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Abstract: This study explores the synergistic impact of Programmed Death Ligand 1 (PD-L1) and
Protein Kinase B (Akt) overexpression in adipose-derived mesenchymal stem cells (AdMSCs) for
ameliorating cardiac dysfunction after myocardial infarction (MI). Post-MI adult Wistar rats were
allocated into four groups: sham, MI, ADMSC treatment, and ADMSCs overexpressed with PD-L1
and Akt (AdMSC-PDL1-Akt) treatment. MI was induced via left anterior descending coronary artery
ligation, followed by intramyocardial AdMSC injections. Over four weeks, cardiac functionality
and structural integrity were assessed using pressure–volume analysis, infarct size measurement,
and immunohistochemistry. AdMSC-PDL1-Akt exhibited enhanced resistance to reactive oxygen
species (ROS) in vitro and ameliorated MI-induced contractile dysfunction in vivo by improving
the end-systolic pressure–volume relationship and preload-recruitable stroke work, together with
attenuating infarct size. Molecular analyses revealed substantial mitigation in caspase3 and nuclear
factor-κB upregulation in MI hearts within the AdMSC-PDL1-Akt group. Mechanistically, AdMSC-
PDL1-Akt fostered the differentiation of normal T cells into CD25+ regulatory T cells in vitro, aligning
with in vivo upregulation of CD25 in AdMSC-PDL1-Akt-treated rats. Collectively, PD-L1 and Akt
overexpression in AdMSCs bolsters resistance to ROS-mediated apoptosis in vitro and enhances
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myocardial protective efficacy against MI-induced dysfunction, potentially via T-cell modulation,
underscoring a promising therapeutic strategy for myocardial ischemic injuries.

Keywords: adipose-derived mesenchymal stem cells (AdMSC); myocardial infarction; programmed
death ligand 1 (PD-L1); regulatory T cells

1. Introduction

Diminished myocardial perfusion, culminating in cardiomyocyte death, serves as
a principal determinant of morbidity and mortality following acute myocardial infarc-
tion (AMI) [1,2]. Given that the regenerative capacity of adult cardiomyocytes is generally
regarded as inadequate—attributed to limited proliferative abilities and a scarcity of endoge-
nous cardiac stem cells—stem cell transplantation has emerged as a promising therapeutic
avenue for post-AMI cardiac repair [2–5]. Techniques involving the direct intramyocardial
injection of stem cell suspensions, as well as intracoronary delivery methods, are commonly
employed in the context of AMI [6–8]. Evidence from both basic and applied research
supports the efficacy of stem cell-based therapies in ameliorating AMI-induced cardiac
dysfunction [2,9–12]. Various stem cell types originating from adult tissues, including
hematopoietic stem cells, endothelial progenitor cells, cardiac progenitor cells, skeletal
myoblasts, bone marrow-derived mesenchymal stem cells (BMMSCs), and adipose-derived
mesenchymal stem cells (AdMSCs), have been explored for their potential in cardiac and
vascular repair [2,4,13]. Nevertheless, unresolved debates persist concerning the optimal
cell type, dosage, administration route, and timing for transplantation [2].

Over recent years, mesenchymal stem cells (MSCs) have been demonstrated to possess
both anti-inflammatory and immunomodulatory properties [14,15]. Their therapeutic po-
tential has been corroborated by findings from earlier clinical trials and contemporary meta-
analyses [16–18]. Beyond conventional cell transplantation methods, tissue-engineered
pericardial patches incorporating autologous AdMSCs have shown efficacy in treating
myocardial infarction (MI) in a rabbit model [19]. Another study reported significant ad-
vantages in preserving left ventricular function and mitigating post-AMI remodeling when
AdMSCs were incorporated into platelet-rich fibrin scaffolds in rat models [20]. Among the
various MSC types, AdMSCs are distinguishable for their ease of isolation from adipose
tissue harvested from multiple anatomical sites, which contain a higher yield of MSCs [21].
Moreover, AdMSCs can be procured using minimally invasive techniques, further favoring
their application [22,23].

It is crucial to acknowledge that the post-MI infarct zone presents a hostile microen-
vironment characterized by hypoxia, acidosis, the accumulation of cytotoxic waste, and
nutrient scarcity, which collectively compromise the survival and engraftment of trans-
planted stem cells in the damaged myocardium [2,24]. Various pre-treatment strategies
have been investigated to ameliorate this issue. These include the upregulation of Protein ki-
nase B (Akt) [25,26], the application of endothelial nitric oxide synthase (eNOS)-enhancing
agents [27], hypoxic preconditioning [28], Angiotensin II exposure [29], as well as precondi-
tioning with stromal cell-derived factor 1 alpha (SDF1α) and vascular endothelial growth
factor (VEGF) overexpression [30]. These interventions have shown efficacy in enhancing
cardiac function in the context of post-infarct cardiomyopathy, primarily by improving the
survival rates of the implanted cells [2].

It is widely accepted that cardiovascular diseases are modulated by immunological
processes, with immune responses playing a significant role in exacerbating the severity
of atherosclerosis. T cells are implicated in every stage of atherosclerotic progression, and
attenuating hyperactive T cell activity is anticipated to ameliorate inflammatory condi-
tions [31]. Numerous investigations have targeted the inhibition of immune responses
within the intimal layer or atherosclerotic plaques through the suppression of T cell ac-
tivities. The coinhibitory pathway involving Programmed Death Receptor 1 (PD-1) and
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Programmed Death Ligand 1 (PD-L1) serves a critical function in the establishment of
immune tolerance by mitigating unwarranted immune cell activation.

For further elucidation of stem cells’ potential in the field of regenerative medicine,
cellular modifications may be requisite. In the current investigation, we employed genetic
engineering techniques to induce the overexpression of both PD-L1 and Akt in AdMSCs.
This modification aims to temper excessive inflammation and immunological responses.
Additionally, we evaluated the postulation that the simultaneous activation of these signal-
ing pathways would generate a synergistic effect, thereby offering enhanced therapeutic
efficacy for the treatment of AMI in a rat model.

2. Results
2.1. Characterization of AdMSCs Overexpressing PD-L1 and Akt

To investigate the functional overexpression of Akt and PD-L1 proteins in AdM-
SCs post-transfection, both immunofluorescence assays and Western blot analyses were
conducted. Immunofluorescence findings revealed an augmented abundance of both
PD-L1 and Akt proteins in AdMSCs transduced with pUltra-PD-L1-Akt compared to non-
transduced AdMSCs (Figure 1A). Furthermore, Western blot quantification demonstrated a
statistically significant upregulation of PD-L1 and Akt proteins in the transfected AdMSCs
(PD-L1: 83.09 ± 4.88% relative to GAPDH; Akt: 99.65 ± 21.13% relative to GAPDH) in com-
parison to control AdMSCs (PD-L1: 1.84 ± 0.94% relative to GAPDH; Akt: 31.80 ± 7.48%
relative to GAPDH) (Figure 1B,C). Collectively, these data substantiate that the transfection
process utilizing pUltra-PD-L1-Akt successfully and stably upregulated the expression
levels of PD-L1 and Akt in AdMSCs. These modified AdMSCs were subsequently utilized
to explore their potential therapeutic effects on MI.
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Figure 1. Enhanced Expression of PD-L1 and Akt in AdMSCs. Immunofluorescence was employed
to assess the expression levels of PD-L1 and Akt in both AdMSC and AdMSC-PDL1-Akt cells using
specific probes. (A) Cell nuclei were visualized by counterstaining with DAPI, depicted in blue.
Additionally, the protein abundance of both PD-L1 and Akt was ascertained in cell lysates via Western
blot analysis (B) and subsequently quantified. (C) GAPDH served as an internal loading control.
Scale bar: 170 µm. All data are represented as mean ± SEM. *** p < 0.01 when compared to AdMSC.
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Cell proliferation rates in AdMSC and AdMSC-PD-L1-Akt were assessed using Car-
boxyfluorescein Succinimidyl Ester (CFSE) assays and quantified via flow cytometry. ADM-
SCs exhibited an approximate proliferation rate of 80% (Figure 2A). Notably, this rate was
significantly enhanced in AdMSC-PD-L1-Akt cells, registering at 92.80 ± 3.64% compared
to 79.86 ± 4.78% in AdMSCs. Furthermore, the oxidative stress resistance of both cell types
was evaluated by assessing their viability post 24 h exposure to varying concentrations of
hydrogen peroxide (H2O2). At a concentration of 10 µM H2O2, cell viability in AdMSCs
was reduced to approximately 80%, while AdMSC-PD-L1-Akt cells remained substantially
more resistant to such oxidative injury (Figure 2B; 93.31 ± 1.31% vs. 82.64 ± 1.59% at 10 µM
H2O2). Given that intracellular ROS levels serve as vital indicators of oxidative stress, we
further probed differences in H2O2-induced ROS generation between the two cell types
utilizing the H2DCFDA assay. Exposure to 10 µM H2O2 led to a time-dependent increase
in ROS levels in AdMSCs, reaching approximately 30% of baseline values at 120 min.
In contrast, AdMSC-PD-L1-Akt exhibited a more moderate increase in ROS levels, with
only a 15% rise recorded following the same hydrogen peroxide treatment (Figure 2C;
129.33 ± 0.70% vs. 118.37 ± 1.48% at 120 min).
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Figure 2. Enhanced proliferation and anti-oxidative capability of AdMSC-PDL1-Akt. (A) Proliferative
capacities of AdMSC and AdMSC-PDL1-Akt were assessed using the CFSE assay, with results visual-
ized by flow cytometry. (B) Cellular viability was evaluated through the WST-8 assay. Concentrations
of 1, 3, and 10 µM H2O2 were introduced to AdMSC (black circle) and AdMSC-PDL1-Akt (white
circle) to provoke cellular death. (C) ROS production, induced by 10 µM H2O2, was juxtaposed
between AdMSC (black circle) and AdMSC-PDL1-Akt (white circle) using the H2DCFDA method at
various time intervals. All data are represented as mean ± SEM. * p < 0.05; ** p < 0.02; *** p < 0.01
when compared to AdMSC.

2.2. PD-L1 and AKT-Overexpressing AdMSCs on Post-MI Cardiac Dysfunction and Infarct Size

To evaluate the therapeutic efficacy of AdMSCs engineered to overexpress PD-L1 and
AKT (AdMSC-PD-L1-Akt) in attenuating MI-induced cardiac dysfunction, these cells were
administered to rats immediately post-ligation of the left anterior descending artery (LAD).
The localization of AdMSC-PD-L1-Akt at the cardiac injection site after 24 h was con-
firmed using in vivo imaging (Supplementary Figure S1). Representative pressure–volume
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(P-V) loop results indicated alterations in cardiac function across all experimental groups
(Figure 3A). Specifically, a notable decline in the slope of the end-systolic pressure–volume
relationship (ESPVR) was observed in the MI group (0.82 ± 0.08 mmHg/µL) compared to
the sham controls (1.61 ± 0.18 mmHg/µL). This reduction was mitigated in the
MI+AdMSC-PD-L1-Akt group but not in the MI+AdMSC group (Figure 3B;
1.26 ± 0.22 and 0.97 ± 0.12 mmHg/µL, respectively). Although a slight elevation was
seen in the slope of the end-diastolic pressure–volume relationship (EDPVR) in the MI
group (0.010 ± 0.005 mmHg/µL) relative to sham controls (0.005 ± 0.002 mmHg/µL), this
difference was not statistically significant across the groups (Figure 3C). Further analysis
indicated that preload-recruitable stroke work (PRSW), a parameter indicative of sys-
tolic function, also exhibited a decline in MI-affected animals (18.35 ± 2.16 mmHg × µL)
compared to the sham group (29.83 ± 3.19 mmHg × µL). This decline was amelio-
rated in the MI+AdMSC-PD-L1-Akt group but not in the MI+AdMSC cohort (Figure 3D;
30.57 ± 4.05 and 21.35 ± 3.06 mmHg × µL, respectively).
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Figure 3. AdMSC-PDL1-Akt ameliorates MI-induced systolic dysfunction in rat hearts following left
anterior descending artery (LAD) ligation. (A) Representative pressure–volume (P–V) loops across
varied preloads for sham, MI, MI+AdMSC, and MI+AdMSC-PDL1-Akt rat models. (B) Comparative
analysis of the average slopes of the end-systolic pressure–volume relationship (ESPVR). (C) Com-
parison of the average slopes of the end-diastolic pressure–volume relationship (EDPVR) across the
four rat models. (D) The preload recruitable stroke work (PRSW) is also juxtaposed among the four
groups. All data are presented as mean ± SEM. For quantitative analysis, the sample size was n = 6
for each group, and each black dot indicates individual sample. *** p < 0.01 in comparison to sham
rats; # p < 0.05, ## p < 0.02 when compared to MI rats.

In addition to evaluating cardiac function, we assessed the potential of AdMSC-
PDL1-Akt to mitigate MI-induced cardiac tissue damage. Infarct size and the area at risk
(AAR) were delineated in four distinct animal groups using 2,3,5-triphenyltetrazolium
chloride (TTC; red) and phthalocyanine blue staining (blue), as illustrated in Figure 4A.
Comparative analysis of the AAR across the three groups revealed no statistically significant
differences, suggesting uniformity in the ischemic extents across all cohorts (Figure 4B).
Relative to the MI-only group, which displayed an infarct size of 64.24 ± 8.49%, the
MI+AdMSC cohort showed a modest reduction with an infarct size of 40.37 ± 11.12%.
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Notably, the MI+AdMSC-PDL1-Akt group demonstrated a substantially diminished infarct
size, recorded at 17.65 ± 5.30% (Figure 4C).
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Figure 4. AdMSC-PDL1-Akt reduces infarct size progression in rat hearts following LAD ligation.
Following LAD ligation, rat hearts were perfused with phthalocyanine blue dye and subsequently
immersed in triphenyltetrazolium chloride (TTC). (A) Displayed are representative heart section
images from sham, MI, MI+AdMSC, and MI+AdMSC-PDL1-Akt rats. (B) Quantitative comparison
of the area at risk (designated by the nonblue region). (C) Quantitative assessment of the infarct
size (indicated by the white region). All data are articulated as mean ± SEM. Quantitative analysis
was based on a sample size of n = 6 for each group, and each black dot indicates individual sample.
*** p < 0.01 in comparison to MI rats.

2.3. PD-L1 and AKT-Overexpressing AdMSCs on Apoptotic/Inflammatory Markers and
Immune Regulation

To elucidate the protective mechanism exerted by AdMSC-PDL1-Akt against MI,
we conducted an in-depth evaluation of several inflammatory biomarkers, namely, cas-
pase3, NFκB, and CD25, within cardiac tissues using immunohistochemistry techniques
(Figure 5A). Notably, MI augmented the expression levels of both caspase3 and NFκB, sug-
gestive of MI-induced apoptosis and inflammation, respectively (Figure 5B; 13.40 ± 1.04%
vs. 0.94 ± 0.07% for caspase3 and 14.23 ± 2.84% vs. 0.89 ± 0.31% for NFκB). This elevation
was significantly attenuated in the MI+AdMSC and MI+AdMSC-PDL1-Akt cohorts, with
values of 6.19 ± 1.19% and 2.62 ± 0.45% for caspase3 and 6.15 ± 0.87% and 2.89 ± 0.58% for
NFκB, respectively. Conversely, both AdMSC and AdMSC-PDL1-Akt markedly enhanced
CD25 abundance, registering at 0.12 ± 0.09% and 0.32 ± 0.10%, respectively. In comparison,
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the MI group did not exhibit significant variations in CD25 levels relative to the sham
group, with a measured value of 0.01 ± 0.01%.
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cell expression. (A) Immunohistochemical analysis illustrating the prevalence of caspase3, NFκB, and
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caspase3. (C) Quantitative assessment of the proportion of cells demonstrating positive staining
for NFκB. (D) Quantification of cells exhibiting positive CD25 expression. All data are presented as
mean ± SEM. ** p < 0.02 when compared to sham; # p < 0.05, ## p < 0.02, ### p < 0.01 in comparison to
MI rats.

Given the pronounced upregulation of CD25 expression observed in the MI+AdMSC-
PDL1-Akt group in vivo, we sought to elucidate the influence of AdMSC-PDL1-Akt on T
cell activity. To ascertain whether AdMSC-PDL1-Akt could potentiate the expression of
CD4 + CD25+ T cells in vitro, we isolated murine CD4+ T cells and co-cultivated them either
with standard AdMSC or AdMSC-PDL1-Akt. The progression of T cell differentiation
within the AdMSC-mediated co-culture milieu was monitored over a span of 4 days using
flow cytometry (Figure 6A). By day 4, there was a modest elevation in the proportions of
CD4+CD25+ T cells within the AdMSC co-culture system relative to controls (Figure 6B;
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1.41 ± 0.15% vs. 0.97 ± 0.12%; p = 0.033). Strikingly, the CD25 expression was more
robustly augmented in the AdMSC-PDL1-Akt co-culture setup, registering at 3.21 ± 0.28%
as opposed to 0.97 ± 0.12% for controls (p < 0.001). Yet, the pre-incubation with an anti-
PD-1 antibody attenuated the stimulatory effect of AdMSC-PDL1-Akt on regulatory T
cells, with a resultant expression of 1.96 ± 0.16% (p = 0.018, relative to AdMSC-PDL1-Akt
co-cultivated T cells).
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PDL1-Akt. (A) Depiction of CD4+CD8+ T cell proportions (region Q2) from murine spleen, repre-
senting findings from ten distinct experiments. Comparative assessment of T cells co-cultured with
either AdMSC or AdMSC-PDL1-Akt over a span of 4 days against a baseline control. Utilization
of PD1 inhibitor (Anti-mouse PD-1 antibody) demonstrated blockade of AdMSC-PDL1-Akt effects.
(B) Observed enrichment of regulatory T cell proportions (CD4+CD25+ T cells) post 4-day co-culture
with AdMSC-PDL1-Akt, in contrast to AdMSC co-culture. All data are denoted as mean ± SEM.

3. Discussion
3.1. Principal Findings

The current investigation presents a compelling set of findings that underscore the
potential of AdMSCs, strategically optimized through genetic engineering to overexpress
PD-L1 and Akt, in fostering improved cardiac functionality following an AMI. The engi-
neered cells exhibit significant mitigation effects on the detrimental process of ventricular
remodeling post-AMI, which is a vital determinant in the overall prognosis and recov-
ery trajectory of affected patients. The unveiled superiority of AdMSC-PDL1-Akt over
traditional therapies is most evident in their robust resistance to oxidative stress and
their heightened proliferative capacity. These characteristics collectively improve the like-
lihood of effective cellular survival and engraftment within the harsh environment of
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the infarcted myocardium, laying a promising foundation for future cardiac dysfunction
therapeutic strategies.

Indeed, we initiated a proof-of-concept pilot study to assess the AKT-PD-L1 dual
gene engineering approach. The overexpression of PD-L1 and Akt in adipose-derived
mesenchymal stem cells (AdMSCs) is of considerable interest in the context of myocardial
infarction (MI) due to their respective potential roles in modulating immune responses
and enhancing cell survival. PD-L1 may contribute to immune regulation, whereas the
activation of Akt is associated with pro-survival and anti-apoptotic effects. These functions
could be particularly relevant in MI, where both cell survival and immune responses
are crucial.

The potential rationale behind overexpressing PD-L1 in AdMSCs and the possible
mechanism of action include (1) Immunomodulation and immune evasion: PD-L1 is known
for its role in immune modulation. It interacts with PD-1 on immune cells, sending in-
hibitory signals and suppressing immune responses. Overexpressing PD-L1 in AdMSCs
could enhance the immunomodulatory properties of these cells. This might be especially
relevant in conditions where immune responses need to be finely regulated, such as inflam-
matory states post-infarct. (2) Anti-inflammatory effects: PD-L1 has been associated with
anti-inflammatory effects, and its upregulation might contribute to reducing inflammation.
In a context like post-infarct, where inflammation plays a role, AdMSCs overexpressing
PD-L1 could potentially have a more significant anti-inflammatory impact. (3) Synergistic
effects with Akt activation: considering the synergy between PD-L1 and Akt, overexpress-
ing PD-L1 in AdMSCs alongside Akt activation may amplify the immunomodulatory and
anti-inflammatory effects. Akt activation may enhance cell survival and proliferation, while
PD-L1 could contribute to the suppression of excessive immune responses. (4) Therapeu-
tic potential in inflammatory conditions: overexpression of PD-L1 in AdMSCs might be
explored as a therapeutic strategy in inflammatory diseases, where precise control over
immune responses is important. This approach could potentially regulate the balance
between promoting cell survival and modulating immune responses, contributing to tissue
repair and homeostasis. (5) Enhanced therapeutic efficacy in cell-based therapies: AdM-
SCs are increasingly investigated for their therapeutic potential in regenerative medicine.
Overexpressing PD-L1 may enhance the efficacy of AdMSC-based therapies by optimizing
their immunomodulatory properties. This could be particularly beneficial in scenarios
where transplanted cells face potential immune rejection. In summary, overexpressing
PD-L1 in AdMSCs could be a strategic approach to harness the immunomodulatory and
anti-inflammatory properties of both PD-L1 and Akt signaling pathways. This may have
potential applications in conditions where balancing immune responses and promoting
tissue repair are critical, such as in post-infarct scenarios or other inflammatory conditions.
Further experimental studies would be necessary to validate the potential mechanism
of action.

3.2. Strengths of PD-L1 and AKT Dual Overexpressing AdMSC Therapy in AMI Model

The coinhibitory pathway involving PD-1 and PD-L1 serves a critical function in the
establishment of immune tolerance by mitigating unwarranted immune cell activation.
Therapeutic agents targeting the PD-1/PD-L1 axis have emerged as promising anticancer
interventions [32]. Both preclinical and clinical evidence robustly support the notion
that PD-1/PD-L1 coinhibitory signaling can temper excessive inflammation and confer
protective effects on coronary vessels against atherosclerotic damage [33].

Conversely, the expression of PD-L1 is governed by a complex interplay of factors,
including various signaling pathways, transcriptional regulators, and epigenetic mech-
anisms [34]. The Phosphoinositide 3-kinase/Protein kinase B (PI3K/Akt) pathway has
been identified as one of the key signaling routes capable of modulating PD-L1 expression
through either transcriptional or post-transcriptional means [35]. Inhibition of Akt has been
shown to result in diminished PD-L1 expression, substantiating the role of Akt as a positive
regulator of PD-L1 [36]. The Akt signaling pathway has been implicated in the regulation
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of various cellular processes, including cell survival, proliferation, and immune responses.
There is evidence supporting the role of Akt as a positive regulator of PD-L1 expression.
The relationship between Akt and PD-L1 expression, particularly in the context of various
pathological conditions, including cancer and inflammatory diseases, has been investigated.
Studies have demonstrated that the Akt signaling pathway can positively regulate the
expression of PD-L1. Inhibition of Akt has been shown to result in decreased levels of
PD-L1 expression in cancer cells. On the contrary, Akt activation may lead to an increase in
PD-L1 expression. Akt-mediated upregulation of PD-L1 suggests a potential link between
cell survival signaling and immune modulation. This connection is particularly relevant in
the context of diseases like inflammatory conditions, such as post-infarct. The overexpres-
sion of PD-L1 and Akt in AdMSCs could exert a synergistic effect on the modulation of
immune and inflammatory response [37]. Additionally, Akt serves as a pivotal molecule
in the anti-apoptotic pathways within cardiomyocytes [38]. Activation of Akt has been
demonstrated to preserve cardiac function and mitigate damage following transient cardiac
ischemia in vivo [26]. Moreover, the initiation of reperfusion injury salvage kinase (RISK)
signaling via Akt, triggered by β2-adrenergic receptor stimulation, has been shown to
result in a reduction in infarct size in rodent models [39].

The initial phase of our research aimed to authenticate the overexpression of Akt and
PD-L1 in AdMSC post-transduction, leveraging both immunofluorescence and Western
blot analyses as reliable verification methods. The pronounced presence of PD-L1 and Akt
in the transduced cells (pUltra-PD-L1-Akt AdMSCs), as evidenced through these rigorous
tests, validates the success and stability of the transduction process in upregulating these
proteins. Notably, this enhanced expression was associated with significant functional
improvements in the AdMSCs, including a remarkable increase in the cell proliferation
rate (92.80 ± 3.64%) and heightened resistance to oxidative stress induced by hydrogen
peroxide exposure. These enhancements in cellular functions are crucial, given the hostile
and oxidative stress-rich environment of infarcted myocardial tissue, where these cells are
expected to operate and exert their therapeutic effects.

Upon establishing the dual overexpression of Akt and PD-L1 in AdMSCs and the
enhancements in cellular functions in vitro, we proceeded to evaluate their therapeutic
potential in an in vivo rat model of MI. The application of these cells showed a promising
reduction in infarct size and mitigated the myocardial damage induced by MI. This study
observed a notable improvement in various cardiac function parameters, such as the ESPVR
and PRSW, suggesting improved systolic function, which is indicative of the therapeutic
potential of the AdMSC-PD-L1-Akt cells in a post-MI scenario.

3.3. Mechanistic Insights from PD-L1 and AKT Dual Overexpressing Cell Therapy

The inflammatory and apoptotic cascades activated post-MI play a pivotal role in
determining the extent of myocardial damage and the prognosis of the condition [12,40].
In our study, the administration of AdMSC-PD-L1-Akt cells was associated with a sig-
nificant downregulation of caspase-3 and NFκB, markers indicative of apoptosis and
inflammation, respectively. This downregulation not only highlights the anti-apoptotic and
anti-inflammatory properties of the transduced cells but also underscores their potential to
limit the extent of myocardial damage post-MI.

The immunomodulatory role of the AdMSC-PD-L1-Akt cells was further evidenced
by the upregulation of CD25 and the significant induction of CD4+CD25+ regulatory T cells.
Regulatory T cells (Tregs) play a vital role in immune modulation and tissue repair and have
been implicated in the improvement in outcomes in various inflammatory and autoimmune
conditions [41–43]. The observed increase in CD25 expression and the induction of Tregs
suggest that the therapeutic effects of AdMSC-PD-L1-Akt cells may, in part, be mediated
through the modulation of the immune response post-MI, creating a more conducive
environment for myocardial repair and regeneration.

The rationale for investigating PD-L1 and Akt in the context of MI involves their roles
in immune regulation and cell survival, respectively. PD-L1 is part of the coinhibitory
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pathway involving PD-1, and this pathway plays a vital role in immune tolerance. In the
context of MI, there is an inflammatory response that involves the activation of immune
cells. Excessive or prolonged immune activation can contribute to tissue damage. PD-L1,
when binding to its receptor PD-1 on immune cells, inhibits their activation, preventing
unwarranted and potentially harmful immune responses. Modulating this pathway could
be a strategy to adjust the immune response in MI and potentially attenuate tissue damage.
Akt plays a key role in cell survival and anti-apoptotic signaling. In the context of MI, there
is a significant risk of cell death (apoptosis) due to ischemic injuries. Activating the Akt
pathway can support cell survival and inhibit apoptosis, potentially protecting cardiac cells
from damage during and after an infarction [44].

Akt can influence the expression and function of CD25, which is the alpha subunit of
the interleukin-2 receptor (IL-2R) and is often used as a marker for Tregs. Akt activation can
promote the production of IL-2, a key cytokine involved in T cell proliferation and survival.
CD25 is the alpha chain of the IL-2 receptor, and its expression is critical for high-affinity
binding of IL-2. Akt activation may enhance IL-2 signaling, leading to increased CD25
expression on T cells. PD-L1 is a transmembrane protein commonly expressed on the
surface of antigen-presenting cells and tumor cells but not on AdMSCs. PD-L1 has been
recognized as playing a role in immune regulation, and its interaction with PD-1 on T cells
is a key aspect of this regulation. While PD-L1 itself does not directly upregulate CD25+

T cells, its engagement with PD-1 contributes to the modulation of T cell activation and
function, including Tregs. MI triggers an inflammatory response involving the infiltration
of immune cells. Excessive inflammation can contribute to tissue damage. PD-L1, when
expressed on the surface of AdMSCs, may interact with PD-1 on immune cells, inhibiting
their activation. This interaction can potentially modulate the immune response, preventing
an exaggerated and harmful inflammatory reaction in the infarcted area [45,46].

Here are some key ways in which Tregs contribute to immune regulation post-MI:
(1) Tregs suppress the activation and function of effector T cells, preventing an exaggerated
and potentially harmful inflammatory response in the infarcted tissue. (2) Tregs influence
macrophage polarization toward an anti-inflammatory phenotype, contributing to tissue
repair and resolution of inflammation. (3) Tregs secrete anti-inflammatory cytokines such
as IL-10 and TGF-β, which are involved in tissue repair and remodeling. (4) Tregs control
the recruitment and activation of other immune cells, influencing the overall composition
of the immune response in the infarcted heart. (5) Tregs promote angiogenesis, the for-
mation of new blood vessels, which is crucial for the restoration of blood supply to the
infarcted area [47]. In the current study, the observed increase in CD25 expression and the
induction of Tregs suggest that the therapeutic effects of AdMSC-PD-L1-Akt cells may, in
part, be mediated through the modulation of the immune response post-MI, creating a
more conducive environment for myocardial repair and regeneration. Understanding the
regulatory functions of Tregs in the aftermath of MI is critical for developing therapeutic
strategies that harness the immunomodulatory potential of these cells to enhance cardiac
repair and mitigate adverse remodeling.

3.4. Limitations of the Study

While the present study provides valuable insights into the efficacy of genetically
optimized AdMSCs overexpressing PD-L1 and Akt in improving post-MI cardiac function,
several limitations warrant careful consideration. First, our study predominantly focuses
on short-term post-MI outcomes; hence, the long-term efficacy and stability of AdMSC-
PDL1-Akt therapy remain unexplored. Understanding the sustainability of the observed
therapeutic benefits over extended periods is crucial for validating this approach as a
viable long-term treatment strategy for post-MI cardiac dysfunction. Second, while the
overexpression of PD-L1 and Akt has shown promising results, the specific molecular
mechanisms and interactions driving these positive outcomes need to be elucidated further.
A more in-depth exploration into the mechanistic underpinnings would offer a clearer
understanding of the therapy’s mode of action and potential side effects. Third, the study
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did not investigate the potential impact of varying degrees of PD-L1 and Akt overexpression
on therapeutic outcomes, which may provide additional valuable insights for optimizing
the genetic engineering process. Fourth, we did not quantify the number of infiltrated
T cells in our experiment. Consequently, we relied on the total cell count in the slides
for justification. Without blood or tissue slide samples remaining, we could not check
the total number of infiltration T cells, but according to our recent study, PDL1 and AKT-
modified umbilical cord mesenchymal stem cells (UMSC-PD-L1-AKT) could also enhance
T-regulatory cells in the ischemic brain without increasing T cell infiltration [48]. Thus, we
believe that our result might be convincing. Lastly, we acknowledge that the sample size
in our experimental groups is relatively small, which may limit the statistical power and
generalizability of the study findings. Future studies with larger sample sizes and diverse
models are required to corroborate and build upon the findings reported here. These
studies should also explore the potential interactions between AdMSC-PDL1-Akt therapy
and standard post-MI pharmacological interventions to evaluate the feasibility and safety of
combined treatment approaches. Indeed, the path from the current encouraging pre-clinical
findings to the development of effective clinical therapies is complex and requires careful
navigation through further studies and clinical trials.

4. Methods and Materials
4.1. Preparation, Isolation, and Characterization of AdMSCs

Human adipose tissue samples, obtained with approval from the Institutional Review
Board (IRB) of China Medical University Hospital (CMUH109-REC1-153 (CR-3)), were
subjected to triple washings using phosphate-buffered saline (PBS) devoid of calcium and
magnesium ions (Ca2+ and Mg2+-free PBS; Life Technology, Carlsbad, CA, USA). The tissues
were subsequently mechanically dissected into fragments with dimensions less than 0.5 cm3.
These tissue fragments were treated with collagenase type 1 (Sigma-Aldrich, St. Louis, MO,
USA) and incubated for a duration of three hours at 37 ◦C within a humidified atmosphere
consisting of 95% air and 5% CO2. Explants were cultured in NutriStem® MSC XF Medium
supplemented with NutriStem® XF Supplement Mix (Sartorius, Goettingen, Germany) and
5% UltraGRO™-Advanced-PURE Cell Culture Supplement (AventaCell Biomedical, Kent,
WA, USA), along with antibiotics, in a 5% CO2 environment at 37 ◦C. The explants were left
undisturbed for 5–7 days to facilitate cell migration. Following 4–8 passages, the adipose
tissue-derived mesenchymal stem cells (ADMSCs) exhibited a homogenous spindle-shaped
morphology. We characterized the specific surface molecules of these cells using flow
cytometry. Cells, detached using TrypLE™ Select Enzyme (Gibco, Waltham, MA, USA) and
washed with PBS, were incubated with antibodies (including CD73, CD90, CD105, CD19,
CD34, CD45, CD11b, and HLA-DR) conjugated with fluorescein isothiocyanate (FITC) or
phycoerythrin (PE) (BD Biosciences, Franklin Lakes, NJ, USA). Analysis was performed
using a Becton Dickinson flow cytometer and FlowJo v.7.6 software.

4.2. Lentiviral Vector Construction and Transfection Protocols

Lentiviral vectors (pLAS3w), along with packaging (psPAX2) and envelope (pMD2.G)
plasmids, were acquired from Academia Sinica, Taiwan. Complementary DNA (cDNA)
sequences encoding the full-length human Akt, PD-L1, Luciferase (Luc), and a control
green fluorescent protein (GFP) were sourced from existing cDNA constructs (pCMV6-
myc-DDK-Akt, pCMV6-myc-DDK-PD-L1, pRMT-Luc, and OriGene, respectively). These
sequences were sub-cloned into the pUltra vector (Addgene, Watertown, MA, USA) using
specific restriction enzyme linkers (EcoR1 and Nhe1 for Akt; BamH1 and Not1 for PD-L1;
EcoR1 and Nhe1 for Luc) to generate constructs such as pUltra-Akt-PD-L1, pUltra-Akt-GFP,
and pUltra-PD-L1-GFP.

The constructed templates were then amplified via polymerase chain reaction (PCR)
using sequence-specific primers, followed by digestion with the corresponding restriction
enzymes. Subsequently, the digested fragments were sub-cloned into the lentiviral back-
bone vector plasmid pLAS3w (Academia Sinica, Taipei, Taiwan). To generate the recombi-



Int. J. Mol. Sci. 2024, 25, 134 13 of 18

nant lentiviruses carrying Akt-PD-L1, Akt, PD-L1, Luc, and control GFP, co-transfection
was performed using the recombinant plasmid and packaging and envelope plasmids
in 293T cells at a ratio of 3:3:1. Transfection was executed using XtremeGene HP DNA
transfection reagent (Roche, Basel, Switzerland).

AdMSCs were plated at a density of 1 × 105 cells per well in a 6-well plate, each
well containing a final volume of 1 mL. The cells were transduced at a multiplicity of
infection (MOI) of 5, in triplicate. Protamine sulfate, procured from Sigma-Aldrich and
prepared as a 5 mg/mL stock solution in DMEM-LG, was added to achieve the targeted
final concentration. Following a 24 h incubation period for transduction, the medium was
replenished with 1.5 mL per well to establish cell populations termed AdMSC-PDL1-Akt,
AdMSC-Akt-GFP, AdMSC-Luc, and AdMSC-PD-L1-GFP. For the selection of successfully
transduced cells, the overconfluent monolayers were sub-cultured into fresh 6-well plates
and subjected to selection pressure through the addition of either 1.0 mg/mL G418 or
puromycin solutions (Sigma-Aldrich, St. Louis, MO, USA).

4.3. Characterization of AdMSC-PDL1-Akt Cells: Immunophenotyping, Proliferation, and
Viability Assessment

The efficacious co-transfection of PD-L1 and Akt in AdMSCs was substantiated
through immunofluorescence staining and Western blot analyses, employing specific anti-
bodies sourced from Cell Signaling Technologies (Danvers, MA, USA). Nuclear counter-
staining was achieved with 4′,6-diamidino-2-phenylindole (DAPI; DAPI Fluoromount-G,
SouthernBiotech, Birmingham, AL, USA).

Cellular proliferation rates for both the native AdMSCs and the AdMSC-PDL1-Akt
cells were ascertained using Carboxyfluorescein Succinimidyl Ester (CFSE; CellTrace™,
ThermoFisher Scientific, Waltham, MA, USA). Cells were incubated in 5 mM CFSE at 37 ◦C
for 10 min, subsequently quenched with fetal bovine serum (FBS), and subjected to flow
cytometric analysis for quantification.

To evaluate cellular viability, we employed the WST-8 assay [2-(2-methoxy-4-nitrophenyl)-
3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt; Cell Counting
Kit-8, MedChem Express, Monmouth Junction, NJ, USA]. Both ADMSC and ADMSC-PDL1-
Akt cells were plated in a 96-well format and exposed to 1, 3, and 10 µM concentrations of
H2O2 to induce cellular stress. Absorbance at 450 nm was recorded after 24 h using a Tecan
microplate reader (Tecan, Männedorf, Switzerland). Cell viability ratios were computed as
follows: Cell Viability (%) = (Optical Density of Treated Cells/Optical Density of Control
Cells) × 100.

Intracellular levels of reactive oxygen species (ROS) were assessed utilizing the cell-
permeant 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA) assay, conducted in ac-
cordance with the manufacturer’s guidelines (MedChem Express, Monmouth Junction, NJ,
USA). ROS generation was quantified through absorbance measurements at 525 nm, taken
20 to 120 min post-exposure to 10 µM H2O2, utilizing a Tecan microplate reader (Tecan,
Männedorf, Switzerland).

4.4. Animal Experimental Design and Protocols

All animal experiments received approval from the Institutional Animal Care and Use
Committee at China Medical University (Approval No. 2019-362-1) and were executed in
strict accordance with the guidelines stipulated by the U.S. National Institutes of Health’s
Guide for the Care and Use of Laboratory Animals. Male Wistar rats, 8 weeks old, were
procured from BioLASCO Taiwan Co., Ltd. (Taipei, Taiwan) and were randomly allocated
into four distinct experimental groups: sham-operated (Sham), myocardial infarction (MI),
MI followed by AdMSC injection (MI+AdMSC), and MI followed by AdMSC-PDL1-Akt
injection (MI+AdMSC-PDL1-Akt), with n = 7 for each group (Figure 7).
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Figure 7. Animal experimental design and protocols. Male Wistar rats were randomly allocated into
four distinct experimental groups: sham-operated (Sham), myocardial infarction (MI), MI followed
by AdMSC injection (MI+AdMSC), and MI followed by AdMSC-PDL1-Akt injection (MI+AdMSC-
PDL1-Akt). MI was induced via the permanent ligation of the left anterior descending coronary
artery (LAD) employing a silk suture. Scale bar: 50 µm.

Animals were anesthetized using 2% isoflurane (Abbott, Abbott Park, IL, USA) and
mechanically ventilated using a specialized rodent ventilator (New England Medical
Instruments, Medway, MA, USA). Myocardial infarction was induced via the permanent
ligation of the left anterior descending coronary artery (LAD) employing a silk suture.
Sham-operated animals were subjected to identical surgical protocols, excluding the LAD
ligation. Verification of successful LAD ligation was achieved through observing ST-
segment elevations in lead II electrocardiograms, which were acquired using a PowerLab
data acquisition system (ADInstruments, Colorado Springs, CO, USA) coupled with Chart
v7.3.8 software. Upon confirmation of MI induction, AdMSCs at a dose of 1 × 106 in 1 mL
phosphate-buffered saline were administered through intramyocardial injections targeted
around the peri-infarct zone.

4.5. Pressure–Volume Loop Hemodynamic Analysis

For hemodynamic evaluations, rats were subjected to anesthesia via intraperitoneal
administration of thiopental sodium at dosages ranging from 60 to 80 mg/kg. Subsequent
to anesthesia, a surgical incision was made to expose the right carotid artery, facilitating
the insertion of a 2.0 F microtip pressure–volume (PV) catheter (Model SPR-838, Millar
Instruments, Houston, TX, USA). Following initial arterial pressure recording, the catheter
was carefully advanced into the left ventricle (LV) under guidance from real-time pressure
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waveforms. Upon stabilization, continuous pressure and volume signals were recorded
through a specialized PV conductance system (MPVS Ultra, emka TECHNOLOGIES,
Paris, France) interfaced with a digital converter unit (Model ML-870, ADInstruments,
Colorado Springs, CO, USA). Hemodynamic variables were measured across varying
preloads induced by transient mechanical compression of the abdominal inferior vena cava.
To ascertain preload-independent parameters, transient compressions of the abdominal
inferior vena cava were executed concomitantly with PV loop data acquisition.

4.6. Infarct Size Quantification

Upon completion of experimental protocols, subjects were anesthetized utilizing 5%
isoflurane and subsequently euthanized via cervical dislocation. Excised hearts were
promptly mounted on a Langendorff apparatus and perfused with isotonic saline, fol-
lowed by the administration of phthalocyanine blue dye to delineate non-ischemic tissue.
The cardiac tissue was sectioned into 1 mm slices, which were then incubated in 1%
2,3,5-triphenyltetrazolium chloride (TTC) solution at 37 ◦C for a period of 30 min. This
procedure allowed for the differentiation between infarcted (depicted as white areas) and
non-infarcted (depicted as red areas) zones within the area at risk (AAR), identified as
regions negative for phthalocyanine blue staining. Infarct size was quantified by digital
analysis of slice images, employing ImageJ software (Version 1.51j8) for this purpose.

4.7. Immunofluorescence Analysis for Cardiac Tissue Characterization

Serial cross-sections of myocardial tissues were subjected to immunofluorescence
staining employing antibodies against Caspase-3 (PROTEINTECH, Chicago, IL, USA),
CD25 (Abcam, Cambridge, UK), NF-κB (Abcam, Cambridge, UK), and myosin heavy chain
(Leica, Wetzlar, Germany). Subsequently, tissue sections were incubated with the appro-
priate fluorophore-conjugated secondary antibodies to assess in situ protein expression
levels. For semi-quantitative analysis of Caspase-3, CD25, NF-κB, and myosin heavy chain
expression, image data were collected from four independent samples per experimental
group, with two images scrutinized per sample. Staining intensity was evaluated on a scale
of 0 to 4, where a score of 0 represented an absence of staining, and a score of 4 indicated
maximal staining intensity.

4.8. Isolation of Murine CD4+ T Lymphocytes and Co-Culture with Adipose-Derived Mesenchymal
Stem Cells

Adult C57BL/6 mice were acquired from the National Laboratory Animal Center,
Taiwan. CD4+ T cells were isolated from splenic homogenates of these mice utilizing a
negative-selection protocol with the BD iMag Mouse CD4 T Lymphocytes Enrichment Set
(BD Biosciences, Franklin Lakes, NJ, USA). Post-isolation purity of CD4+ T cells exceeded
93%, as verified via flow cytometry. Following isolation, the CD4+ T cells concentration
was adjusted to 5 × 105 cells/mL/well. These isolated lymphocytes were subsequently
co-cultured with either unmodified AdMSC or AdMSC engineered to overexpress PD-
L1 and Akt (AdMSC-PDL1-Akt), at a density of 4 × 104 cells/well. The co-culture was
maintained in 12-well transwell tissue culture plates with culture medium for AdMSCs
described previously for a period of five days. Proportions of CD4+CD25+ T lymphocytes
were quantitatively assessed both prior to and following the co-culture period with AdMSC
and AdMSC-PDL1-Akt.

4.9. Flow Cytometric Analysis of CD4+CD25+ Regulatory T Cells

To assess the potential modulatory effects of stem cells on the expansion of regulatory
T cells, the frequencies of CD4+CD25+ T cells were quantified using flow cytometry at both
baseline (day 0) and at day 4 post-co-culture. Cells were stained for surface markers CD4+

and CD25+ utilizing fluorochrome-conjugated monoclonal antibodies specific for mouse
CD4+ (allophycocyanin-conjugated) and mouse CD25+ (BB515A-conjugated), both sourced
from BD Biosciences. Flow cytometric analyses were conducted using a FACS Canto flow
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cytometer (BD Biosciences), and the resulting data were processed using FlowJo analytical
software (Version 7.6, Tree Star Inc., Ashland, OR, USA). Additionally, an anti-mouse PD-1
antibody was employed as an inhibitory agent to disrupt the PD-1/PD-L1 interaction,
sourced from Bio X Cell (Lebanon, NH, USA).

4.10. Statistical Analysis

All data were acquired in a double-blinded manner to mitigate bias. Quantitative
results are presented as mean ± standard error of the mean (SEM). To compare means
between two independent groups, two-tailed Student’s t-tests were employed. For com-
parisons involving multiple groups, a two-way analysis of variance (ANOVA) followed
by a Newman–Keuls post hoc analysis was conducted. Intensity scoring for immunofluo-
rescence analysis of cardiac tissues was conducted by two independent researchers who
were blinded to the experimental conditions. Compiled intensity scores were averaged and
subjected to statistical analysis using the Kruskal–Wallis test. Statistical significance was
established at a p-value of less than 0.05.

5. Conclusions

The present study provides pivotal insights into the therapeutic efficacy of AdMSCs
overexpressing PD-L1 and Akt in a rat model of MI. The results underscore a significant
improvement in post-MI cardiac function attributed to the enhanced resilience, proliferation,
and immunomodulatory effects of the engineered stem cells. Specifically, the upregulation
of CD25+ T cells plays a cardinal role in this therapeutic landscape, opening new horizons
for innovative and effective treatment modalities for patients grappling with post-MI
cardiac dysfunction.
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