Skip to main content
. 2024 Jan 4;25(1):675. doi: 10.3390/ijms25010675

Table 1.

Major in vitro studies portraying associations between BPA and phthalates, and obesity.

Authors, Year Type of Cell Culture Main Findings Remarks
Bisphenol A and obesity
Riu et al., 2011 [152] NIH3T3-L1 cell line
(pre-adipocytes)
1. ↑ adipogenesis
2. ↑ lipid accumulation
3. ↑ mRNA level of PPARγ
4. ↑ PPARγ activity
1. Animal in vitro model
2. ED: TBBPA
3. Obesogenic effects at 10 µM
Valentino et al., 2013 [118] Primary hADSCs 1. (-) mRNA level of PPARγ, GLUT4
2. ↓ of glucose utilization
3. ↓ tyrosine phosphorylation of
insulin receptor (IR)
3. ↓ of PKB/Akt phosphorylation
4. ↑ of IL-6, IFN-γ
5. ↑ of JAK/STAT, JNK
6. ↑ activity NF-kB pathway
1. Human in vitro model
2. ED: BPA
3. Biological effects at 1 nM
Bastos Sales et al., 2013 [102] Murine N2A, human SK-N-AS neuroblastoma cells and murine pre-adipocyte fibroblasts (3T3-L1) 1. Modest ↓ in global DNA methylation in murine N2A cells
2. No changes in global DNA methylation in human SK-N-AS cells.
3. ↑ adipocyte differentiation in murine 3T3-L1 pre-adipocytes
1. Animal and human in vitro model
2. ED: BPA and a range of several EDCs not belonging to bisphenols
3. Biological effects at ≥ 10 μΜ
Menale et al., 2015 [137] Primary pre-adipocytes 1. ↑ adipogenesis
2. ↑ lipid accumulation
3. ↑ mRNA level of ERα (10 nM, 100 nM)
4. (-) mRNA level of ERβ
5. ↑ production of IL1B, IL18, CCL20 (10 nM)
1. Human in vitro model
2. ED: BPA
3. Obesogenic effects at 1 nM, 10 nM, 100 nM
Ariemma et al., 2016 [92] 3T3-L1
Pre-adipocytes
1. Undifferentiated cells:
- ↑ proliferation
- ↑ differentiation
- ↑ expression of PPARγ, C/EBPα and FABP4/AP2
2. Mature adipocytes:
- Hypertrophy
- ↑ lipid accumulation
- ↑ mRNA of leptin, IL6, IFNγ
- ↓ glucose utilization
1. Animal in vitro model
2. ED: BPA
3. Obesogenic effects at 1 nM
Longo et al., 2020 [103] 3T3L1 and NIH3T3 (committed and uncommitted pre-adipocytes, respectively) - ↓ DNA methylation at PPARγ promoter, without affecting mRNA expression in pre-adipocytes
- Transient ↑ in PPARγ expression and lipid accumulation at D4 of differentiation in 3T3L1 cells
- Ending BPA exposure restores the PPARγ promoter methylation and inflammatory profile of 3T3L1 cells.
- Expression of PPARγ is barely detectable and its promoter is completely methylated in NIH3T3 cells
- ↑ PPARγ expression is more evident both in pre-adipocytes and during the adipocyte differentiation
1. Animal in vitro model
2. ED: BPA
3. Biological effects at low doses: 1 nM
Cohen et al., 2021 [153] Primary hADSCs 1. ↑ adipogenesis and lipid production at 0.1 nM
2. ↓ adipogenesis and lipid production at 10 nM
1. Human in vitro model
2. ED: BPA
3. Biological effects at 0.1 nM, 10 nM
Yamasaki et al., 2021 [154] ST-13 cell line (pre-adipocytes) - Undifferentiated cells:
1. (-) lipid accumulation
2. (-) mRNA level of PPARγ
3. ↑ mRNA level of AACS, PLIN1, FAS, CIDEA, LSD-1
- Mature adipocytes:
1. (-) lipid accumulation
2. (-) mRNA level of AACS, SCOT
1. Animal in vitro model
2. ED: TBBPA
3. Obesogenic effects at 0.5 µM, 1 µM
Schaffert et al., 2021 [121] SGBSs (pre-adipocytes) 1. ↑ binding to PPARγ (50 µM)
2. (-) PPARγ activity (10 nM, 100 nM, 1 µM, 10 µM)
3. ↓ lipid accumulation (10 nM, 100 nM, 1 µM, 10 µM)
4. ↑ leptin (10 nM)
5. ↓ cellular ROS level (10 nM, 100 nM, 1 µM, 10 µM)
6. ↓ insulin sensitivity (1 µM)
1. Human in vitro model
2. ED: BPA
3. Obesogenic effects at 10 nM, 100 nM, 1 µM, 10 µM, 50 µM
Marqueno et al., 2021 [155] ZFL cell line (primary mouse hepatocytes) 1. ↑ lipid accumulation (5 µM, 50 µM)
2. ↑ ROS generation (20 µM, 50 µM, 70 µM, 100 µM, 150 µM, 200 µM)
1. Animal in vitro model
2. ED: BPA
3. Biological effects at 5 µM, 20 µM, 50 µM, 70 µM, 100 µM, 150 µM, 200 µM
Lee et al., 2022 [156] Huh-7 cell line (primary hepatocytes) 1. ↓ cell viability (200 µM, 400 µM)
2. ↑ lipid accumulation (10 µM, 50 µM, 100 µM, 200 µM)
3. Fatty acid uptake ↑ (10 µM, 50 µM, 100 µM)
4. ↑ intracellular ROS formation (10 µM, 50 µM, 100 µM, 200 µM)
1. Human in vitro model
2. ED: BPA
3. Biological effects at 10 µM, 50 µM, 100 µM, 200 µM, 400 µM
Phthalates and obesity
Sargis et al., 2010 [85] 3T3-L1 cell line (pre-adipocytes) 1. ↑ adipogenic differentiation
2. ↑ lipid accumulation (100 nM)
3. ↑ PPARγ and glucocorticoid-like activity (1 µM)
4. ↑ adiponectin and protein expression of IR-β (1 µM–100 pM)
1. Animal in vitro model
2. Pthalate: DCHP
3. Obesogenic effects at 100 pM, 1 nM, 10 nM, 100 nM, 1 µM
Dimastrogiovanni et al., 2015 [150] RTL-W1 cell line
(hepatocytes)
1. ↑ lipid accumulation
2. ↓ alteration of membrane lipids
3. ↓ mRNA level of CD36, FAS, LPL
1. Animal in vitro model
2. Pthalate: DEHP
3. Biological effects at 5 μΜ
Zhang et al., 2017 [105] C3H10T1/2 cell line (MSCs) 1. ↑ adipogenesis
2. ↑ mRNA level of AP2, PPARγ
3. ↑ lipid accumulation
4. ↑ protein level of FOXO1
5. ↑ acetylation of FOXO1,
β-catenin
6. ↓ protein level of SIRT1, SIRT3
1. Animal in vitro model
2. Pthalate: BBP
3. Biological effects at 50 μΜ
Schaedlich et al., 2018 [151] SGBSs (pre-adipocytes) 1. ↓ TGsaccumulation
2. ↓ adiponectin production
3. ↓ protein level of PPARα, PPARγ
4. ↓ phosphorylation of ERK1, ERK2
5. ↑ lipolysis
6. ↑ ROS formation
1. Human in vitro model
2. Pthalate: DEHP
3. Obesogenic effects at 50 µg/mL
Zhang et al., 2019 [145] BRL-3A cell line
(hepatocytes)
1. ↑ lipid accumulation (100 µM, 200 µM)
2. ↑ mRNA level of FAS, PDK4, AP2 (10 µM, 50 µM, 100 µM, 200 µM)
3. ↑ mRNA level of PPARγ (50 µM, 100 µM, 200 µM)
4. ↓ JAK2/STAT5 signaling
5. ↓ level of indicators of oxidative stress: SOD ↓, MDA ↑ (10 µM, 50 µM, 100 µM, 200 µM)
1. Animal in vitro model
2. Pthalate: MEHP
3. Biological effects at 10 µM, 50 µM, 100 µM, 200 µM
Perez-Albaladejo et al., 2021 [157] PLHC-1 cell line (hepatocytes) - DBP:
1. ↑ TG accumulation (20 µM)
2. ↑ ROS formation (5 µM, 20 µM, 50 µM, 100 µM)
- DEHP:
1. ↑ TG accumulation (5 µM, 10 µM)
2. ↑ ROS formation (100 µM)
1. Animal in vitro model
2. Phthalates: DBP and DEHP
3. Biological effects at
- DBP: 5 µM, 20 µM, 50 µM, 100 µM
- DEHP: 5 µM, 10 µM, 100 µM
Meruvu et al., 2021 [104] 3T3-L1 cells - ↑ miR-34a-5p expression
- ↑ adipogenesis
- ↓ Nampt, Sirt1 and Sirt3 gene expression levels; ↓ Nampt protein
- ↓ adipogenesis, ↑ Nampt protein and NAD+ after miR-34a-5p knockdown in the presence of BBP
1. Animal in vitro model
2. Phthalate: BBP
2. Biological effects at various doses of BBP without exogenous adipogenic stimuli
Al-Abdulla et al., 2022 [158] MIN-6 cell line (pancreatic cells) 1. ↓ viability of cells after 24 exposure at 1 μΜ
2. ↑ mRNA level of SUR1, GLUT2 at 10 μΜ
3. ↓ GSIS (20 μΜ glucose)
4. ↓ insulin content at 1 μΜ
1. Animal in vitro model
2. Pthalate: DEHP
3. Dose: 100 pM, 1 nM, 10 nM, 100 nM, 1 µM, 10 µM
Schaffert et al., 2022 [141] SGBSs
(pre-adipocytes)
1. DINP:
- ↑ binding to PPARγ
- (-) PPARγ activation
- (-) lipid accumulation
- ↑ adipsin (10 µM)
- Mature adipocytes:
* 10 µM: ↑ MCP-1, LAP3, GPX1
* 10 nM: ↑ GPX8, GSR
* 10 nM, 10 µM: ↑ LEP, GPX4
* 10 nM, 10 µM: ↓ adiponectin
2. DPHP:
- ↑ binding to PPARγ
- (-) PPARγ activation
- Undifferentiated cells:
* (-) lipid accumulation
* ↓ MCP-1 (10 nM, 10 µM)
- Mature adipocytes:
* ↓ lipid accumulation (10 µM, 25 µM, 50 µM, 100 µM)
* 10 µM: ↑ LEP, MCP-1, LAP-3, GPX4, GPX8, adipsin
* 10 nM: ↑ GSR
* 10 nM, 10 µM: ↑ GPX1, GSTO1
* 10 nM, 10 µM: ↓ adiponectin
3. MHINP:
- ↑ binding to PPARγ (100 µM, 200 µM, 400 µM)
- ↑ PPARγ activation (1 µM)
- Undifferentiated cells:
* ↑ pre-adipocyte differentiation, lipid accumulation (10 µM, 25 µM, 50 µM, 100 µM)
* 10 µM: ↑ LEP, PLIN1, GPD1, FASN, FABP4, FABP5
* 10 nM: ↓ MCP-1
* 10 nM, 10 µM: ↑ adipsin
- Mature adipocytes:
* 1 µM: ↑ lipid accumulation
* 10 µM: ↑ LAP3, adipsin
* 10 nM: ↑ GSR, GPX8
* 10 nM, 10 µM: ↑LEP, MCP-1, GPX1, GPX4, GSTO1
* 10 nM, 10 µM: ↓ adiponectin
4. OH-MPHP:
- ↑ binding to PPARγ
- ↑ PPARγ activation
- Undifferentiated cells:
* ↑ pre-adipocyte differentiation, lipid accumulation (10 µM, 25 µM, 50 µM)
* ↑ LEP, GPD1, FASN, FABP4, FABP5 (10 µM)
- Mature adipocytes:
* 10 µM: ↑ LAP3, GPX1, GPX4, GPX8, adipsin
* 10 nM, 10 µM: ↑ LEP, GSR, MCP-1, GSTO1
* 10 nM, 10 µM: ↓ adiponectin
* 10 nM, 10 µM, 25 µM, 50 µM, 100 µM: ↓ lipid accumulation
1. Human in vitro model
2. Phthalates: DINP, DPHP, MHINP, OH-MPHP
2. Obesogenic effects at
- DINP: 10 nM, 10 µM,
- DPHP: 10 nM, 10 µM, 25 µM, 50 µM, 100 µM
- MHINP: 10 nM, 10 µM, 25 µM, 50 µM, 100 µM, 200 µM, 400 µM
- OH-MPHP: 10 nM, 10 µM, 25 µM, 50 µM, 100 µM, 200 µM, 400 µM

Abbreviations: AACS: acetoacetyl-CoA synthetase; AP2: adipocyte protein 2; BPA: bisphenol A; BBP: benzyl butyl phthalate; CCL20: chemokine (C-C motif) ligand 20; C/EBPα: CCAAT/enhancer-binding protein α; CD36: fatty acid translocase; CIDEA: cell-death-inducing DNA fragmentation factor-alpha-like effector A; DCHP: bis(2-propylheptyl) phthalate; DBP: dibutyl phthalate; DEHP: di(2-ethylhexyl) phthalate; DINP: diisononyl phthalate; DPHP: bis(2-propylheptyl) phthalate; ED: endocrine disruptor; ERα: estrogen receptor α; ERβ: estrogen receptor β; ERK1/2: extracellular-signal-regulated protein kinase 1/2; FABP4: fatty-acid-binding protein 4; FABP5: fatty-acid-binding protein 5; FABP4/AP2: fatty-acid-binding protein 4/adipocyte protein 2; FASN: fatty acid synthase; FOXO1: forkhead box protein O1; GLUT2: glucose transporter type 2; GLUT4: glucose transporter type 4; GPD1: glycerol-3-phosphate-dehydrogenase; GPX1: glutathione peroxidase 1; GPX4: glutathione peroxidase 4; GPX8: glutathione peroxidase 8; GSIS: glucose-stimulated insulin secretion; GSR: glutathione-disulfide reductase; GSTO1: glutathione S-transferase omega-1; IFN-γ: interferon-γ; IL: interleukin; IR-β: insulin receptor subunit β; JAK/STAT: Janus kinase/signal transducer and activator of transcription; JNK: c-Jun N-terminal kinase;LAP3: leucine aminopeptidase 3; LEP: leptin; LPL: lipoprotein lipase; LSD-1: lysine-specific demethylase-1; MCP-1: monocyte chemoattractant protein-1; MDA: malondialdehyde; MEHP: mono-2-ethylhexyl phthalate; MHINP: monohydroxy isononyl phthalate; N2A: Neuro-2A cells; NAD: nicotinamide adenine dinucleotide; Nampt: nicotinamide phosphoribosyltransferase; NF-kB: nuclear factor kappa-light-chain-enhancer of activated B cells; OH-MPHP: 6-hydroxy monopropylheptyl phthalate; PDK4: pyruvate dehydrogenase kinase 4; PPARα: peroxisome-proliferator-activated receptor α; PPARγ: peroxisome-proliferator-activated receptor γ; PKB/Akt: protein kinase B/AKT; PLIN1: perilipin-1; ROS: reactive oxygen species; SCOT: succinyl-CoA-3-oxoacid CoA-transferase; SIRT1: sirtuin 1; SIRT3: sirtuin 3; SOD: superoxide dismutase; SUR1: sulfonylurea receptor 1; TBBPA: tetrabromobisphenol A; TGs: triglycerides. ↑ increase, ↓ decrease.