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Abstract: Unreactive C-H bond activation is a new horizon for frustrated Lewis pair (FLP) chemistry.
This study provides a systematic assessment of the catalytic reactivity of recently reported intra-
molecular FLPs on the activation of typical inert C-H bonds, including 1-methylpyrrole, methane,
benzyl, propylene, and benzene, in terms of density functional theory (DFT) calculations. The
reactivity of FLPs is evaluated according to the calculated reaction thermodynamic and energy
barriers of C-H bond activation processes in the framework of concerted C-H activation mechanisms.
As for 1-methylpyrrole, 14 types of N-B-based and 15 types of P-B-based FLPs are proposed to be
active. Although none of the evaluated FLPs are able to catalyze the C-H activation of methane,
benzyl, or propylene, four types of N-B-based FLPs are suggested to be capable of catalyzing the
activation of benzene. Moreover, the influence of the strength of Lewis acid (LA) and Lewis base (LB),
and the differences between the influences of LA and LB on the catalytic reactivity of FLPs, are also
discussed briefly. This systematic assessment of the catalytic activity of FLPs should provide valuable
guidelines to aid the development of efficient FLP-based metal-free catalysts for C-H bond activation.

Keywords: C-H activation; frustrated Lewis pairs; catalytic reactivity; systematic assessment; DFT
calculations

1. Introduction

Exploring cost-efficient, resource-abundant, and highly active metal-free catalysts as
a potential alternative to metallic catalysts is a contemporary challenge in the context of
organic synthesis and other important chemical processes. Several strategies in developing
metal-free catalysts have been proposed during recent decades, including unsaturated
heavier main-group compounds [1,2], the singlet carbenes [3], and frustrated Lewis pairs
(FLPs) [4-8]. Among these prominent approaches, FLPs have attracted great attention as
they make the classic Lewis acid-based concept shine with vitality. It is well-known that the
Lewis acid (LA) and Lewis base (LB) could contact strongly with the formation of classical
LA-LB covalent adducts. Different to the classical LA-LB covalent adduct, the LA and LB
moieties in FLPs are independent without the formation of a strong dative covalent bond
due to the electronic or steric encumbrance originating from very bulky substituents at
the LA and LB centers. As a result, FLPs could play the role of an electronic donor and
electronic accepter simultaneously, like bifunctional transition-metal complexes, which
leads to the unprecedented catalytic reactivity of FLPs.

Ever since Stephan discovered that p-(Mes,PH)CcF4(BH(C¢Fs)2) could efficiently
catalyze the splitting of hydrogen reversibly under mild conditions [8], these FLP-based
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metal-free bifunctional catalysts have attracted incredible attention and burgeoned into an
intriguing alternative for transition metal-based catalysts. On one hand, a large number of
original FLPs have been designed for different purposes up until now; for example, the
aluminum-based FLPs [9-12], the N-heterocyclic carbene-based FLPs [13], the carbon-based
FLPs [14], and even the solid FLPs [15,16]. On the other hand, the applications of FLPs
as versatile catalysts have extended to multiple aspects of chemistry. In the beginning,
research on the applications of FLPs paid attention mainly to the activation of the E-H
(E=0117-19], S [20], N [21,22], Si [23,24], B [25,26], etc.) bond and their interaction with
a variety of small molecules [27,28], which are often thought to be the typical domain
of transition metal-containing chemistry. Later, the ability to cleave molecular hydrogen
under mild conditions reversibly inspired researches to uncover whether FLPs are able
to catalyze C-H bond activation, which has been considered as one of the holy grails of
organic chemistry. Initially, studies in this field focused on the activation of the C(sp)-H
bond [29-32], and this has been extended expeditiously to include the relative inactive
C(spz)—H bond [33-37]. In contrast, the activation of the most inert C(sp3 )-H bond is still
elusive and only a few metal-free systems for this have been reported [38—40]. In particular,
Fontaine and coworkers recently reported that an ansa-aminoborane-based FLP (2-NMe;-
CeHy)>BH is able to activate the C(sp3 )-H bond of a methyl group [41]. Although such
pioneering research has verified the paradigm of C-H bond activation using FLP-based
metal-free catalysts, there is lack of guidelines for the rational design of more cost-efficient
FLPs. As a result, it is necessary to evaluate the reactivity of various previously reported
FLPs towards C-H bond activation systemically, which will provide helpful information
for developing cost-efficient FLPs for the future of C-H bond activation.

Generally speaking, FLPs could be divided into intermolecular FLPs and intra-molecular
FLPs according to whether their LA and LB sites are closely connected by sufficiently flexible
bridges. Compared to intermolecular FLPs, intra-molecular FLPs with different covalent
linkers show more variety and controllability in tuning the cooperativity between the LA
and LB sites. Moreover, these covalent linkers allow the usage of less bulkier acidic and
basic fragments. These advantages are beneficial for controlling the typical behaviors of FLPs.
Therefore, the present study mainly focuses on the catalytic reactivity of an assortment of
intra-molecular FLPs. In fact, the rational design of intermolecular FLPs, especially concerning
the influence of LA and LB on the reactivity of intermolecular FLPs towards H; activation,
has been evaluated by Pépai’s research group [42].

In an effort to obtain deeper insights into the factors that determine the reactivity
of FLP-catalyzed C-H bond activation and provide rational guidelines for developing
more cost-efficient FLPs, the present study performed systemic DFT calculations on the
thermodynamics and kinetics of FLP-catalyzed typical inert C-H bond activation, including
1-methylpyrrole, methane, benzyl, propylene, and benzene. Moreover, the catalytic activity
of several candidates was discussed briefly based on the systematic assessment.

2. Results and Discussion
2.1. The Scope of FLPs and the Framework of the C-H Activation Mechanism

Aiming to obtain a comprehensive picture of the FLP-catalyzed C-H bond activation,
we collected a large set of FLPs which have been reported for their success in versatile
catalytic applications. As the scope of FLPs has expanded extensively since the notion
of FLPs was first proposed by Stephan [8], only the intra-molecular FLPs are taken into
account in this study. Owing to the remarkable contributions of many researchers, various
phosphine- and nitrogen-based types of LB have been developed for FLP chemistry, while
research on LA has mainly been focused on boron-based compounds, although several
aluminum- and transition metal-based types of LA have been described [43-46]. Due to
the complexity of FLPs, only the previously reported FLPs comprising phosphine- and
nitrogen-based LBs and boron-based LA with different linking fragments were considered
in this study. The structure of these FLPs discussed in present study are depicted in Figure 1
(more details see Table S1 in the Supplementary Materials).
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Figure 1. The structure of previously reported N-B- and P-B-type FLPs. The detailed references are
available in the Supplementary Materials.

As unreactive C-H bond activation is a new horizon for FLP chemistry, the mechanisms
behind FLP-catalyzed C-H bond activation have not been explored extensively. Only
Fontaine and coworkers [36,41] have proposed a concerted heterolysis mechanism, similar
to that in Hj activation, by studying the C-H bond activation of 1-methylpyrrole. Homolysis
or radical mechanisms [47-49], proposed recently for FLP-catalyzed H; activation, are
scarcely reported in relation to C-H bond activation. As a result, in order to simplify the
discussions on FLPs and to compare the reactivity of different FLPs, we calculated all of
the overall solvent-phase Gibbs free energies (A;G) and the free energy barrier (AGY) of
the C-H bond activation reaction according to the concerted heterolysis mechanism, as
shown in Scheme 1. It is expected that the calculated A;G and AG* should vary across a
remarkably wide range; thus, a reasonable standard is of crucial importance to evaluate the
reactivity of FLPs. Of note, although it has been proposed that experimentally unreactive
FLPs are characterized by A,G values of typically more than 10 kcal/mol in the activation
of hydrogen, the tBuzP/BPhz FLP was found to be reactive with A,G values as high as
18.2 kcal/mol [41]. Therefore, all systems with A.G under 20 kcal/mol were considered
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to be potential candidates for catalyzed C-H bond activation in view of thermodynamics.
On the other hand, those with a free energy barrier (AGi) under 30 kcal /mol were utilized
to appraise the catalytic reactivity of FLPs in view of kinetics. Indeed, the free energy
barrier of the active FLPs in [32,38-40] is calculated to be 24.4 kcal/mol and 25.5 kcal /mol,
respectively. It is necessary to point out that the values of 30 kcal/mol and 20 kcal/mol are
merely reference values rather than absolute benchmarks for the reactivity of FLPs.

m +

Scheme 1. The concerted mechanism of intra-molecular FLP-catalyzed C-H bond activation.

2.2. The Performance of FLPs on the C-H Bond Activation of 1-Methylpyrrole

The catalyzed C-H bond activation of 1-methylpyrrole was evaluated firstly because
Fontaine and coworkers [20] have confirmed that ansa-aminoborane-based FLPs (2-NMe;-
CgHy),BH are capable of catalyzing the C-H bond activation of 1-methylpyrrole. It is
necessary to evaluate whether this C-H bond activation of 1-methylpyrrole is a common
reactivity pattern similar to those previously reported for other FLPs. The calculated
thermodynamic (A;G) and kinetic (AGHY) results are collected in Figures 2 and 3 (more details
see Figure S1 in the Supplementary Materials). To our delight, the overall performance
of these FLPs on the C-H activation of 1-methylpyrrole is acceptable. As can be seen in
Figure 2, there are 14 types of N-B-based FLPs and 15 types of P-B-based FLPs that fall into
the region in which the A,G is less than 30 kcal/mol. Obviously, these FLPs should afford
the C-H activation of 1-methylpyrrole. It is worth noting that the reactivity of N-B-based
FLPs may be more efficient than that of P-B-based FLPs; this is probably due to the fact that
the electronegativity of a N atom is stronger than that of a P atom.

The origin of the differences in catalytic reactivity between these FLPs is complicated;
however, the influencing factors mainly include the electronic effect and the distance effect.
The electronic effect is induced by the LA and LB comprising the FLPs, while the distance
effect is caused by the linkers. For example, although the structures of N1 and N3 are very
similar except the substituent of the LA site, the catalytic reactivities of these two FLPs
are different from each other. This could be attributed to the electronic effect evoked by
the LA site. In the case of N1, the electron-donating group 2,4,6-Me3;CcH, reduces the
electrophilicity of the LA site, which weakens the strength of the LA, and thus depresses
the catalytic activity of N1. Contrarily, the electron-withdrawing group Cg¢F5 in N3 could
reinforce the strength of LA, which is beneficial for the catalytic activity of N3. Another
good example is the results of N13, N14, and N15. Although these three FLPs possess
similar backbone scaffolds, their catalytic reactivities are quite distinct from one another,
as the substituents on LB center N are different. The electron-withdrawing group of the
N center weakens the strength of LB, which leads to the diminishing of catalytic activity
of N14. On the contrary, the activity of N13 and N15 is strengthened, attributed to the
electron-donating group on the N center. Briefly, the substituents of the LA and LB sites are
of crucial importance to the catalytic reactivity of FLPs.
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Figure 2. The calculated free energies (A;G) of the FLP-catalyzed C-H bond activation of 1-

methylpyrrole.
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As for the distance effect, the comparison of di-benzofuran-derived P20 and xanthene-
based system P21 provides a concise example. The thermodynamic reactions are almost
identical for P20 and P21; however, a corresponding transition state of P20 similar to that
of P21 could not be located. This could be attributed to the distance effect, i.e., the P-B
distance is 5.669 A for P20 and 4.243 A for P21 according to the XRD experiment [50]. The
distance between the LA and LB sites in P20 is so long that the cooperative interaction of
substrates with LA and LB sites is prohibitive, making the concerted C-H bond activation
mechanism unfavorable. Fortunately, we found an alternative mechanism for P20-catalyzed
C-H bond activation of 1-methylpyrrole, as shown in Figure 4. It is obvious that the distance
between the LA and LB sites could affect the mechanism of FLP-catalyzed C-H activation
of 1-methylpyrrole. This distance-controlled stepwise mechanism is in accordance with our
previous work [51].

. AG/(kcal/mol)
Mes,P B(CeFs)2 Mes,P B(CgFs)

Figure 4. The proposed stepwise mechanism for P20-catalyzed C-H bond activation of 1-
methylpyrrole.

2.3. The Performance of FLPs on C-H Bond Activation in Methane, Methylbenzene, Propylene,
and Benzene

Motivated by the results of the FLP-catalyzed C-H bond activation of 1-methylpyrrole
discussed above, we continued to evaluate the catalytic performance of FLPs on the activa-
tion of more inert C-H bonds, i.e., methane, methylbenzene, propylene with sp® hybrid
C-H bonds, and benzene with sp? C-H bonds. The calculated results are collected in
Figure 5. The catalyzed C-H bond activation of methane was discussed as a model system
because methane has long been considered as one of the most important hydrocarbon
feedstocks of fuels and chemicals in the excessive development and usage of traditional
fossil energy reserves. Although this resource is abundant, the efficient usage of methane is
a great challenge since the activation of methane under ambient conditions is extremely
difficult, which could be attributed to the extremely strong sp> C-H bonds in methane.
The results of various intra-molecular FLP-catalyzed C-H bond activations of methane
are exhibited in Figure 5a. Unfortunately, the overall performance of these FLPs on the
C-H activation of methane is unsatisfactory. The reaction is forbidden both kinetically
and thermodynamically as both the A;G and AG* values are very large. Obtaining these
results is not surprising, as the C-H bond of methane is extremely inert. It is worth noting
that there are several N-B-type FLPs located in zone II with an energy barrier of about
30 kcal/mol. As a result, if the energy barrier could be reduced slightly, these FLPs could
become the candidates for catalyzing the C-H activation of methane. However, there may
be alternative reaction mechanisms, as the present study only considers the concerted
heterolysis mechanism. Moreover, the catalytic reactivity of these FLPs could be modified
by tuning the electronic structure of the LA, LB, and linker moieties.
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Figure 5. The calculated free energies (A;G) and the free energy barrier (AGHF) of the C-H bond
activation of (a) methane, (b) methylbenzene, (c) propylene, and (d) benzene. ™: FLPs P1-P25;
A: FLPs N1-N21. I: A,G < 20 kcal/mol and AG} < 30 kcal/mol; II: A;G < 20 kcal/mol and AGE >
30 kcal/mol; ITT: A,G > 20 kcal/mol and AGF > 30 kcal /mol.

In order to obtain a systemic understanding of the catalytic reactivity of FLPs, propy-
lene and methylbenzene with more active (sp3) C-H bonds than methane were examined
as well. The calculated kinetic and thermodynamic data are collected in Figures 5b and 5c,
respectively. It is discouraging that the total performance of all FLPs discussed in the
present study is unsatisfactory, similar to the results of methane. The sp? hybrid C-H bond
in benzene should be more active than that of methane, methylbenzene, and propylene,
thus it could be catalyzed by FLPs. In fact, Chernichenko and coworkers [35] revealed very
recently that aminohydroborane is able to catalyze the C-H bond activation of benzene. As
aresult, the catalyzed C-H bond activation of benzene was evaluated here. These calculated
thermodynamic and kinetic data are depicted in Figure 4d. It is obvious that although the
overall performance of the various studied FLPs is not satisfactory, the catalytic reactivity of
N-B-based FLPs has improved, as there are four N-B-type FLPs located in zone I (Figure 5d).
The distinct differences between benzene and methylbenzene should be attributed to the
distinguishing reactivity of the sp? and sp® hybrid C-H bonds. It is worth pointing out
that the performance of aminohydroborane-based FLP N6 is in good accordance with the
results found by Chernichenko and coworkers [31]. In summary, the catalytic reactivity
of FLPs on the C(sp®)-H bond activation of methane, methylbenzene, and propylene is
unsatisfactory, yet there are four N-B-based FLPs (Figure 5d) that are potential catalysts for
the C(sp?)-H bond activation of benzene.

2.4. The Influence on the Reactivity of FLPs

In order to understand the intrinsic relationship between the structure of FLPs and their
thermodynamic performance in C-H bond activation, and to provide useful guidelines
for rationally improving the catalytic efficiency of FLPs, it is necessary to analyze the
composition of the overall free energy. According to the framework of the concerted
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heterolysis C-H bond activation mechanism, a catalyzed C-H bond activation involves the
preparation of frustrated LA and LB; in cases where active LA and LB sites are quenched,
the cleavage of the C-H bond, the attachment of H* to the LB site, the attachment of C to
the LA site, and the stabilization of LA—C and LB-H moieties. Thus, it is reasonable to
partition the overall free energy (AG;) into five components, i.e., the preparation energy
(AGprep), the formation energy of newly formed H-X (X = N, P) and B-C bonds (AGx.y and
AGg.c), the deprotonation energy of the broken C-H bond (AGc.y), and the stabilization
energy (AGgp), as depicted in Scheme 2. Therefore, the overall thermodynamics of the
C-H bond activation reaction could be described as Equation (1):

AG, = AGprep + AGc.g + AGx.g + AGp.c + AGgap 1)

_
o

) (b)

H attachment

AGx [C) [S)
B ) —
C-H bond cleavage C attachment deformation interaction
AGey AGp.c energy of energy
catalyst
Einl
chf(cal.)

Thermodynamic cycle
LA+LB+C-H for FLPs catalyzed LA-C +LB-H
C-H bond activation

©
®

deformation i__

energy of

stabilization

preparation
AGstab

AGprep
substrate

»

activation energy
E4ef(sub) Ef

ﬁ
_

C-H bond activation

AG,
LA----LB + C-H —r C-]_(T)ANI%-H

Scheme 2. Partitioning of the overall free energy of FLP-catalyzed C-H bond activation. (a) Thermo-
dynamic cyclefor FLPs catalyzedC-H bond activation. (b) activation distortion-interaction energy
decomposition analysis of transition states.

In Equation (1), AGprep is always negligible, as by definition, FLPs require the LA
and LB to be separated. AGc.y can be measured with the bond dissociation energy (BDE),
which could be obtained from experiment results [52]. For the same substrate, AG¢.y is
constant for all FLPs. Moreover, AGg,p has been suggested to vary insignificantly [38—40].
As aresult, only AGx.y and AGg.c are thought to change remarkably with variations in
the FLPs. In other words, the thermodynamic performance of intra-molecular FLPs in C-H
bond activation should depend on the magnitude of AGx.;j and AGg.c.

Generally, AGx.y represents the ability of LB to accept a proton, which could be judged
according to proton affinity (PA). A large PA results in a large AGx.y. In theory, the value
of PA could be obtained from reference [53]. Considering the fact that the FLPs discussed
in the present study comprise nitride- or phosphine-based LBs, it is reasonable to judge
the relative strength of the LB by comparing the electronic properties of the substituents
of the LB. For example, although the frameworks of N13, N14, and N15 are identical, the
catalytic reactivity of these FLPs on the C-H bond activation of 1-methylpyrrole are different
owing to the fact that the substituents of boron are different. The electron-withdrawing
substituents C4Fs5 could decrease the electron density of the LB center, which leads to the
decreases in the PA. As a result, the value of AGx.y becomes small. Accordingly, the overall
thermodynamics of N14-catalyzed C-H bond activation become unfavorable. In order to
improve the activity of FLPs, it is necessary to employ a stronger LB; for example, the
nitride- or phosphine-based LB with electron-donating substituents.
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On the other hand, AGg_¢ stands for the ability of LA to accept electrons; in other
words, the strength of the LA determines the value of AGp_c. In principle, the LA strength
could be measured via the Gutmann—Beckett method [54-56]. As the FLPs considered
in the present study are all combined by boron-based LA, the relative strength of the
LA could be estimated according to the electronic properties of the boron substituents, as
discussed above. The electron-withdrawing groups weaken the electron density of B, which
is beneficial for the interaction of C with B, leading to the decreased AGp.c. Therefore,
the overall thermodynamics are favorable. In summary, electron-withdrawing groups are
essential for improving the catalytic activity of FLPs.

It is noteworthy that the nature of the linker has a great influence on the catalytic
reactivity of FLPs, as discussed regarding the differences between P20 and P21 due to
the distance between their two active sites. However, the impact of the linker structure
on the catalytic reactivity of FLPs is not easily predictable, as proposed by Ashley and
coworkers [57]. More detailed and systemic research is required to undercover the mystery
of how linkers affect the electronic properties and catalytic reactivity of FLPs.

3. Materials and Methods
Computational Methods

According to previous research in the literature, in which DFT methods were com-
monly used in assessing the performance of FLPs [58-61], the geometries of all reactants, in-
termediates, transition states, and products were fully optimized at the M06-2X/6-31G(d,p)
level of theory [62] in the gas phase. Harmonic vibrational frequencies were calculated
at the same level of theory for the characterization of stationary points (minimum or
transition states) and for the zero-point energy (ZPE) corrections. Intrinsic reaction coor-
dinate (IRC) [63-65] calculations were carried out to verify the predicted transition states
connecting the designated reactants and products. In order to obtain more-accurate ther-
modynamic energies, the M06-2X/6-311++G(d,p) method was employed to calculate the
single-point energies based on the geometries optimized at the M06-2X/6-31G(d,p) level of
theory. The continuum polarized solvent model SMD [66] was employed to evaluate the
solvent effect of toluene during the single-point energy calculations. The final Gibbs free
energy with the SMD solvent model was calculated according to previous research [67].
All DFT calculations in this work were carried out using the Gaussian09 software package
(Revision B.01) [68].

4. Conclusions

In summary, the catalytic reactivity of a series of recently reported intra-molecular
FLPs in C-H bond activation was systemically evaluated using DFT methods. The overall
performance of these FLPs on the C-H bond activation of 1-methylpyrrole is very excellent.
In total, 14 types of N-B-based FLPs and 15 types of P-B-based FLPs are proposed to be
of a good catalytic reactivity. In contrast, our results are unsatisfactory in the cases of
methane, benzyl, propylene, and benzene. There are only four types of N-B-based FLPs
that were shown to be active in the C-H activation of benzene. Moreover, the electronic
effect on the reactivity of FLPs was briefly analyzed in relation to thermodynamics. An
LA with electron-withdrawing groups and an LB with electron-withdrawing groups are
required to develop more efficient FLP-based metal-free catalysts. This evaluation of the
catalytic reactivity of FLPs and insight into the related influencing factors will provide
useful guidelines for the rational design of novel FLPs.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390 /molecules29010024 /s1, Table S1: The detailed information of
FLPs discussed in the manuscript; Figure S1: The calculated free energies (ArG) and the free energy
barrier (AG) of the C-H bond activation of (A) methane, (B) methylbenzene, (C) propylene and (D)
benzene. the detailed information of FLPs, additional references, optimized coordinates of collected
FLPs, coordinates of intermediates and transition states involved in Figures 1-5. Refs [69-93] are
cited in the Supplementary Materials.
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