesenchymal-
to-epithelial

transition
3 223 0.046173 1 EPS8L2; EPS8L1;

S100P

6
Epithelial-to-
mesenchymal

transition
3 185 0.028762 1 C1R; SERPINF1;

MYLK
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Table 2. Cont.

No. Pathway Number of Proteins
from the Dataset

Proteins from
Background Dataset p-Value FDR

p-Value
Altered Proteins
from the Dataset

7 Signaling by
FGFR 2 95 0.046495 1 EGFR; NRAS

8
C-MYB

transcription
factor network

2 84 0.037188 1 NRAS; MPO

9 Endogenous
TLR signaling 2 57 0.01807 1 S100A8; S100A9

10

Trk receptor
signaling

mediated by
the MAPK
pathway

2 34 0.006683 1 NRAS; EHD4

Table 3. Top 10 enriched pathways in kidney cancer. Pathway analysis of 248 significantly differen-
tially expressed proteins from kidney cancer was carried out using FunRich.

No. Pathway

Number of
Proteins
from the
Dataset

Proteins from
Background

Dataset
p-Value FDR

p-Value
Altered Proteins
from the Dataset

1
Metabolism of

amino acids and
derivatives

42 188 1.6903 × 10−12 2.819 × 10−9

DLST; HSD17B10; ACAT1; HIBADH;
BCKDHA; GLUD1; GRHPR; HIBCH;

ACADSB; ALDH7A1; OGDH; ALDH6A1;
ALDH4A1; GATM; ASS1; AGMAT; FTCD;

DDC; AUH; QDPR; BBOX1; GOT2;
ALDH9A1; GOT1; HPD; DBT; GCDH;

MCCC1; DLD; AASS; MCCC2; SHMT1;
BCKDHB; OAT; IVD; HGD; HAAO;

MRI1; KYNU; PSMB8; PSMB9; PSME2

2
Metabolism of

lipids and
lipoproteins

40 257 3.77293 × 10−7 0.0006293

HADHA; ACAT1; UGT1A9; DECR1;
IDH1; HADH; ECHS1; LRP2; BDH1;
PCCB; GK; PCCA; GPD1; ACADM;

AMACR; PLIN2; APOA1; HSPG2; CPT2;
ACAA1; GGT5; HMGCL; ACOX1;

OXCT1; HMGCS2; CUBN; ACSL1; AMN;
SLC27A2; MUT; ECI1; CRAT; P4HB;
ACLY; SCARB1; PTGES3; HADHB;

TXNRD1; ACADS; HSD3B7

3

Fatty acid,
triacylglycerol

and ketone body
metabolism

25 83 7.33774 × 10−11 1.224 × 10−7

HADHA; ACAT1; UGT1A9; DECR1;
HADH; ECHS1; BDH1; PCCB; GK; PCCA;
GPD1 ACADM; PLIN2; CPT2; HMGCL;

ACOX1; OXCT1; HMGCS2; ACSL1; MUT;
ECI1; ACLY; HADHB; TXNRD1; ACADS

4

Pyruvate
metabolism and
citric acid (TCA)

cycle

21 31 3.72184 × 10−18 6.208 × 10−15

DLST; ACO2; FH; SDHB; PDHB; SUCLG2;
OGDH; SUCLG1; IDH2; SDHA; PDHA1;

CS; MDH2; DLD; L2HGDH; SUCLA2;
NNT; DLAT; PDK2; PDHX; PDK1

5 Fatty acid
beta-oxidation I 13 19 9.29191 × 10−12 1.55 × 10−8

HADHA; HSD17B10; HADH; ECHS1;
ACADM; ACAA2; ACAA1; ECI2;

EHHADH; ACSL1; SLC27A2; ECI1;
HADHB

6 Glucose
metabolism 12 36 2.13353 × 10−6 0.0035587

PCK2; GOT2; PGK1; MDH2; GOT1; PC;
PCK1; SLC25A10; SLC25A11; MDH1;

PYGL; TPI1
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Table 3. Cont.

No. Pathway

Number of
Proteins
from the
Dataset

Proteins from
Background

Dataset
p-Value FDR

p-Value
Altered Proteins
from the Dataset

7 Iron uptake and
transport 12 37 2.96762 × 10−6 0.00495

ATP6V1E1; ATP6V1A; ATP6V1H;
ATP6V1B1; ATP6V1G1; ATP6V1F;

ATP6V1B2; ATP6V0A1; ATP6V1C1;
ATP6V0D1; HMOX1; TF

8
Mitochondrial

fatty acid
beta-oxidation

11 14 3.49111 × 10−11 5.823 × 10−8
HADHA; DECR1; HADH; ECHS1; PCCB;

PCCA; ACADM; MUT; ECI1; HADHB;
ACADS

9 Gluconeogenesis 11 20 1.10997 × 10−8 1.851 × 10−5
PCK2; GOT2; PGK1; MDH2; GOT1; PC;
PCK1; SLC25A10; SLC25A11; MDH1;

TPI1

10
Transferrin

endocytosis and
recycling

11 27 5.58496 × 10−7 0.0009316

ATP6V1E1; ATP6V1A; ATP6V1H;
ATP6V1B1; ATP6V1G1; ATP6V1F;

ATP6V1B2; ATP6V0A1; ATP6V1C1;
ATP6V0D1; TF
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Figure 4. Altered pathways (combined) for significantly expressed proteins in prostate, bladder, and
kidney cancers; 108 proteins from prostate cancer, 143 proteins from bladder cancer, and 248 proteins
from kidney cancer were included in the analysis.

3.3. Meta-Analysis

For the meta-analysis, we only included significantly expressed proteins which were
supported by at least two studies. A combined p-value and fold change value from each
study for a particular protein from each cancer type was calculated. For vote counting, a
score of +1 was awarded for upregulation, −1 was awarded for downregulation, and 0
was awarded for no change for each study, and the final count is reported. Volcano plots
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and vote count plots for significantly expressed proteins in each cancer types are depicted
in Figure 5A–F. In total, 10 proteins from prostate cancer, 3 proteins from bladder cancer,
while 126 proteins from kidney cancer satisfied the criteria, and meta-analysis results for
these proteins are summarized in Table 4 (only the top 10 proteins from kidney cancer are
depicted, and a complete list is provided in Supplementary Table S2).
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prostate cancer. (C). Volcano plot for proteins from bladder cancer. (D). Vote count for proteins from
bladder cancer. (E). Volcano plot for proteins from kidney cancer. (F). Vote count for proteins from
kidney cancer. Only proteins supported by at least 2 studies were included. Fold change cutoff ≥ 2,
and p-value ≤ 0.01 was used.

3.4. Prostate Cancer Biomarkers

We included 11 articles from prostate cancer, reporting 588 proteins in this systematic
review. Based on data quality reported, six articles reporting 111 significant differential
proteins were used for further data analysis. Multiple protein markers in the prostate cancer
samples were assessed, and most of them were elevated compared with normal prostate
samples. In one study, Davalieva et al. [18] employed a two-dimensional difference gel
electrophoresis (2-D DIGE) mass spectrometry technique for a proteomic analysis of urine
samples collected from patients diagnosed with either prostate cancer (PCa) or benign
prostatic hyperplasia. They identified a range of diagnostic biomarkers for prostate cancer
which included Alpha-1-Microglobulin/Bikunin Precursor (AMBP), Cluster of Differenti-
ation 59 (CD59), Inter-alpha-trypsin Inhibitor Heavy Chain 4 (ITIH4), Prostaglandin D2
Synthase (PTGDS), Secreted and Transmembrane 1 (SCTM1), and Haptoglobin (HP). In the
evaluation of various biomarker synergies, a superior degree of diagnostic accuracy was
demonstrated by the tandem of Haptoglobin (HP) and Alpha-1-Microglobulin/Bikunin
Precursor (AMBP), outperforming the traditional prostate-specific antigen (PSA) marker.
This selected suite of biomarkers, noted for its cost-effectiveness and expeditious quantifi-
cation capabilities, offers promising potential for augmenting both the detection sensitivity
and specificity associated with prostate cancer diagnosis [18]. Similarly, Fujita et al. also
reported differentially expressed proteins from extracellular vesicles (EVs) from prostate
cancer patients’ urine samples [19]. Among them, fatty acid binding protein 5 (FABP5),
Alpha-1-Microglobulin/Bikunin Precursor (AMBP), Charged Multivesicular Body Protein
4A (CHMP4A), and Charged Multivesicular Body Protein 4C (CHMP4C) were significantly
differentially expressed in prostate cancer patients compared to normal samples [19]. An-
other study by Webber et al. compared the protein profiles of healthy and disease-affected
stroma extracted from patients diagnosed with prostate cancer in order to identify the dis-
tinguishing characteristics inherent to stroma that are associated with the disease state [20].
They identified several differentially expressed proteins using a MALDI-TOF analysis
including Caldesmon 1 (CALD1), Myristoylated Alanine-Rich C-Kinase Substrate (MAR-
CKS), and Nucleophosmin (NPM), which were significantly expressed [20]. In a study,
Frantzi et al. investigated urine samples from 823 patients with prostate-specific antigen
(PSA) levels below 15 ng/mL which were collected pre-biopsy. The analysis involved
a training set of 543 patients and a validation set of 280 patients [21]. The independent
validation of a 19-biomarker (PPP1R3A, F5GYX3, X3CL1, and several collagen family
members) model showed a 90% sensitivity, 59% specificity, and an area under the curve
(AUC) of 0.81, outperforming both PSA (AUC = 0.58) and the ERSPC-3/4 risk calculator
(AUC = 0.69) [21]. Another study by Iglesias-Gato et al. used 28 tumor and 8 normal
FFPE tissues from prostate cancer patients and used a SILAC-based LC/MS quantitative
proteomics technique to identify differentially expressed proteins [22]. Proteins including
carnitine palmitoyl transferase 2 (CPT2, involved in fatty acid transport), coatomer protein
complex subunit alpha (COPA, associated with vesicle secretion), and mitogen- and stress-
activated protein kinases 1 and 2 (MSK1/2, protein kinases), all of which are overexpressed
in tumor cells, contribute to the regulation of prostate cancer (PCa) cell proliferation. In
addition, an overexpression of pro-neuropeptide Y (pro-NPY) was detected in PCa (a
five-fold increase, p < 0.05), with its presence predominantly absent in other types of solid
tumors [22]. Another study by Jiang et al. used 2D-DIGE MS for the identification of
differentially expressed proteins in pancreatic cancer tissues and reported 60 proteins [23].
Based on a network analysis, they selected PTEN, SFPQ, and HDAC1 for exploring their
clinical significance. Intriguingly, the protein PTEN has been identified as an autonomous
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prognostic indicator for the biochemical recurrence-free survival in patients with prostate
cancer (PCa) [23].

3.5. Bladder Cancer Biomarkers

We included 11 articles from bladder cancer reporting 813 protein markers. Six arti-
cles reporting 143 significantly differentially expressed proteins were included for further
analysis. Nedjadi et al. employed 2D-DIGE and mass spectrometry techniques to identify
circulating plasma proteins which are differentially expressed in bladder cancer patients
compared to normal samples [24]. They reported 15 significantly expressed proteins which
include Complement components C3 and C6, haptoglobin (HP), Kelch domain-containing
protein 8B (KLHDC8B), Complement C1r subcomponent (C1R), Ceruloplasmin (CP), Im-
mediate early response 3-inter-acting protein1 (IER3IP1), and Integrator complex subunit
10 (INTS10). Interestingly, haptoglobin effectively differentiated low-grade bladder can-
cer patients from controls with high accuracy (AUC > 0.87), suggesting its potential as a
biomarker for early bladder cancer detection, pending further validation [24]. Another
study by Bansal et al. employed MALDI-TOF MS to identify differentially expressed
proteins in low-grade/high-grade bladder cancer samples compared to normal bladder
samples [25]. Using an MS-based discovery approach combined with a Western blotting
(WB)/ELISA-based validation approach, they reported five differentially expressed pro-
teins including S100A4, S100A8, S100A9, carbonic anhydrase I, and annexin V. Furthermore,
two biomarkers, S100A8 and S100A9, demonstrated high accuracy (ROC, 0.946) in differen-
tiating 81% of bladder cancer (both low-grade and high-grade) cases from healthy controls,
exhibiting the highest levels of sensitivity and specificity. Similarly, using a comparable
approach, the biomarkers S100A8 and S100A4 accurately (ROC, 0.941) distinguished 92%
of low-grade cases from high-grade ones, with the utmost levels of sensitivity and speci-
ficity [25]. Another study by Gómez et al. used serum samples to compare two NMIBC
subtypes, T1 and Ta, with normal samples using the SWATH-MS technique and identified
40 differentially expressed proteins [26]. Important altered proteins implicated in the com-
plement and coagulation cascade pathways and apolipoproteins include Galectin-3-binding
protein (LGALS3BP), Alpha-1-antitrypsin (SERPINA1), Alpha-1-antichymotrypsin (SER-
PINA3), Apolipoprotein A-II (APOA2), Hemoglobin subunit beta (HBB), and Apolipopro-
tein F (APOF) [26]. In a similar vein, Lee et al. reported 56 proteins that were significantly
differently expressed in extracellular vesicles derived from the urine of bladder cancer
patients when contrasted with normal samples [27]. These differential proteins include
Guanine nucleotide-binding protein subunit alpha-11 (GNA11), EH domain-containing
protein 4 (EHD4), Annexin A1 (ANXA1), Gamma-glutamyl hydrolase (GGH), Gelsolin
(GELS), Epidermal growth factor receptor kinase substrate 8 (EPS8), Deoxyribonuclease-1
(DNAS1), and Uromodulin (UROM) [27]. Another study by Sathe et al. used urine samples
from muscle-invasive (MIBC) and non-muscle-invasive bladder cancer (NMIBC) patients
along with normal controls for a quantitative proteomics analysis [28]. They identified
several key proteins that are altered between these patients which include fibrinogen alpha
chain isoform alpha-E preproprotein (FGA), laminin subunit alpha-4 isoform X1 (LAMA4),
vesicular integral-membrane protein VIP36 precursor (LMAN2), protein S100-A8 isoform
a (S100A8), protein S100-A9 (S100A9), and plastin-2 (LCP1). They also detected unique
N-glycosylation patterns of CD44, MGAM, and GINM1 that varied between non-muscle-
invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC) patients
which could potentially be linked with the progression of bladder cancer [28]. In one
study, Smalley et al. identified eight significantly differentially expressed proteins in the
urine microparticles of bladder cancer patients using an LC-MS/MS technique [29]. These
include five proteins from the EGFR pathway (EGFR, NRAS, EPS8L2, EPS8L1, and EHD4)
and the alpha subunit of GsGTP binding protein, resistin, and retinoic-acid-induced protein
3 [29].
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3.6. Kidney Cancer Biomarkers

We included 14 qualified articles from kidney cancer representing 884 differentially
expressed proteins. We selected seven articles which reported 248 significantly differ-
entially expressed proteins for further analysis. In one study, Song et al. employed a
DIA-based LC-MS/MS strategy to examine clear cell renal cell carcinoma patients’ tissues
and normal samples and identified 436 differentially expressed proteins [30]. Among
the differentially expressed proteins, notable upregulated proteins include L-lactate de-
hydrogenase A chain (LDHA), annexin A4 (ANXA4), nicotinamide N-methyltransferase
(NNMT), gamma-enolase (ENO2), ATP-dependent 6-phosphofructokinase (PFKP), perilipin-2
(PLIN2), protein-glutamine gamma-glutamyl transferase 2 (TGM2), and the expression
levels of L-lactate dehydrogenase A chain, annexin A4,nicotinamide N-methyltransferase,
and perilipin-2 were further validated using RT-qPCR, Western blot, and immunohisto-
chemistry, which confirmed the findings of the proteomics data [30]. Similarly, Garibaldi
et al. employed 2DE-MALDI TOF mass spectrometry for a proteomics analysis of neoplastic
and healthy control tissues of renal cell carcinoma patients and identified 18 differentially
expressed proteins [31]. Notably upregulated proteins included reticulocalbin-1 (RCN1),
alpha-enolase (ENO1), phosphoglycerate kinase 1 (PGK1), retinol-binding protein 4 (RBP4),
alpha-crystallin B chain (CRYAB), and triosephosphate isomerase (TPI1). Among these
proteins, RCN1 was upregulated in all cancer specimens analyzed via proteomics and its
expression was further validated using Western blotting and immunohistochemistry, which
suggested it as a potential biomarker for renal cell carcinoma [31]. Another study by Koch
et al. used fresh and FFPE samples from renal cell carcinoma patients (both tumor and
adjacent normal) and reported over 1000 differentially expressed proteins [32]. The most
significant proteins included aggrecan core protein (ACAN), perilipin-2 (PLIN2), solute
carrier family 2 (SLC2A1), monocarboxylate transporter 4 (SLC16A3), minor histocompat-
ibility protein HA-1 (HMHA1), blood group Rh(CE) polypeptide (RHCE), dedicator of
cytokinesis protein 2 (DOCK), and 2′-5′-Oligoadenylate synthase 2 (OAS2) [32]. A similar
study by Atrih et al. employed a quantitative proteomics technique to identify differentially
expressed proteins from fresh-frozen tumors and adjacent normal tissues from renal cell
carcinoma patients [33]. They identified 596 differentially expressed proteins which in-
cluded Von Willebrand factor (VWF), ectonucleotide pyrophosphatase/phosphodiesterase
family member 3 (ENPP3), histone H3.1 (H3C1), thymidine phosphorylase (TYMP), ag-
grecan core protein (ACAN), coronin 1A (CORO1A), and ADFP protein (ADFP). The
expression levels of CORO1A and ADFP were further validated using immunohistochem-
istry [33]. Another study by Okamura et al. employed a MALDI-TOF MS technique
to profile differential proteins in renal cell carcinoma tissues with respect to adjacent
normal samples [34]. They reported several significantly expressed proteins including
6-Phosphofructokinase type C (PFKP), 6-Phosphofructokinase, liver type (PFKL), alpha-
Crystallin B chain (CRYAB), alpha-Enolase (ENO1), annexin A4 (ANXA4), apolipoprotein
A-I precursor (APOA1), fibrinogen gamma chain precursor (FGG), fibronectin precursor
(FN1), four and a half LIM domains protein 1 (FHL1), fructose-bisphosphate aldolase
A (ALDOA), galectin-1 (LGALS1), and carnosine dipeptidase 2 (CNDP2). Notably, the
expression levels of LGALS1 and CNDP2 were further validated using an RT-PCR and
Western blotting [34]. A similar study by Perroud et al. used MALDI-TOF MS to pro-
file protein expression from renal cell carcinoma tissue samples compared to adjacent
normal samples [35]. They identified 31 significantly differentially expressed proteins
which included serpin H1 precursor (SERPINH1), fructose-bisphosphate aldolase A (AL-
DOA), vimentin (VIM), apoptosis-inducing factor 1 (AIFM1), glutathione peroxidase 3
precursor (GPX3), aldehyde dehydrogenase (ALDH2), collagen, type XVIII, α-1 (COL18A1),
heparan sulfate proteoglycan core precursor (HSPG2), medium chain-specific acyl-CoA
dehydrogenase (ACADM), fructose-1,6-bisphosphatase 1 (FBP1), 3-Ketoacyl-CoA thio-
lase (ACAA2), and phosphatidylethanolamine-binding protein 1 (PEBP1). Notably, the
expression levels of serpin H1 precursor (SERPINH1), fructose-bisphosphate aldolase A
(ALDOA), vimentin (VIM), and apoptosis-inducing factor 1 (AIFM1) were further validated
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using immunoblotting and immunohistochemistry [35]. Another study by Weißer et al.
reported differential protein expression in FFPE samples from renal cell carcinoma and
adjacent normal tissues [36]. They identified 199 differentially expressed proteins which
included L-lactate dehydrogenase A chain (LDHA), alpha-crystallin B chain (CRYAB),
fructose-bisphosphate aldolase A(ALDOA), annexin A4 (ANXA4), fructose-bisphosphate
aldolase C (ALDOC), pyruvate kinase (PKM), stathmin (STMN1), histone H3.1 (H3C1),
ATP-dependent 6-phosphofructokinase (PFKP), major vault protein (MVP), perilipin-2
(PLIN2), and Cadherin-16 (CDH16) [36].

Table 4. List of proteins from prostate, bladder, and kidney cancers included in meta-analysis.
Combined statistics for these proteins are also depicted.

Protein
Name

Cancer
Type

Expression
Trend

Combined and
Weighted
p-Value

Combined and
Weighted Fold

Change
N_Total Reference

AMBP Prostate Up 1.35339 × 10−19 2.34 114

Fujita et al., 2017 [19];
Davalieva et al., 2015 [18];
Davalieva et al., 2015 [18];
Davalieva et al., 2015 [18];
Davalieva et al., 2015 [18]

CALD1 Prostate Up 8.32538 × 10−11 3.66 12 Webber et al., 2016 [20];
Webber et al., 2016 [20]

CD59 Prostate Up 0.001010766 3.91 72
Davalieva et al., 2015 [18];
Davalieva et al., 2015 [18];
Davalieva et al., 2015 [18]

FABP5 Prostate Up 0.000586891 2.80 70 Fujita et al., 2017 [19];
Davalieva et al., 2015 [37]

ITIH4 Prostate Up 4.26138 × 10−6 2.69 48 Davalieva et al., 2015 [18];
Davalieva et al., 2015 [18]

MARCS Prostate Up 4.4686 × 10−5 2.67 12 Webber et al., 2016 [20];
Webber et al., 2016 [20]

NME1 Prostate Up 1.2542 × 10−17 3.04 60 Davalieva et al., 2015 [37];
Jiang et al., 2013

NPM Prostate Up 0.000242959 2.33 12 Webber et al., 2016 [20];
Webber et al., 2016 [20]

PTGDS Prostate Up 0.001369911 3.38 48 Davalieva et al., 2015 [18];
Davalieva et al., 2015 [18]

SCTM1 Prostate Up 4.10108 × 10−5 6.38 48 Davalieva et al., 2015 [18];
Davalieva et al., 2015 [18]

C3 Bladder Up 0.001339534 2.07 17 Nedjadi et al., 2020 [24];
Sathe et al., 2020 [28]

EHD4 Bladder Up 0.004667281 5.99 29 Smalley et al., 2007 [29]; Lee
et al., 2018 [27]

LGALS3BP Bladder Up 0 1.71 93 Gómez et al., 2021; Smalley
et al., 2007 [29]

S100A8 Bladder Up 0.000434476 2.98 99 Sathe et al., 2020 [28]; Bansal
et al., 2014 [25]

ALDOA Kidney Up 0 2.903563795 72

Song et al., 2017 [30];
Okamura et al., 2008 [34];

WeiBer et al., 2015 [36];
Perroud et al., 2009 [35]
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Table 4. Cont.

Protein
Name

Cancer
Type

Expression
Trend

Combined and
Weighted
p-Value

Combined and
Weighted Fold

Change
N_Total Reference

ANXA4 Kidney Up 8.87564 × 10−15 6.63931328 72
Song et al., 2017 [30];

Okamura et al., 2008 [34];
WeiBer et al., 2015 [36]

COL18A1 Kidney Down 6.83113 × 10−8 0.2 64
Song et al., 2017 [30];

Okamura et al., 2008 [34];
Perroud et al., 2009 [35]

COX6B1 Kidney Down 2.04982 × 10−6 0.2 56 Song et al., 2017 [30];
Okamura et al., 2008 [34]

CRYAB Kidney Up 5.68212 × 10−5 2.765541687 84

Okamura et al., 2008 [34];
WeiBer et al., 2015 [36];

Giribaldi et al., 2013;
Giribaldi et al., 2013 [31]

FABP1 Kidney Down 3.10267 × 10−5 0.1 36 Song et al., 2017 [30]; WeiBer
et al., 2015 [36]

LDHA Kidney Up 3.56554 × 10−6 5.580626486 72

Song et al., 2017 [30];
Okamura et al., 2008 [34];

WeiBer et al., 2015 [36];
Perroud et al., 2009 [35]

PCK2 Kidney Down 1.13664 × 10−5 0.176347496 64
Song et al., 2017 [30];

Okamura et al., 2008 [34];
WeiBer et al., 2015 [36]

PEBP1 Kidney Down 1.56604 × 10−9 0.302889369 112

Song et al., 2017 [30];
Okamura et al., 2008 [34];
Perroud et al., 2009 [35];
Giribaldi et al., 2013 [35]

PKM Kidney Up 6.44029 × 10−7 3.672247556 64
Song et al., 2017 [30];

Okamura et al., 2008 [34];
WeiBer et al., 2015 [36]

4. Discussion

In this systematic review, we compiled and analyzed the current literature related to
proteomic biomarkers associated with urogenital cancers, including prostate, bladder, and
kidney cancers. Additionally, we performed a meta-analysis of significant biomarkers in
these cancers. The results suggest that various proteins exhibit differential expression in
cancerous samples compared to healthy controls, highlighting their potential as diagnostic,
prognostic, or therapeutic biomarkers. The robustness of this systematic review is reinforced
by a well-orchestrated search strategy, predetermined review guidelines, and a rigorous
methodology. These approaches enabled us to examine and condense an expansive and
seemingly disjointed body of literature. We effectively connected different parts of this
research area by using pathway analyses, identifying possible targets for future studies.

In prostate cancer, several biomarkers from different sample types including plasma/
serum, tissues, and urine were combined from different studies. In a comprehensive
analysis, Larkin et al. utilized isobaric stable isotope labeling (iTRAQ) in conjunction with
liquid chromatography–tandem mass spectrometry (LC-MS/MS) to investigate whole,
non-depleted serum from various groups, including controls (PSA < 1 ng/mL), benign
prostate diseases (such as prostatitis and BPH), early-stage (T1-T2) prostate cancer, and
late-stage (T3-T4) cancer [38]. The study identified a total of 1034 proteins, of which 40 were
highlighted as the most significantly differentially expressed, exhibiting minimal variability
across replicates within the same group. A subset of seven proteins (KLK3, SAA, TSR1,
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VWA5B2, CST3, SRC, and SGCd) were chosen for additional validation using an enzyme-
linked immunosorbent assay (ELISA) based on their distinct capacity to discriminate
between the groups. The validation was conducted in an independent cohort, thereby
enhancing the robustness of the findings by mitigating potential bias from using the same
patient samples for discovery proteomics. Notably, the pre-rRNA-processing protein TSR1
homolog (TSR1), when used in conjunction with PSA, proved to be superior to PSA alone
in terms of cancer categorization. The functional enrichment analysis further revealed an
overrepresentation of proteins associated with extracellular vesicular exosomes among the
differentially expressed proteins, emphasizing their potential role in the disease process [38].
Our meta-analysis of prostate cancer studies identified Alpha-1-microglobulin/bikunin
precursor (AMBP) as one of the potential biomarkers, and its role has been explored
in various studies, providing significant insights. In a study by Fujita et al. [19], the
proteomic profile of prostate cancer was evaluated, and AMBP was identified as one of the
proteins that were differentially expressed. This study provided valuable insights into how
AMBP could contribute to the tumorigenesis of prostate cancer, adding to the evidence
of AMBP’s potential as a diagnostic and prognostic marker [19]. Furthermore, Davalieva
et al. [37] performed a comprehensive analysis to investigate the proteome of prostate
cancer patients. Their findings emphasized the relevance of AMBP as a biomarker, showing
a significant difference in its expression between prostate cancer and benign samples. This
supported previous observations about the downregulation of AMBP in prostate cancer
tissue and its potential involvement in disease development and progression. Earlier
studies, such as those by M’Koma et al. [39] and Ummanni et al. [40], had already indicated
the importance of AMBP in prostate cancer. Together with the subsequent findings by
Fujita et al. and Davalieva et al., a compelling picture has emerged of AMBP’s role in
prostate cancer. The cumulative evidence suggests that AMBP’s differential expression
and involvement in various biological processes, including immune response modulation,
might have direct implications in prostate cancer pathogenesis. Similarly, in our meta-
analysis, fatty acid-binding protein 5 (FABP5) emerged as a key player in prostate cancer
and has been explored as a potential biomarker [19,37]. Fujita et al. identified FABP5
among the differentially expressed proteins in urinary extracellular vesicles from high-
Gleason-score prostate cancer. The study’s results indicated that FABP5 might be involved
in molecular mechanisms related to the aggressiveness and progression of the disease [19].
In addition, Davalieva et al. examined the proteome of prostate cancer patients, finding a
significant difference in the expression of FABP5 between cancerous and benign samples.
Their findings further support the potential of FABP5 as a diagnostic and prognostic marker
in prostate cancer [37]. Other studies, including those by Adamson et al. [41] and Morgan
et al. [42], have also shown an association of FABP5 with prostate cancer, particularly with
its invasion and migration capabilities. These studies suggest the significant potential of
FABP5 as a biomarker in prostate cancer. Its differential expression and correlation with
cancer progression warrant further investigations, which may pave the way for more precise
diagnostics and targeted therapeutic approaches for prostate cancer patients. Another
biomarker in our meta-analysis called NME1, also known as non-metastatic cells 1 protein,
has been examined for its potential role as a biomarker in prostate cancer. Additionally,
Jiang et al. identified NME1 as one of the significant proteins involved in prostate cancer
metastasis [23]. The study’s findings suggest that the downregulation of NME1 may be
associated with advanced prostate cancer and might contribute to the aggressive behavior
of the disease [23]. In line with this, an earlier study by Steeg et al. also recognized NME1
as a metastasis suppressor gene, and its expression levels have been inversely correlated
with the metastatic potential of several types of tumors, including prostate cancer [43].
Additionally, Davalieva et al. conducted a comprehensive proteomics analysis of malignant
and benign prostate tissues, finding an altered expression of NME1 in prostate cancer
samples [37]. Their investigation indicated that NME1 could be used as a diagnostic and
prognostic indicator, adding further support to its relevance in understanding prostate
cancer progression. A similar finding was also reported by Marino et al., who focused on
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the prognostic value of NME1, analyzing its expression levels in prostate cancer tissues
and correlating them with clinical outcomes [44]. These studies on NME1 suggest that
its expression may be linked to the invasive and metastatic characteristics of prostate
cancer, making it a potential biomarker for prostate cancer. These identified biomarkers in
prostate cancer have the potential to play a crucial role in shaping personalized treatment
strategies, as exemplified by recent research combining the prostate health index (PHI)
and multiparametric magnetic resonance imaging (mpMRI) to guide personalized therapy
decisions for prostate cancer patients [45].

Similarly, in bladder cancer, we identified several protein markers that are differ-
entially expressed between cancer and control samples. Complement component C3, a
pivotal protein in the immune system, has gained attention as a potential biomarker in
bladder cancer due to its involvement in the inflammatory response and its association with
cancer-related processes. Studies have demonstrated altered expression of C3 in bladder
cancer patients, indicating its potential diagnostic and prognostic significance. Nedjadi
et al. performed a comprehensive analysis of circulating plasma proteins in bladder cancer
patients, identifying complement component C3 among the differentially expressed pro-
teins, thus suggesting its potential as a diagnostic marker [24]. Furthermore, Sathe et al.
conducted a quantitative proteomics analysis on urine samples from muscle-invasive and
non-muscle-invasive bladder cancer patients, revealing the differential expression of C3
between these patient groups, emphasizing its role as a potential biomarker for disease
categorization [28]. Other studies have also implicated C3 in the context of bladder cancer,
highlighting its association with immune-related processes and potential clinical implica-
tions [46]. Another biomarker, EHD4, a member of the Eps15 homology domain-containing
protein family, has garnered attention as a potential biomarker in bladder cancer. Smalley
et al. utilized LC-MS/MS to identify significantly differentially expressed proteins in the
urine microparticles of bladder cancer patients, in which EHD4 emerged as one of the
candidates [29]. Additionally, Lee et al. investigated extracellular vesicles derived from the
urine samples of bladder cancer patients using a comparable approach [27]. These studies
collectively suggest that EHD4 may play a role in the molecular landscape of bladder
cancer. Owing to the genetic and epigenetic diversity within urogenital tumors, the use
of single biomarkers may not yield conclusive patient stratification. Thus, the emphasis
has shifted toward the use of multiple biomarker panels as opposed to individual markers.
Illustratively, in a study by Abogunrin et al., a total of 22 biomarkers were examined in
the urine of 80 bladder cancer patients and 77 controls, leveraging ELISA and biochip ar-
rays [47]. The study identified markers with altered expression, such as BTA and NUMA1,
showing ROC AUC values in the range of 0.7–0.8. Incorporating demographic variables
like age and smoking history into algorithms with these markers bolstered the receiver
operating characteristic (ROC) area under the curve (AUC) to 0.9 [47]. This approach is
in line with the increasing recognition of the heterogeneity of tumors at the genetic and
epigenetic levels. Multi-plex biomarker panels have the potential to provide more accurate
and reliable diagnosis, prognosis, and treatment of cancer. However, further studies are
needed to validate the proposed biomarker panels in independent cohorts and to evaluate
their diagnostic potential in different types of cancer.

In kidney cancer, our analysis identified a relatively large number of biomarkers
compared to prostate and bladder cancer. Our meta-analysis identified 126 biomarkers
from kidney cancer that are significantly altered with respect to control samples. Song et al.
employed an LC-MS/MS-based proteomics analysis in 14 clear cell renal cell carcinoma
(ccRCC) patient tissues and adjacent normal samples [30]. They identified 436 dysregulated
proteins in cancer samples compared to normal samples. Notably, L-lactate dehydrogenase
A chain, annexin A4, nicotinamide N-methyltransferase, and perilipin-2 levels were further
validated using RT-qPCR, Western blotting, and immunohistochemistry [30]. Annexin A4
(ANXA4), a calcium-regulated phospholipid-binding protein, has emerged as a potential
biomarker candidate in kidney cancer. Song et al. identified ANXA4 as significantly upreg-
ulated in kidney cancer tissues through a quantitative proteomics analysis, suggesting its
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potential involvement in disease pathogenesis [30]. Additionally, Okamura et al. reported
ANXA4 as part of the protein signature that distinguishes between kidney cancer and
healthy control tissues [34]. WeiBer et al. demonstrated ANXA4 as one of the differen-
tially expressed proteins in the urinary exosomes of kidney cancer patients, indicating
its potential as a non-invasive urinary biomarker [36]. Masui et al. reported ANXA4 as
a component of the protein profile that characterizes kidney cancer subtypes [33]. These
findings collectively highlight the potential of ANXA4 as a biomarker for kidney cancer
detection, risk stratification, and monitoring. Nevertheless, further validation studies
involving larger patient cohorts are essential to establish its clinical utility. Lactate dehydro-
genase A (LDHA), a key enzyme in glycolysis, has been studied as a potential biomarker
in kidney cancer. Song et al. identified LDHA as significantly upregulated in kidney
cancer tissues through a quantitative proteomics analysis, implying its potential role in
disease progression [30]. Moreover, Okamura et al. reported LDHA as part of the protein
signature distinguishing kidney cancer from healthy controls in urinary exosomes [34].
Similarly, WeiBer et al. demonstrated LDHA as one of the differentially expressed pro-
teins in the urinary exosomes of kidney cancer patients, highlighting its potential as a
non-invasive urinary biomarker [36]. Other studies showed that serum LDH levels are
associated with the outcomes of renal cell carcinoma (RCC) and can be used as a valuable
biomarker for monitoring progress [48]. Moreover, Wang et al. showed that pre-treatment
serum LDH is a significant prognostic factor in high-risk patients with metastatic RCC [49].
Overall, the search results suggest that LDHA may be a useful biomarker for predicting
the prognosis and monitoring the progress of kidney cancer, particularly RCC. Other sig-
nificant biomarkers that are differentially expressed in kidney cancer include Aldolase
A, Fructose-Bisphosphate (ALDOA), Collagen Type XVIII Alpha 1 Chain (COL18A1),
Cytochrome C Oxidase Subunit 6B1 (COX6B1), Alpha-B Crystallin (CRYAB), Fatty Acid-
Binding Protein 1 (FABP1), Phosphoenolpyruvate Carboxykinase 2, Mitochondrial (PCK2),
Phosphatidylethanolamine-Binding Protein 1 (PEBP1), and Pyruvate Kinase Muscle (PKM).

When it comes to urological cancers, the balance between the benefits and potential
drawbacks of new biomarkers must be taken into account. For instance, biomarkers
enabling early prostate cancer detection need to be evaluated against the risk of potential
overtreatment. Hence, it is crucial to pair these biomarkers with others that can determine
patients who truly require therapeutic intervention. Similarly, the demand for biomarkers
exhibiting high sensitivity and specificity for bladder cancer in the context of mass screening
does not align with the need for biomarkers used in categorizing patients presenting
with hematuria [50]. This is primarily because the latter situation has a comparatively
lower disease prevalence, and unnecessary expensive investigations should be avoided.
Consequently, merging studies on clinical effectiveness with cost-effectiveness analyses
is vital. This approach has been exemplified in the detection and monitoring of bladder
cancer using photodynamic diagnosis, cystoscopy, and several urinary biomarkers [50].

Despite its usefulness, our systematic review on proteomics biomarkers of urogenital
cancers does carry certain limitations. The inherent heterogeneity in experimental method-
ologies across the considered studies can result in variances in the identified biomarkers,
adding a level of complexity to the synthesis of findings. Moreover, there may exist a
potential for publication bias, considering that studies yielding significant results have
a higher likelihood of being published. Additionally, the review’s conclusions are con-
tingent upon the quality and completeness of the original studies; hence, any limitations
within them directly affect our findings. Furthermore, our conclusions require cautious
interpretation due to several factors. Firstly, there is inherent inter-individual variability in
biomarker expression, which can impact the reliability of these markers across different
patient populations. Additionally, while our analysis identified a compelling list of differen-
tially expressed proteins in urogenital cancers, it is essential to recognize that many of these
biomarkers require further validation. This validation process should ideally involve larger
and more diverse independent cohorts to confirm their clinical utility. We acknowledge
that our study serves as a crucial starting point for identifying potential biomarkers, but
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their ultimate translation into clinical practice will necessitate rigorous individualized
investigations to establish their specific roles in cancer development, diagnosis, prognosis,
and treatment.

5. Conclusions

This systematic review provides a comprehensive overview of the proteomic biomark-
ers identified in urogenital cancers, including prostate, bladder, and kidney cancers. The
findings highlight the significant potential of these biomarkers in enhancing diagnostic pre-
cision, prognostic assessment, and the therapeutic targeting of these malignancies. These
biomarkers, derived from different sources such as tissue, blood, and urine, shed light
on several biological pathways and processes that could be pivotal in the pathogenesis of
these cancers. However, the clinical implementation of these biomarkers requires further
validation studies in larger and diverse cohorts to establish their reliability, sensitivity,
and specificity. Moreover, the potential for multiplex biomarker panels to offer a more
comprehensive understanding of disease complexity and heterogeneity is highlighted.
Future research should also take into account the cost-effectiveness of these biomarkers to
ensure their broad accessibility and usage in a clinical setting. While this systematic review
brings us one step closer to personalized medicine in urogenital cancers, it also underlines
the challenges and opportunities that lie ahead in the biomarker discovery journey.

Overall, the field of proteomics holds significant promise for improving our under-
standing of urogenital cancers. The identified biomarkers in this review represent potential
targets for future research aiming to enhance early detection, risk stratification, and treat-
ment of urogenital cancers. However, further in-depth studies are essential to validate
these potential biomarkers and to understand their role in the complex biology of cancer.
It is hoped that with advancements in proteomic technologies and the combination of
proteomic data with other types of data such as genomics and transcriptomics, we will
move closer toward precision medicine in urogenital cancers.
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