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Abstract: The teat number is a pivotal reproductive trait that significantly influences the survival rate
of piglets. A meta-analysis is a robust instrument, enhancing the universality of research findings
and improving statistical power by increasing the sample size. This study aimed to identify universal
candidate genes associated with teat number traits using a genome-wide association study (GWAS)
meta-analysis with three breeds. We identified 21 chromosome threshold significant single-nucleotide
polymorphisms (SNPs) associated with five teat number traits in single-breed and cross-breed meta-
GWAS analyses. Using a co-localization analysis of expression quantitative trait loci and GWAS loci,
we detected four unique genes that were co-localized with cross-breed GWAS loci associated with
teat number traits. Through a meta-analysis and integrative analysis, we identified more reliable
candidate genes associated with multiple-breed teat number traits. Our research provides new
information for exploring the genetic mechanism affecting pig teat number for breeding selection
and improvement.

Keywords: teat number; meta-GWAS analysis; cross-breed; PigGTEx

1. Introduction

Reproductive traits play a pivotal role in the pig industry, directly influencing the
economic gains derived from domestic pigs [1]. Pig reproductive traits encompass var-
ious traits, such as teat number, litter size, and the birth weight of piglets. These traits
collectively contribute to the overall reproductive performance and productivity of pigs [2].
The functional teat number in pigs serves as a critical indicator to assess sows’ lactation
capacity and directly influences their offspring’s health and reproductive performance [3].
Teat number is characterized by low-to-medium heritability [4]. Traditional selection meth-
ods, such as phenotypic selection, are ineffective in improving these traits [5,6], which
are primarily influenced by genetic factors [7]. These traits are determined at birth and
are minimally influenced by environmental and nutritional factors [8]. Therefore, it is
imperative to explore the genetic loci that affect teat number; this research direction has
significant potential for uncovering the genetic mechanisms that govern teat number varia-
tion [9]. Although candidate genes related to the teat number traits have been identified
through single-population GWAS (e.g., VRTN [9–15], IGF2 [10,16], SYNDIG1L [12,14], and
LIN52 [17]), these genes are based on a single population with its genetic background and
are not shared among multiple breeds. There are few reports on potential shared genes for
teat number traits among different breeds.
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A meta-analysis is a statistical method that combines results from multiple studies
of the same type. Researchers use this method to summarize and statistically analyze
data by pooling information across various studies. Meta-GWASs have been utilized to
improve statistical power and mapping precision by combining single GWAS summary
statistics. Zeng et al. [18] conducted a meta-GWAS on backfat thickness using 15,353 pigs to
identify a shared genetic characterization of backfat thickness across breeds in pigs. Irene
van den Berg et al. [19] performed a largescale meta-analysis in cattle to maximize both
the power and precision of a GWAS for fat and protein percentages in milk. Higgins [20]
conducted a GWAS followed by a meta-analysis in multiple breeds to identify genetic
variants associated with residual feed intake and component traits (average daily gain and
feed intake) in Irish beef cattle. A meta-analysis would facilitate a better understanding of
the genetic factors influencing teat number across multiple pig populations [21]. Breeders
are often attracted by the prospect of combining multiple populations and breeds as it
enables the simultaneous application of the results to promote genetic improvement process
across diverse breeds.

Different breeds each possess distinct features, and there exists a discrepancy in
breeding goals. Specifically, the Duroc breed exhibits rapid growth, efficient feed utilization,
and a high percentage of lean meat in the carcass, making it commonly used for terminal
sires [22]. On the other hand, Landrace pigs are known for their excellent reproductive
performance and have a high number of piglets per litter; this breed is commonly employed
as the maternal line in commercial herds [23]. Meanwhile, Yorkshire pigs demonstrate
strong stress resistance and resilience to rough feeding conditions, although their body
sizes can vary significantly among individuals [24]. The breeding performance selection of
Landrace makes its reproductive performance better than the other two commercial pig
breeds, while Duroc’s growth performance is better than Yorkshire and Landrace. The
growth and reproductive performance of distinct pig breeds exhibit significant variations,
influenced not only by their genetic backgrounds but also by specific breeding objectives.

In this study, we used data from 5828 pigs across nine populations in China, encom-
passing three distinct pig breeds: Landrace, Yorkshire, and Duroc. The primary objective
of the study was to identify significant SNPs and candidate genes associated with teat
number traits, gaining deeper insights into the underlying genetic mechanisms governing
teat number variation via an integrative analysis. This study contributes to expanding our
genetic understanding of teat number, enabling advancements in optimizing reproductive
performance and efficiency within pig breeding programs.

2. Results
2.1. Descriptive Statistics of Teat Number Traits and Genetic Background

The genotype data of nine populations are presented in Table S1, which includes the
number of test samples after carrying out quality control for the number of SNPs, chip
types and reference genome versions. The descriptive statistics of the teat number traits are
listed in Table S2. In brief, there are 29,170 records of five teat number traits; the CV mean of
TNUM_L (Left teat number), TNUM_R (Right teat number), TNUM_T (Total teat number),
and TNUM_MPS (the maximum per side of teat number) were 6.78%, 7.22%, 5.78%, 7.11%,
respectively, and for TNUM_D (the difference between sides of teat number), the CV mean
is 186.11%. In individual-level data, we found that the heritability of teat number traits
ranges from 0 to 0.44, most of the estimates are low-to-medium heritability (Table S2), and
genetic correlations of teat traits were strong and positive (Table S3). Figure 1 shows the
principal component analysis (PCA) results for combined populations, which indicate that
the three breeds formed three distinct clusters. Individuals from different farms are close
to each other within the same breed, and no outliers were observed. The first and second
principal components account for more than 60% of the genetic variance.
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2.2. Single-Population GWAS Identifies Genetic Loci Associated with the Single Population

To explore the SNP correlated with the teat number trait in each single population, we
performed single-population GWASs for the five teat number traits in nine populations.
For the chromosome threshold (1/N), we identified 66 SNPs that were correlated with five
teat number traits via a single-population GWAS (Figure S1). Of these, we found 21 SNPs
that surpassed the genome-wide significance threshold (0.05/N), and the result of the
single-population GWAS is presented in Table S4. Specifically, nine SNPs were associated
with TNUM_L, and six SNPs were associated with TNUM_R, with four significant SNPs
identified simultaneously on the Sus scrofa chromosome (SSC) 17. Furthermore, 11 SNPs
were associated with TNUM_D, and 10 SNPs on SSC 8 were obtained from the F1 popu-
lation. We discovered 22 SNPs related to TNUM_T, with the most significant SNP being
7_97614602 (p = 2.29 × 10−7). Additionally, 19 SNPs were associated with TNUM_MPS,
and 4 of them were located on SSC 7.

In Duroc single-population GWAS results, 22 SNPs were related with teat number
traits, and five SNPs were associated with TNUM_L, the most significant SNP on SSC 14
from the Duroc breed in the F2 population (14_3243635, p = 2.12 × 10−11). From Landrace
pigs, 27 SNPs were identified; there are nine SNPs on SSC 7, 11 on SSC 8, and 14 SNPs
related to TNUM_D. Among these SNPs, 10 SNPs are located on SSC 8. Regarding Yorkshire
pigs, 17 SNPs were identified, and 9 SNPs were located on SSC 6 which were associated
with TNUM_T and TNUM_MPS.

2.3. Single-Breed Meta-GWAS Analysis

To increase the power of the GWAS within the single breed, we performed a single-
breed meta-GWAS in three different breeds. Figure 2 presents the meta-GWAS results for
the Landrace breed; we identified 22 genome-wide significant SNPs beyond the chromo-
some significant threshold (Table S5). Among them, three, four, six and nine SNPs were
associated with TNUM_L, TNUM_R, TNUM_T, and TNUM_MPS, 7_96599577(three times);
7_97247184 (three times), 7_97614602 (four times) and 7_97440470 (two times) are repeated.
Compared to the single-population results, 22 SNPs overlapped with the single population
GWAS analysis, of which 8 SNPs were in SSC 7. After a meta-GWAS analysis, 10 SNPs
had larger p-values. Yorkshire meta-analyses identified three significant SNPs located on
SSC 13, 15, and 18 which were associated with TNUM_D, TNUM_T, and TNUM_MPS
(Figure S2).

Duroc meta-analyses identified seven significant SNPs (Figure S2). Two SNPs on SSC
4 were related to TNUM_L and TNUM_T respectively, two significant SNPs on SSC 6 were
associated with TNUM_T, and the remaining SNPs on SSC 1, 9, and 17 were related to
TNUM_D and TNUM_MPS. Two SNPs coincided with the single population and were
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associated with TNUM_MPS and TNUM_R, and one SNP had a larger p-value after a
single-breed meta-GWAS analysis.
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TNUM_T, and TNUM_MPS, respectively.

2.4. Cross-Breed Meta-GWAS Analysis

By integrating cross-breed meta-analyses, we identified 14 significant SNPs (Table S6);
the results showed that two, one, four, and seven SNPs were correlated with TNUM_L,
TNUM_R, TNUM_T, and TNUM_MPS, respectively (Figure 3), eight SNPs were consistent
with the single-population results, and eight SNPs were consistent with the single-breed
meta-GWAS analysis. It should be noted that SNP (7_97614602), located on SSC 7, ap-
peared four times, affecting TNUM_L, TNUM_R, TNUM_T, and TNUM_MPS, and the
minimum p-value of this SNP in the TNUM_MPS trait is 1.06 × 10−12; another SNP on SSC
7 (7_97440470) also affected two teat number traits (TNUM_T and TNUM_MPS), and an
SNP on SSC 6 (6_166148395) appeared three times, simultaneously affecting three traits
(TNUM_L, TNUM_T and TNUM_MPS). The cross-breed meta-GWAS identified four new
SNPs (6_166148395, 3_128471318, 3_128412857, and 4_94047783) that were not detected in
the single-population GWAS or single-breed meta-GWAS. Additionally, SNP 6_166148395
was found to be repeated three times.

2.5. Post-GWAS Analysis

After completing the GWAS analysis, we annotated the significant SNP expansions ob-
tained upstream and downstream 1 Mb and generated 643 candidate genes. Subsequently,
we performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analyses by integrating the results of the gene annotation, which facilitated the
identification of biological pathways influenced by the genes under investigation. GO and
KEGG enrichment (Figure S3) was performed to highlight the pathways and biological
processes affecting teat number traits. Candidate genes for the teat number trait are mainly
enriched in the extracellular exosome, nucleoplasm, and the integral component of plasma
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membrane. Nine genes were found to be enriched in the brain development pathway, with
a p-value of 2.9 × 10−2. Annotated genes are mainly enriched in the metabolic pathway,
thyroid hormone synthesis, and Cgmp-PKG signaling pathway.
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For co-localization, the result shows a co-localization analysis of single-breed GWAS
results, and eQTLs (expression quantitative trait loci) data have 2563 gene tissue–trait
pairs and 507 significant pairs (PP4 > 0.85). We detected four genes that were significantly
co-localized with the teat number traits. It should be noted that 2_18237854 and ACCS in the
blastocyst (peQTL = 3.36 × 10−5), blood (peQTL = 3.11 × 10−6), muscle (peQTL = 1.44 × 10−6)
and uterus (peQTL = 1.545257 × 10−7) had significant co-localization results and were was
found to be related to TNUM_T and TNUM_MPS (Figure 4).
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eQTL mapping results in muscle.
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3. Discussion

In this study, we performed single-population GWAS analysis in 5828 pigs from nine
populations and then conducted a single-breed meta-GWAS analysis to explore the genetic
basis of teat number traits within each breed. This enabled us to detect the common SNPs
that influenced teat number in each breed. Lastly, we carried out a cross-breed meta-GWAS
to identify potential loci that were shared among the three breeds.

3.1. Meta-GWAS Results

The single-population GWAS has suffers from sample size insufficiency, and the
single-population GWAS results are not obvious because of resource constraints, such as
restrictions on labor and material and financial resources [25]. However, a meta-analysis
is a quantitative approach that combines and scrutinizes results from similar studies. By
pooling data across multiple investigations of the same type, a meta-analysis achieves the
requisite sample size, thereby enhancing statistical efficacy and facilitating more reliable
conclusions [16].

We compared single-breed meta-GWAS results with those of a single-population
GWAS. The results showed that the single-breed meta-GWAS in Landrace pigs confirmed
17 significant SNPs detected in the single-population GWAS and newly identified four
SNPs (4_31183347, 1_266058567, 1_266076710, and 4_31225507). The significant SNPs of
Landrace were more than those of the other two breeds. In Duroc pigs, it confirmed five
significant SNPs identified in the single-population GWAS and detected two additional
SNPs (6_165972241, 6_166148395). However, in the Yorkshire pig populations, the meta-
analysis only validated three SNPs detected by the single-population GWAS, and no new
SNP was detected.

In China, the breeding plan for large-scale farms generally involves having an inde-
pendent Landrace sow population in the breeding population which is crossbred with
semen provided by Yorkshire boars in the core population to produce binary hybrid in-
dividuals. Then, the binary hybrid individuals in the breeding population are crossbred
with Duroc boars in the core population to produce ternary hybrid individuals [14,26]. It is
this breeding pattern that makes the breeding goals of pig breeds different, resulting in the
outstanding reproductive performance of Landrace pigs [27]. For example, the Landrace
teat number is greater than the other two breeds. In our results, the meta-GWAS results of
the Landrace single breed also show a clear peak.

Significant SNPs with high reliability detected in a single-population GWAS may not
be detected in a meta-analysis; the explanation for this situation is that the eligible SNPs in
the meta-analysis may be in different linkage disequilibrium stages and have mutations
in different populations, resulting in inconsistent allele directions and thus reducing the
reliability of the combined-population GWAS analysis, even though it increased the sample
size via a meta-analysis [11,13,28,29].

In our study, we detected two SNPs associated with teat number traits in the Landrace
pigs using a single-population GWAS; these SNPs were in the QTL (quantitative trait loci)
region previously reported to be associated with teat number traits on SSC 5. However, they
were not confirmed by the results of cross-breed meta-analysis; from the cross-breed results,
we discovered that the QTL region (SSC 7: 193.23–197.23 MB) associated with teat number
has been reported 73 times in QTLdb [30], and the region of (SSC 7: 192.88–196.88 MB) has
been reported 72 times; both regions were confirmed in our study to be related to teat
number traits (Table S7).

3.2. Genetic Parameters of Teat Number Traits

Many studies have estimated the genetic parameters of teat number traits in pigs,
indicating that the teat number trait is a low- and medium-heritability reproductive trait.
Several studies reported that the heritability range of TNUM_T is 0.09–0.36 [7,13,16,17], and
the heritability ranges of TNUM_L and TNUM_R are relatively close, and the whole is in
the range of 0.14–0.29 [13,17,18]. This is consistent with the heritability results of our single
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population calculation results, indicating that this trait is indeed heritable. In addition, the
heritability of TNUM_D was the lowest among all traits, it should be noted that some traits
have heritability values equal to 0. This could be due to insufficient population size and
distant relative relationships, leading to inaccurate results [31].

We obtained results that closely matched the genetic correlation on the Venn diagram
for genes annotated with significant SNPs for each trait. Many SNPs were related to each
trait. In addition to TNUM_D, the trait-specific SNP also showed differences in influencing
the genetic factors of each trait (Figure S4). The results of genetic correlation and phenotypic
correlation can help us to learn the relationship and structure of traits and promote the
breeding process through increasing understanding. According to genetic correlation, we
can see that both phenotypic and genetic correlations show a high correlation, and the
value of the correlation is close to 1, which is also consistent with our understanding that
teat number may share a similar genetic regulatory structure.

For the significant SNPs associated with teat number traits, we discovered that
some of them exhibited significant relationships with other traits. For instance, the SNP
7_102441757 demonstrated a strong association with loin muscle depth, and the genetic
correlation between teat number and loin muscle depth was determined to be 0.99 from
PigBiobank [32]. Additionally, teat number and backfat thickness displayed noteworthy
loci, such as 7_97614602, with a genetic correlation of −0.3068. This indicated that these
SNPs possess the potential to influence a multitude of intricate traits [22]. Consequently,
these SNPs warrant further scrutiny in the context of breeding programs. This is due to
their potential role in trait variation, which could be harnessed to enhance desirable traits
in breeding populations. These findings provide further insights into the potential genetic
mechanisms underlying the interplay between different traits.

3.3. Candidate Gene

In this study, we validated several potential genes identified in previous studies
and discovered novel genes that may influence traits. Previous studies identified VRTN,
SYNDIG1L, and NUMB as the primary genes with the potential to influence teat number
traits. For VRTN, it was the most convincing gene affecting teat number by GWAS, and
the VRTN gene mutation was significantly associated with the thoracic vertebra number,
which influenced teat number potentially [9,17,21,33–37]. The SYNDIG1L gene is located
on SSC 7, and it was shown that SYNDIG1L acted as an annotation gene near the SNP that
most affected the teat number trait [14,34,38]. The genes related to the number of vertebrae,
such as VRTN, and SYNDIG1L, may be related to the teat number traits in pigs [39]. The
NUMB gene is the endocytic adaptor protein, and the protein encoded by this gene plays a
role in the determination of cell fates during development. The degradation of the encoded
protein is induced in a proteasome-dependent manner [40]. The VRTN gene is located
near the significant SNP (7_97614602) on SSC 7, and it simultaneously appeared in the
single-population GWAS results, Landrace meta-analysis, and cross-breed meta-analysis;
in the PigGTEx resource, it is highly expressed in the blastocyst compared to other tissues.

U6 was found to be associated with five traits simultaneously and was identified as
the most likely potential gene linked to the trait in our study. The U6 gene is a small nuclear
RNA (snRNA) component of the U6 snRNP (small nuclear ribonucleoprotein), which is
highly conserved across species and is deemed to be important in splicing activity [41];
its role is to bring the catalytic site to the splice site. LTBP2 is a protein-coding gene that
plays an integral structural role [42]. The gene under investigation is associated with
the number of ribs in a Large White × Minzhu intercross pig population. Additionally,
it has been observed to be linked with the number of thoracic vertebrae in the same
population [43,44]. In our study, we found it to be correlated with four teat number traits
(TNUM_L, TNUM_R, TNUM_T, and TNUM_MPS); it is considered a candidate gene that
may influence teat number traits. And we found it was the significant eQTL for 7_97614602
(p-value = 1.56 × 10−4). We detected nine genes that were significantly co-localized with
the teat number traits in different tissues; however, our GWAS data were based on chip
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data, while eQTL data are based on PigGTEx, which has more genetic loci, and there is a
discrepancy between the two sets of data.

In our study, we conducted a single-population GWAS, a single-breed meta-GWAS,
and a cross-breed meta-GWAS on 29,170 teat number trait data records from 5828 pigs.
We detected a total of 60 SNPs, out of which 12 were detected only in the meta-analysis.
By annotating the meta results, we obtained candidate genes for further analysis. VRTN,
SYNDIG1L, and NUMB genes were verified, and U6 and ACCS genes were newly found
to be related to the teat number traits. We enhanced the power to elucidate the regulatory
mechanism of complex traits using an integrative analysis. The results of this study can
help us understand the genetic similarity between the same breed and the heterogeneity
between different breeds and provide a new idea for exploring the genetic mechanism
affecting pig teat number for variety selection and improvement.

4. Materials and Methods
4.1. Ethics Approval and Consent to Participate

These considerations were not applicable since no biological samples were collected
and no animal handling was performed for this study. All data were collected from existing
databases provided by South China Agricultural University (Guangzhou 510642, China).

4.2. Phenotypes

The phenotype data for teat number traits were collected from 5828 pigs when they
reached approximately 100 kg (100 ± 5 kg) body weight and 150 days (150 ± 5 days) of
age. The data were recorded from four breeding farms (F1, F2, F3, and F4), including
three breeds (Landrace [N = 1459], Yorkshire [N = 1853], and Duroc [N = 2516]); among
them, there were 2030 boars and 3768 sows. In our analysis, we examined five teat number
traits, including four quantitative traits (left teat number [TNUM_L], right teat number
[TNUM_R], total teat number [TNUM_T], and the maximum per side of teat number
[TNUM_MPS]); one derived trait was calculated as the difference between the number of
teats on each side (TNUM_D).

4.3. Genotype Data

The pig genotyping was performed using two kinds of SNP chip, a “ZhongxinI” 50 K
Porcine Breeding Chip (Beijing Compass Agritechnology Co., Ltd., Beijing, China) and a
GeneSeek GGP-Porcine Beadchip (Neogen Corporation, Lansing, MI, USA) with 50 K. The
genotype data quality control criteria were as follows, and quality control was performed
using Plink v1.90 [45] software: (1) the sample call rate greater than 0.90 was retained;
(2) the SNP call rate higher than 0.90; (3) the minor allele frequency (MAF) higher than 0.01;
and the (4) p-value < 10−6 for the Hardy–Weinberg equilibrium test was excluded. After
quality control, the number of SNPs within each population is shown in Table S1.

As the animals in this study came from different farms; to identify and correct popula-
tion stratification among the test animals, a principal component analysis (PCA) was carried
out via a genome-wide complex trait analysis (GCTA) v1.94 [46]. Principal components
were also used as covariates for subsequent analyses.

4.4. Estimation of Genetic Parameters

The narrow-sense genetic parameters of teat number traits, including heritability and
genetic correlation, were estimated using GCTA v1.94 software in single populations. The
statistical model for the estimation of heritability is shown below:

y = Xβ + Wα + e. (1)

where y represents the vector of the phenotypic values of teat number traits; β represents
fixed effects including sex and the first five principal components; α represents additive
genetic effect vectors for individuals, a~N(0, Gσ2

a ); σ2
a is the additive genetic variance, G is

the genomic relationship matrix; X and W are incidence matrices for β and α, respectively;
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and e is the vector of residual with e~N(0, Iσ2
e ), where σ2

e is the residual variance and I is
the identify matrix. We used sex and the first five principal components as covariables for
five teat trait genetic correlation estimates in the bivariate model.

4.5. Single-Population GWAS

The single-population GWAS analysis was conducted for each population using
the fastGWA [47] module of GCTA v1.94, and the linear mixed model of the GWAS is
shown below:

y = Xβ + Wb + Zg + e. (2)

where y is the vector of teat number phenotypes; X is a vector of marker genotypes of
the variant; and β is the effect of the variant. W is the incident matrix for the fixed and
covariates, containing sex, and the top five principal components (PCs), and b is the
corresponding effects. Z is the design matrix for the additive effect. g ∼

(
0, Gσ2

g ), g is the

genetic effect, σ2
g is the additive genetic variance, and G is the sparse genetic relationship

matrix (GRM). e ∼
(
0, Iσ2

e
)
, e is the residual effect, σ2

e is the residual variance, and I is the
identical matrix.

The genome-wide and suggestive significant thresholds for the single-population
GWAS results were set at 0.05/N and 1/N, respectively, 0.05/N represents the significant
level of the whole genome, and 1/N represents the significant level of the chromosome,
where N represents the number of SNPs used for analysis in the study.

4.6. Meta-GWAS Analysis

The following two strategies were applied to the meta-GWAS analysis:

(1) A single-breed meta-GWAS analysis combined with same-breed GWAS summary
results; nine populations were divided into three breeds for a meta-GWAS analysis.

(2) A cross-breed meta-GWAS analysis.

The cross-breed meta-GWAS analysis was performed between three breeds by combin-
ing the GWAS results for single populations and all breeds by combining the GWAS results
of various breeds. The above two strategies were both completed using METAL software
(released on 2020-05-05) [48] and by calculating the pooled inverse-variance-weighted
β-coefficients, standard errors, and Z-scores, and the formulas were as follows:

wi= 1/SE2
i (3)

se =
√

1/∑i wi (4)

β = ∑i βiwi/∑i wi (5)

z = β/SE (6)

where βi is the β-coefficient for study i; and SE corresponds to the standard error for study i.

4.7. Functional Annotation of Candidate Genes

All SNP physical locations are based on the Sus scrofa genome (version 10.2), and we
extracted the 1 MB upstream and downstream genes of significant SNP sites in meta-GWAS,
annotated functional genes using the NCBI (http://www.ncbi.nlm.nlh.gov/, accessed on
15 May 2023) and Ensembl databases (http://www.ensembl.org/, accessed on 15 May
2023), and found candidate genes related to teat number traits. In addition, David (http://
david.ncifcrf.gov/tools.jsp, accessed on 15 May 2023) was used to conduct an enrichment
analysis of the annotated genes, including a gene ontology (GO) [49] analysis and a Kyoto
Encyclopedia of Genes and Genomes (KEGG) [50] pathway analysis. The statistical method
used in the enrichment analyses was the Fisher statistical test, and the results showed
enrichment of GO entries or the KEGG pathway with the p-value < 0.05. The results of the
GO and KEGG plots were shown using R software v4.1.2 [51].

http://www.ncbi.nlm.nlh.gov/
http://www.ensembl.org/
http://david.ncifcrf.gov/tools.jsp
http://david.ncifcrf.gov/tools.jsp
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4.8. Co-Localization Analysis

To explore the potential regulatory mechanism of the gene affecting the teat number
traits, we performed a co-localization analysis using the coloc R package [52] based on
1 Mb up- and downstream of the most significant SNPs from the GWAS summary and
the eQTL data from PigGTEx (http://piggtex.farmgtex.org/, accessed on 6 August 2023).
Finally, we set the posterior probability 4 (PP4) larger than 0.85 as the significant threshold
to filter candidate genes.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/ijms25010451/s1.
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