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Abstract: A new silver(I) cluster [Ag8L4(Py)(Pype)]·4Py·11H2O (I) with 3-benzyl-4-phenyl-1,2,4-
triazol-5-thiol (L) was synthesized via the direct reaction of AgNO3 and L in MeOH, followed by
recrystallization from a pyridine–piperidine mixture. The compound I was isolated in a monocrystal
form and its crystal structure was determined via single crystal X-ray diffraction. The complex forms
a “butterfly” cluster with triazol-5-thioles. The purity of the silver complex and its stability in the
solution was confirmed via NMR analysis. Excitation and emission of the free ligand and its silver
complex were studied at room temperature for solid samples. The in vitro biological activity of the
free ligand and its complex was studied in relation to the non-pathogenic Mycolicibacterium smegmatis
strain. Complexation of the free ligand with silver increases the biological activity of the former by
almost twenty times. For the newly obtained silver cluster, a bactericidal effect was established.

Keywords: 1,2,4-triazole; silver; molecular structure; luminescence; single crystal; metallodrugs;
biological activity

1. Introduction

The current approach of advanced bioinorganic chemistry consists of using simple
well-known biologically active molecules to design effective metallodrugs. Such ligands
include, for example, benzimidazole derivatives [1,2]; purine bases [3,4], particularly caf-
feine [5–9]; the well-known commercially available ligand 1,10-phenanthroline [10]; anions
of biologically active carboxylic acids (benzoic [11,12], 2-furoic [13,14], etc.); dithiocar-
bamates [15,16]; and redox-active ligands [17–21]. In most cases, after coordination of a
biologically active molecule to a metal ion, the bioactivity of the resulting complex increases
significantly [22–26], simultaneously reducing the toxicity and, therefore, the lethal dose of
an organic ligand, which make it possible to use this substance in therapy.

A well-studied family of biologically active ligands that can be used to create new met-
allodrugs includes the derivatives of 1,2,4-triazoles, which have been known for more than
100 years and the methods of their synthesis and chemical properties have been studied
extensively [27]. Their biological activity has been proven via many years of clinical use
as drugs registered in the European Pharmacopoeia, for example, Alprazolam (sedative),
Anastrozole (treatment for breast cancer), Brotizolam (sedative), Fluconazole (antifungal),
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Itraconazole (antifungal), Letrozole (treatment for breast cancer), Ribavirin (antiviral), Ter-
conazole (antifungal), and Trapidi (antiaggregant) [28]. Despite more than a century-long
history of studying triazoles, they still attract the attention of researchers [29]. When de-
signing novel bioactive metal complexes, it is very important to know the mechanism of
pharmacokinetics; in the case of 1,2,4-triazole derivatives, these data are already avail-
able [30–32], which can facilitate and reduce the cost of further testing of the corresponding
metallodrugs.

To date, reliable data have been obtained on the antifungal, antioxidant, anticonvul-
sant, anti-inflammatory activity of metal complexes with 1,2,4-triazoles and their potential
use for the treatment of tuberculosis, diabetes, and different types of cancer [33,34]. It was
shown that triazole-derived Schiff base ligands and their cobalt(II), nickel(II), copper(II), and
zinc(II) complexes reveal antibacterial and antifungal activity, of which the study proved
that the metal complexes showed better activity than the ligands after coordination [35,36].
It was also shown that the addition of other donor atoms (oxygen, nitrogen, and sulfur) to
triazole derivatives leads to the formation of biologically active complexes. For exam-
ple, vanadyl(IV) complexes with mono- and di-substituted ONS donor triazoles reveal
antibacterial, antifungal, and cytotoxic activity [37,38].

According to the previous studies, silver cation is a promising complex-forming ion in
the design of metallodrugs [39–42]. Silver-containing compounds are currently used for the
therapy of skin diseases and burns: silver sulfadiazine [39], silver proteinate (Protargol) [43],
and silver nitrate [44]. Since silver has long been used in the treatment of various diseases,
its pharmacokinetics, like 1,2,4-triazole derivatives, are also well studied [45,46]. Having
analyzed the Cambridge structural database, we found that only a few dozen structurally
characterized silver complexes with 1,2,4-triazole derivatives are known, and to the best of
our knowledge, the biological activity of these compounds have not been studied.

Bioactive luminescent metallodrugs are of great interest in the field of bioinorganic
chemistry due to the potential applications of these compounds for the imaging of living
cells [47]. This approach can be used to track the distribution of luminescent substances
within a cell and study their uptake by cells [48]. Undoubtedly, the leaders in bioimag-
ing among compounds used in modern medicine and biology are complexes based on
lanthanides [49,50]. However, currently more and more research is devoted to promising
luminescent probes in living systems based on Ag(I) (with simultaneous antibacterial
properties). It was found that luminescent properties of Au(I) and Ag(I) complexes with
N-heterocyclic carbenes can be used to investigate biodistribution [51].

The previously studied silver complexes with 1,2,4-triazole derivatives exhibit lumi-
nescent properties [52–54], which are very important in the design of promising metal-
containing drugs [55–58]. It was also previously shown that silver has a high affinity for
the sulfur atom, forming strong linear compounds or layers [59–61].

Thus, the goal of this study was to develop a method for the synthesis of a new
silver complex with a 1,2,4-triazole sulfur-containing derivative—3-benzyl-4-phenyl-1,2,4-
triazol-5-thiol (L, Scheme 1)—and determine its molecular structure, confirm the purity,
and analyze the luminescent properties of the free ligand and the complex. Also, the
purpose of this study was to find out whether the free ligand and its silver complex exhibit
biological activity against M. Smegmatis (a model non-virulent strain of M. tubercolisis) and
how the coordination of the ligand affects these properties. This current work is a part of
our ongoing research to find new anti-tuberculosis metallodrugs [22,24–26,62].
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2. Results and Discussion
2.1. Synthesis and Characterization

The reaction of L and AgNO3 in a methanol solution with further crystallization
from the mixture of pyridine (Py) and piperidine (Pype) (Scheme 2) led to the formation
of the product [Ag8L4(Py)(Pype)]·4Py·11H2O (I) in a form of polycrystals, suitable for
single-crystal X-ray diffraction analysis. A mixture of pyridine–piperidine was used as
a solvent, since similar compounds were previously obtained by adding pyridine and
triphenylphosphine to a white precipitate, which indicates the need for the presence of
strong bases of a donor nature to convert the resulting compound into a soluble form [63].
The reaction proceeds in air without any precautions about daylight. Decanted and twice
washed with cold distilled water, the major product was isolated in a 90% yield.
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Scheme 2. Synthesis route of compound I, solvate molecules of water and pyridine have been omitted
for clarity.

The 1H NMR spectrum of I (Figure 1) is in agreement with the structural data. There is
no signal of an SH proton in the 1H NMR spectrum of I, which confirms the deprotonation of
the ligand. The signal of CH2 protons is upfield shifted as compared to that one for the free
ligand (3.65 and 3.86 ppm, respectively—see also Supplementary Materials). The signals
from CH of pyridine (7.6–9.0 ppm) and the CH2, NH groups of piperidine (1.2–3.1 ppm)
are also observed in the 1H NMR spectrum. The 13C NMR spectrum of I could not be
recorded due to the low solubility of the compound in the common deuterated solvents.
When trying to accumulate data to record a 13C NMR spectrum over a 24 h period, we also
discovered that a white precipitate formed in the NMR ampoule. It is likely that deuterated
dimethyl sulfoxide molecules replace pyridine and piperidine, reducing the solubility of
complex I.
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2.2. Molecular Structure of I

Complex I crystallizes in the monoclinic space group Pc in a form of crystal solvate
[Ag8L4(Py)(Pype)]·4Py·11H2O. Since the solvate molecules of pyridine in the crystal are
in strong thermal vibrations, only two solvate pyridine molecules were clearly identi-
fied, while two other molecules were taken into account as diffuse scattering using the
SQUEEZE procedure [64]. Complex I is a dimer of two butterfly-type silver-metal clusters
(Figures 2 and 3), in which all Ag···Ag distances lie in the range of 2.969(2)–3.254(2) Å.
These distances are significantly greater than the sum of the covalent 2.7 Å radii of silver
and can apparently be considered as weak secondary interactions (argentophilic) [65,66].

Molecules 2024, 29, x FOR PEER REVIEW 4 of 13 
 

 

 
Figure 1. 1H NMR spectra of I (blue line) and free ligand (red line). 

2.2. Molecular Structure of I 
Complex I crystallizes in the monoclinic space group Pc in a form of crystal solvate 

[Ag8L4(Py)(Pype)]·4Py·11H2O. Since the solvate molecules of pyridine in the crystal are in 
strong thermal vibrations, only two solvate pyridine molecules were clearly identified, 
while two other molecules were taken into account as diffuse scattering using the 
SQUEEZE procedure [64]. Complex I is a dimer of two butterfly-type silver-metal clusters 
(Figures 2 and 3), in which all Ag···Ag distances lie in the range of 2.969(2)–3.254(2) Å. 
These distances are significantly greater than the sum of the covalent 2.7 Å radii of silver 
and can apparently be considered as weak secondary interactions (argentophilic) [65,66]. 

 
Figure 2. Molecular structure of I. Thermal ellipsoids are drawn at 30% probability level. Hydrogen 
atoms are omitted for clarity. Argentophilic interactions are shown in dotted lines. 

Figure 2. Molecular structure of I. Thermal ellipsoids are drawn at 30% probability level. Hydrogen
atoms are omitted for clarity. Argentophilic interactions are shown in dotted lines.

Molecules 2024, 29, x FOR PEER REVIEW 5 of 13 
 

 

 
Figure 3. Molecular structure of I. Hydrogen atoms, solvate pyridines, and benzyl and phenyl 
substituents of the ligand have been omitted for clarity. Argentophilic interactions are shown in 
dotted lines. 

Non-bonding distance between the tips of the “butterfly’s wings” (Ag1···Ag4 4.133(2) 
Å, Ag5···Ag8 4.236(2) Å) is significantly greater than the distance between atoms at the 
base of the “butterfly wings” (Ag···Ag 3.137(2), 3.085(2) Å). The outer vertices of the 
“butterfly wings” (Ag1 and Ag8) coordinate additional monodentate N-donor ligands, 
pyridine and piperidine, in the presence of which the synthesis and crystallization were 
carried out (Ag1–N1 2.441(12) Å, Ag8–N2 2.365(15) Å). The inner tips of the “butterfly 
wings” (Ag4 and Ag5) further coordinate the unsubstituted nitrogen atom in the five-
membered triazol ring of one of the ligands in the adjacent butterfly to form a dimeric 
structure (Ag4–N72 2.389(12) Å, Ag5–N22 2.392(12) Å). 

This molecule is pseudocentrosymmetric with the center of inversion at the center of 
mass of the silver atoms. The structural similarity of the two butterflies that make up the 
dimer is especially clearly visible when they are superimposed on each other (Figure 4). 
There is an almost complete coincidence of the positions of all atoms, with the exception 
of some differences in the orientation of the terminal benzyl substituents, as well as the 
difference between Py and Pype, which are coordinated by silver atoms. 

Figure 3. Molecular structure of I. Hydrogen atoms, solvate pyridines, and benzyl and phenyl
substituents of the ligand have been omitted for clarity. Argentophilic interactions are shown in
dotted lines.



Molecules 2024, 29, 105 5 of 12

Non-bonding distance between the tips of the “butterfly’s wings” (Ag1···Ag4
4.133(2) Å, Ag5···Ag8 4.236(2) Å) is significantly greater than the distance between atoms
at the base of the “butterfly wings” (Ag···Ag 3.137(2), 3.085(2) Å). The outer vertices of the
“butterfly wings” (Ag1 and Ag8) coordinate additional monodentate N-donor ligands, pyri-
dine and piperidine, in the presence of which the synthesis and crystallization were carried
out (Ag1–N1 2.441(12) Å, Ag8–N2 2.365(15) Å). The inner tips of the “butterfly wings” (Ag4
and Ag5) further coordinate the unsubstituted nitrogen atom in the five-membered triazol
ring of one of the ligands in the adjacent butterfly to form a dimeric structure (Ag4–N72
2.389(12) Å, Ag5–N22 2.392(12) Å).

This molecule is pseudocentrosymmetric with the center of inversion at the center of
mass of the silver atoms. The structural similarity of the two butterflies that make up the
dimer is especially clearly visible when they are superimposed on each other (Figure 4).
There is an almost complete coincidence of the positions of all atoms, with the exception
of some differences in the orientation of the terminal benzyl substituents, as well as the
difference between Py and Pype, which are coordinated by silver atoms.
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Figure 4. Superposition of a four-nuclear fragment of dimer I (solid line) onto another four-nuclear
fragment (dashed line) via an inversion pseudocenter; the standard deviation for silver and sulfur
atoms is 0.09 Å.

Four silver atoms of one part of the molecule coordinate four ligands, with each
ligand bonded to three metal atoms: the nitrogen atom is bonded to one metal atom
(Ag–N 2.275(13)–2.358(15) Å), and a sulfur atom connects two other metal atoms
(Ag–S 2.421(4)–2.670(4) Å). The silver atoms at the base of the butterfly have a planar
trigonal coordination AgNS2 (CN = 3), which is typical for silver clusters formed by a
ligand containing an SCN fragment, where the sulfur atom is exocyclic and the CN is
endocyclic, while the silver atoms at the tops of the butterfly wings, due to an additional co-
ordination with the N-donor fragments, have a tetrahedral coordination AgN2S2 (CN = 4).
“Butterfly” clusters are not typical for silver with this type of ligands, and in CCDC, there
is only one similar structure obtained by Robert P. Lattimer et al. [63]. Much more often a
six-nuclei “Cyclohexane-Chair”-type cluster is formed [67,68].
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2.3. Luminescent Properties

To the best of our knowledge, the luminescent properties of known silver(I) complexes
have been studied mainly for square-planar polyhedrals [69], while the studied I contains
two types of Ag+ cations with different environments—triangular and distorted tetrahedral.

The excitation spectrum of solid ligand L at room temperature at λem = 490 and 510 nm
gives a set of bands of 200–430 nm with a maxima at 238, 253, 281, and 400 nm, respectively
(Figure S6a). In the emission spectra at λex = 240, 250 and 280 nm, a set of bands is observed
in the region of 350–650 nm (Figure S6a), where the most intense bands have a maxima at
491, 509, and 530 nm. The excitation spectrum (λem = 400 nm) of I under similar conditions
is represented by broad bands in the region of 200–350 nm with a maxima at 240, 255,
and 335 nm (Figure S6b). The emission spectrum of I at λex = 255 nm contains wide
bands in the region of 300–600 nm with a maxima at 405, 422, and 487 nm. An analysis
of the photophysical properties showed that the transition from ligand L to complex I is
accompanied by a change in emission as a result of coordination of the ligand to the metal
and/or transition to the anionic form. The relative emission intensity of the ligand, as well
as its complex, is low.

2.4. Biological Activity

The biological activity of L and I was studied using the nonpathogenic mycobacterial
strain Mycolicibacterium smegmatis. In mycobacterial strains, the resistance to chemical
treatment agents is attributed to the low permeability of its cell wall due to its unusual
structure. M. smegmatis is a rapidly growing nonpathogenic bacterium, which is therefore
used as a model for slowly growing Mycobacterium tuberculosis and for the screening
of antituberculosis drugs [70]. The M. smegmatis test system exhibits higher resistance to
antibiotics and antituberculosis agents than M. tuberculosis; therefore, the concentration <100
nmol/disc in contrast to M. tuberculosis (<4 µg/mL) is used as the selection criterion [71].
All the results obtained for the in vitro biological activity of the compounds under study
were compared with the activity of the first-line antituberculosis drug, Rifampicin (Rif),
under the selected conditions of the experiment. The results of the antimycobacterial
activity study are presented in Table 1.

Table 1. The results of antibacterial activity study of free ligand L and complex I against M. smegmatis.

Compound
MIC, (nmol/disc) Zone of Inhibition, mm

24 h 24 h 120 h

L >1000 0 0
I 50 6.5 ± 0.1 6.4 ± 0 *

[Ag3(fur)(bpy)3]n [62] 15 6.4 ± 0.12 6.2 ± 0 **
Rif 5 7.1 ± 0.76 7.0 ± 0.4 *

The diameter of the paper disk is 6 mm. * The M. smegmatis growth inhibition zone is transparent, there is no
weak background growth of the culture (bactericidal effect). ** M. smegmatis growth inhibition zone overgrows
(bacteriostatic effect). 0—no growth inhibition zone.

The data shown in Table 1 demonstrate that ligand L does not exhibit significant
biological activity against the strain of mycobacterium. In turn, the efficiency of complex I
is increased by almost twenty times in comparison with the free ligand. Similar effect—an
increase in biological activity after complex formation is observed quite often [62,72]. The
effectiveness of strain suppression—like the reference drug Rif, I—has a bactericidal effect;
unlike the previously obtained silver complex [62], it exhibits a bacteriostatic effect (most
likely associated with the development of resistance genes of mycobacterium).



Molecules 2024, 29, 105 7 of 12

3. Materials and Methods
3.1. General Remarks

The synthesized product I is stable to oxygen, moisture, and ambient light. Ligand
L (3-benzyl-4-phenyl-1,2,4-triazol-5-thiol) was synthesized using the procedure similar
to that reported earlier [73], of which its 1H and 13C NMR spectra (see Supplementary
Information) are in good agreement with those reported previously. 1H NMR (300 MHz,
DMSO-d6) δ: 3.86 (s, 2H, CH2), 6.86–6.99 (m, 2H, CarH), 7.14–7.28 (m, 5H, CarH), 7.42–7.55
(m, 3H, CarH), and 13.82 (broad s, 1H, SH). 13C NMR (75 MHz, DMSO-d6) δ: 31.43, 126.86,
128.29, 128.35, 128.61, 129.27, 129.42, 133.55, 134.54, 151.27, and 167.92.

The IR spectrum of I was recorded in the range of 400–4000 cm–1 using a PerkinElmer
(Waltham, MA, USA) Spectrum 65 spectrophotometer equipped with a Quest ATR Ac-
cessory (Specac (Orpington, Kent, UK)). The method of attenuated total reflection (ATR)
was used. Excitation and emission spectra of the solid samples were recorded at room
temperature in the visible range of the spectrum using a PerkinElmer LS-55 spectrometer.

The 1H NMR spectra was registered on a Bruker AVANCE (300 MHz) spectrometer
with TMS as the internal reference and DMSO-d6 as the solvent.

To study the biological activity of the free ligand L and its complex I, the paper disk
method was employed using the nonpathogenic M. smegmatis mc2 155 strain. A solution
of each substance was prepared as follows: a sample of the substance was dissolved in
dimethyl sulfoxide to a concentration of 100 mmol or less, depending on the solubility
of the substance. Then, tenfold and twofold dilutions of the resulting solution were
made and applied to paper disks in an amount of 5 µL/disk. The test method involved
measuring the size of the inhibition zone around paper discs containing a compound,
which were placed on an agar plate and then seeded with the strain. The concentration
of the compound was varied to determine its effect on the growth of the strain. The
bacteria washed off Petri dishes with the Trypton-soy agar M-290 medium (Himedia,
Mumbai, India) were grown overnight in the Lemco-TW liquid medium (Lab Lemco’
Powder 5 g·L−1 (Oxoid, Basingstoke, UK), Peptone special 5 g·L−1 (Oxoid), NaCl 5 g·L−1,
Tween-80) at +37 ◦C until the average logarithmic growth phase occurred at optical density
OD600 = 1.5, which was then mixed with a molten agar medium M-290 in a ratio of
1:9:10 (culture:Lemco-TW:M-290). The mixture was poured into Petri dishes containing
pre-solidified agar medium (M-290) at a concentration of 5 mL/dish. After the top layer of
agar had solidified, paper discs impregnated with a solution containing the test compound
were placed on top of the plate. The culture was incubated for 24 h at +37 ◦C. The inhibition
zone diameters of M. smegmatis mc2 155 growth around the paper disks contained the free
ligand L and its complex I were determined. The Minimum Inhibiting Concentration (MIC)
was equal to the concentration of L and I that provided the smallest growth inhibition zone.

X-ray diffraction data for I were collected at 150 K with a Bruker Quest D8 CMOS
diffractometer, using graphite monochromated Mo-Kα radiation (λ = 0.71073 Å, ω-scans).
The crystal structure of I was solved using Intrinsic Phasing with the ShelXT [74] in
Olex2 [75] and then refined with the ShelXL [76] refinement package using Least-Squares
minimization against F2 in the anisotropic approximation for non-hydrogen atoms. Hydro-
gen atoms were calculated and they all were refined in the isotropic approximation within
the riding model. The contribution of highly disordered solvent molecules in structural
voids was treated as diffuse using the SQUEEZE procedure implemented in the PLA-
TON software, version 2023.1 [64]. The electron count within cavities (V1 = 726 Å3 and
V2 = 688 Å3) measured 170 and 223 e−, respectively; per formula unit of I, their sum
corresponds to 11 water and 4 pyridine molecules. The crystal data and structure re-
finement parameters are given in Table 2. CCDC 2300382 contains the supplementary
crystallographic data for this manuscript.
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Table 2. Crystal data and structure refinement for I.

Parameter Value

Empirical formula C150H154N30O11S8Ag8
Formula weight 3316.2
Crystal system Monoclinic

Space group Pc
Z 2

T, K 150
a (Å) 23.729(3)
b (Å) 25.401(3)
c (Å) 12.617(1)
α (◦) 90
β (◦) 93.340(4)
γ (◦) 90

V (Å3) 7591.9(14)
Dcalc (g/cm3) 1.451

µ(Mo-Kα) (mm−1) 1.17
F(000) 3324

2θmax (deg.) 50
Rint 0.0988

Reflections measured 137,347
Independent reflections 118,888

Observed reflections [I > 2σ(I)] 18,266
Parameters/restraints 1447/305

R1 0.0561
wR2 0.1470
GooF 1.002
Flack 0.18(4)

∆ρmax/∆ρmin (e/Å−3) 1.34/−0.96

3.2. Synthesis of I

A portion of AgNO3 (0.170 g, 1 mmol) was dissolved in 5 mL of distilled water and
then the solution of ligand L (0.270 g, 1 mmol) dissolved in 20 mL of MeOH was added,
of which the resulting reaction mixture was heated at 50 ◦C with constant stirring and
the solution gradually began to become white. After half an hour, the reaction mixture
was filtered and the resulting white precipitate was dried and then redissolved in 20 mL
of a 1:1 pyridine–piperidine mixture; within a week, crystals amenable for single-crystal
X-ray diffraction were obtained via slow evaporation in a glass beaker capped with dotted
Parafilm. The yield of the reaction is 90%. ATR-IR, ν/cm–1: 3434 w, 3057 w, 3032 w, 2919 w,
2847 w, 1631 w, 1593 w, 1524 m, 1496 m, 1424 m, 1367 s, 1311 s, 1245 s, 1160 m, 1069 m,
1031 m, 1009 m, 921 w, 824 w, 758 s, 729 s, 689 vs, 604 m, 557 s, 500 w, 465 w, 418 w, 403 w. 1H
NMR (300 MHz, DMSO-d6) δ: 3.65 (broad s, 16H, CH2), 6.47–7.64 (m, 80H, CarH), 7.66–7.90
(m, 8H, CpyH), 8.14–8.34 (m, 4H, CpyH), 8.63–8.99 (m, 8H, CpyH).

4. Conclusions

Here, we have presented a method for preparing a new silver(I) complex with
3-benzyl-4-phenyl-1,2,4-triazol-5-thiol and determined its crystal structure. Photophysical
studies of L and its complex I showed weak emission of the organic ligand in neutral and
anionic form; the complexation is accompanied by the changes in the emission spectra. The
study of the biological activity of L and I have determined that the free ligand does not
exhibit significant bactericidal action against Mycobacteria smegmatis, whilst complexation
with silver has increased the biological activity of the ligand by 20 times. We believe
that our results may encourage chemists to synthesize novel bioactive silver complexes
of 1,2,4-triazole derivatives via a facile method in water–methanol mixtures to prepare
advanced pharmaceutical products.
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IR-spectrum of compound I; Figure S3: IR-spectrum of L and compound I; Figure S4: 1H NMR
spectrum of L; Figure S5: 13C NMR spectrum of L; Figure S6: Excitation and emission spectra for
solid samples L (a) and I (b) at room temperature.
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