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Abstract: This paper presents a new low-voltage versatile mixed-mode filter which uses a multiple-
input/output differential difference transconductance amplifier (MIMO-DDTA). The multiple-input
of the DDTA is realized using a multiple-input bulk-driven MOS transistor (MI-BD-MOST) tech-
nique to maintain a single differential pair, thereby achieving simple structure with minimal power
consumption. In a single topology, the proposed filter can provide five standard filtering functions
(low-pass, high-pass, band-pass, band-stop, and all-pass) in four modes: voltage (VM), current
(CM), transadmittance (TAM), and transimpedance (TIM). This provides the full capability of a
mixed-mode filter (i.e., twenty filter functions). Moreover, the VM filter offers high-input and low-
output impedances and the CM filter offers high-output impedance; therefore, no buffer circuit is
needed. The natural frequency of all filtering functions can be electronically controlled by a setting
current. The voltage supply is 0.5 V and for a 4 nA setting current, the power consumption of the
filter was 281 nW. The filter is suitable for low-frequency biomedical and sensor applications that
require extremely low supply voltages and nano-watt power consumption. For the VM low-pass
filter, the dynamic range was 58.23 dB @ 1% total harmonic distortion. The proposed filter was
designed and simulated in the Cadence Virtuoso System Design Platform using the 0.18 µm TSMC
CMOS technology.

Keywords: universal filter; mixed-mode filter; differential difference transconductance amplifier;
operational transconductance amplifier

1. Introduction

Active analog blocks, such as the operational amplifier (OA) or the transconductance
amplifier (TA), are essential components for electronic devices, communication systems,
and sensor interfaces. These blocks typically use the standard two inputs (i.e., a single
differential stage). However, it has been confirmed that the use of a block with multiple
inputs can reduce the number of components, silicon area, and power dissipation of some
applications by a factor of approximately k, where k is the number of TA inputs [1]. Several
applications based on this concept have been presented in [1–4]. Some other examples
of multiple-input blocks are the differential difference amplifier (DDA) [5–9], differential
difference current conveyor (DDCC) [10,11], differential difference operational floating
amplifier (DDOFA) [12], differential difference transconductance amplifier (DDTA) [13,14],
and many others. All these blocks allow for more arithmetic operations due to their
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multiple-input capabilities and are therefore widely used in instrumentation amplifiers,
signal conditioning, differential amplification, filters, and many other applications. Al-
though these blocks can reduce an application’s complexity and the number of blocks
utilized, their internal structure is more complex than that of a standard two-input block.
This is primarily due to the increased number of differential stages that are required to
increase the number of inputs. The multiple-input MOS transistor (MI-MOST) provides a
solution to avoid this problem and maintain a single differential stage [15–17]. It can be
used in any standard CMOS technology without constraints. The first experimental results
of MI-MOST are presented in [15–17] and various applications based on MI-MOST are
presented in [18–24].

Filters play an important role in electronic, telecommunication and control systems.
They can be used to reduce harmonics and filter noise in an electronic system, to separate
or select desired signals, to remove unwanted signals in telecommunication systems, or
to reduce the noise component of measurement signals in a control system. There are
five common filtering functions that can be classified, namely the low-pass filter (LPF),
high-pass filter (HPF), band-pass filter (BPF), band-stop filter (BSF), and all-pass filter
(APF). These filtering functions can be designed using passive and active components,
called passive filters or active filters, respectively. Second-order filters (or biquad filters)
can be used to realize high-order filters applied to a high-fidelity three-ways crossover
loudspeaker network and to a phase-locked loop.

Using active device-based filters, second-order LPF, HPF, BPF, BSF and APF (five
filter functions) can be provided in a single topology, creating the so-called universal filter.
Circuits that can provide voltage-mode (VM) (input and output as voltage), current-mode
(CM) (input and output as current), transadmittance-mode (TAM) (input as voltage and
output as current) and transimpedance-mode (TIM) (input as current and output as voltage)
transfer functions in the same circuit are classified as mixed-mode universal filters. In a
perfect mixed-mode universal filter, each mode of the transfer function should provide five
filter functions, therefore obtaining twenty filter functions in a single topology. In addition,
perfect universal filters should have high input impedance and low output impedance if
the input and output are in voltage forms and low input and high output impedance if the
input and output are in current forms.

There are many mixed-mode universal filters available in the literature [25–61]. The
circuits in [25–38] realize a mixed-mode universal filter using variant active devices such
as current conveyors [25–34], the CFOA (current feedback operational amplifier) [35–37],
the FTFN (four terminal floating nullor) [38]; however, these filters lack electronic tuning
capabilities. The circuits in [39–41] use current-controlled current conveyor-based filters
to offer electronic tuning capability, but the circuits in [39,40,42] do not provide twenty
transfer functions and the circuits in [41,42] require input matching conditions.

To obtain electronic tuning capability, the circuits in [43–46] use the CCTA (current
conveyor transconductance amplifier), the circuit in [47] uses the VDTA (voltage differ-
encing transconductance amplifier), the circuits in [48,49] use the VD-DVCC (voltage
differencing differential voltage current conveyor), and the circuits in [50,51] use the VDBA
(voltage differencing buffered amplifier). However, the circuits in [43,46,47] do not offer
twenty transfer functions, the circuits in [48,49] require active/passive component match-
ing conditions, and the circuits in [50,51] apply input voltage signals via a passive capacitor
and/or resistor.

The OTA (operational transconductance amplifier) has been used to realize mixed-
mode universal filters [52–60]. However, the circuits in [52,54,59] require passive or active
components, the circuits in [53,56,57] do not provide twenty transfer functions, and the
circuits in [52,53,58,60] require inverted input signals. It should be noted that the structure
of active devices used in [25–60] is not designed for low-voltage low-power filters. Filters for
such applications are in high demand, especially for biosignal and sensor signal processing.
Many filters based on multiple-input DDTA have been presented [61–68].



Sensors 2024, 24, 32 3 of 18

This paper presents a versatile mixed-mode filter using MIMO-DDTAs. The circuit
has six input voltages, three input currents, three output voltages, and two output currents;
as such, it offers 61 transfer functions of LPF, BPF, HPF, BSF, and APF in the same topology.
The six input voltage terminals possess a high-impedance level, and the three output
voltage nodes possess a low-impedance level, which is ideal for voltage-mode circuits. The
two output current terminals also possess a high-impedance level which can be connected
directly to loads without buffer circuit requirements. The natural frequency of the filters can
also be controlled electronically. The proposed versatile mixed-mode filter uses a supply
voltage of 0.5 V and 281 nW of power consumption.

The paper is organized as follows: Section 2 describes the multiple-input/output
DDTA. Section 3 describes the application of the versatile mixed-mode filter and non-
ideality analysis. Section 4 presents the simulation results. Finally, the conclusion is given
in Section 5.

2. Proposed DDTA Circuit with Multiple-Input and Multiple-Output

The electrical symbol of the proposed multiple-input/output differential-difference
transconductance amplifier is shown in Figure 1. Its performance, in an ideal case, is
described by Equation (1). The circuit possesses one low-impedance output w, which
provides a difference of the sums of the voltages Vy+ and Vy−, applied to its non-inverting
and inverting terminals, respectively. It further has a high-impedance output o, which
provides a current, proportional to the voltage Vw appearing at the w terminal.

Vw = Vy+1 + Vy+2 − Vy−1 − Vy−2
Io± = ±gmVw

}
(1)
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The CMOS structure of the proposed circuit is shown in Figure 2. The circuit consists
of two blocks, a multiple-input differential-difference amplifier (MI-DDA) and a multiple-
output transconductance amplifier (MO-TA).

The MI-DDA can be seen as a two-stage internal OTA, operating in a unity-gain
feedback configuration. The first gain stage is formed by the transistors M1–M12, M14, M15,
while the second stage is formed by the transistors M13 and M16. The capacitance CC is
used for frequency compensation. The first stage can be seen as a current-mirror OTA, with
a differential amplifier M1–M10 and a set of current mirrors M5–M12, M6–M11, M14–M15,
acting as a differential to a single output converter.

The input stage is based on a non-tailed bulk-driven differential pair M1-M4, which
behaves as a differential amplifier with high CMRR and PSRR performances, while also
being able to operate at extremely low supply voltages [69], even lower than the threshold
voltages of the used MOS transistors. In order to increase the voltage gain, a partial
positive feedback (PPF) is applied. The PPF is created by two cross-coupled transistor pairs:
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M7–M8 and M9–M10. The cross-coupled pairs generate negative conductances that partially
compensate for the conductances of the diode-connected transistors M2A,B for the “upper”
pair, and M5, M6 for the “lower” pair. Therefore, the resulting conductances increase at
the drains of these transistors, and, consequently, the first stage transconductance and
voltage gain also increase. In particular, the upper pair increases the voltage gain from
the bulk terminals to the gates of M1A,B [70], while the lower pair increases the current
gains of the current mirrors M5–M12 and M6–M11 [71]. The combination of two PPF
circuits decreases the overall sensitivity of the transconductance gain of the first stage to
transistor mismatch [63]. This achieves a larger voltage gain while maintaining relatively
low sensitivity of the input stage and avoiding problems with frequency compensation of
the DDA.
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Figure 2. CMOS structure of the MIMO-DDTA.

In order to realize a differential to difference function without duplicating the input
stage, the multiple inputs were realized using the so-called multiple-input BD MOS tran-
sistors [15]. The symbol and the implementation of the devices are shown in Figure 3a,b,
respectively. A passive capacitive voltage divider is applied to the bulk terminal of the
MOS transistor, thus creating a multiple-input device. The large resistors RMOSi, used
to bias the bulk terminal for DC, are realized using two minimum-size MOS transistors
operating in a cut-off region, as shown in Figure 3c.
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Assuming 1/ωCBi << RMOSi, the voltage Vb at the bulk terminal of the MI-BD-MOS
transistor can be expressed as:

Vb = ∑n
i=1 βiVi (2)

where n is the number of inputs and βi is the voltage gain of the input capacitive divider:

βi =
CBi

∑n
i=1 CBi

(3)

Note that with equal CBi, βi = 1/n.
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The open-loop voltage gain of the DDA can be expressed as:

Avo = β
2gmb1(rds15||rds12)gm16(rds16||rds13)

(1 − m1)(1 − m2)
(4)

where the coefficients m1 and m2 are the ratios of the absolute values of the negative and
positive conductances in a lower and upper PPF circuit, respectively [62]:

m1 =
gm9,10

gm5,6 + gds2 + gds3,4 + gds7,8

∼=
gm9,10

gm5,6
(5)

m2 =
gm7,8

gm2 + gds1 + gds5,6 + gds9,10

∼=
gm7,8

gm2
(6)

Note that the above coefficients should always be lower than unity to maintain circuit
stability. In the proposed design, m1 = m2 = 0.5. This increased the voltage gain by 12 dB,
thus compensating for the gain loss introduced by the input capacitive divider (approxi-
mately 10 dB) while maintaining the overall circuit sensitivity to transistor mismatch at a
relatively low level.

The second block creating the MIMO-DDTA is the multiple output transconductance
amplifier. The circuit can be seen as a current-mirror linear OTA. Note that a version of
the MI-TA with one positive output was presented and verified experimentally in [18].
Here, a second, inverting output has been added, thus increasing the circuit universality.
Transistors M1, M2 and M11, M12 realize an input differential stage. The transistors M11
and M12 operate in a triode region and extend the linear range of the structure. The circuit
can be seen as a BD version of the Krummenacher and Joehl transconductor [72], operating
in weak inversion. Thanks to the BD approach, the linear range of the circuit is extended
η = gm1,2/gmb1,2 times, as compared with its gate-driven (GD) counterpart. In order to
obtain optimum linearity, the following condition should be met [18]:

k =
(W/L)11,12

(W/L)1,2
= 0.5 (7)

where W and L are the MOS transistor channel width and length, respectively.
Assuming unity current gain of all current mirrors, the circuit transconductance is

given by:

gm = η
4k

4k + 1
· Iset

npUT
(8)

where np is the subthreshold slope factor, UT is the thermal potential and Iset is the biasing
current. Note that the circuit transconductance is proportional to this current.

In order to increase the DC voltage gain of the structure while not limiting its output
voltage range, all current mirrors are based on self-cascode transistors. Consequently, the
DC voltage gain from the input to the differential output is equal to:

AVO ∼= 2gm[(gm9rds9rds9c)||(gm6rds6rds6c)] (9)

Thanks to the self-cascode technique, it is possible to compensate for the gain loss
associated with the application of the BD technique. In practice, a voltage gain of around
40 dB can be obtained.

3. Versatile Mixed-Mode Filter

Figure 4 shows the proposed versatile mixed-mode universal filter employing four
MIMO-DDTAs and two grounded capacitors. Using (1) and nodal analysis, the output
voltages Vo1, Vo2, Vo3 and the output currents Io1, Io2 can be given by:
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Vo1 =
gm3

gm4
· s

2C1C2(V5 − V6) + sC1gm2(V3 − V4) + gm1gm2(V1 − V2)

s2C1C2 + sC1gm3 + gm2gm3
(10)

Vo2 =
s2C1C2(V5 − V6) + sC1gm2(V3 − V4) + gm1gm2(V1 − V2)

s2C1C2 + sC1gm3 + gm2gm3
(11)

Vo3 =
sC2gm3(V5 − V6) +

(
s2C1C2 + sC2gm3

)
(V3 − V4) + (sC2gm3 + gm1gm3)(V1 − V2)

s2C1C2 + sC1gm3 + gm2gm3
(12)

Io1 = gm3·
s2C1C2(V5 − V6) + sC1gm2(V3 − V4) + gm1gm2(V1 − V2)

s2C1C2 + sC1gm3 + gm2gm3
(13)

Io1 =
−s2C1C2 I3+sC1gm3 I2 − gm2gm3 I1

s2C1C2 + sC1gm3 + gm2gm3
(14)

Io2 =
s2C1C2 I3−sC1gm3 I2 + gm2gm3 I1

s2C1C2 + sC1gm3 + gm2gm3
(15)

Vo1 =
1

gm4
·−s2C1C2 I3+sC1gm3 I2 − gm2gm3 I1

s2C1C2 + sC1gm3 + gm2gm3
(16)
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From (10)–(16), the variant filtering functions can be determined and are shown in
Table 1. The proposed mixed-mode universal filter can offer LP, HP, BP, BS, and AP filtering
functions of VM, CM, TAM, and TIM in the same topology. Thanks to the multiple inputs of
the DDTA, the VM, CM, and TIM can offer non-inverting and inverting transfer functions
of LP, HP, BP, BS, and AP filters, and the VM and TAM can also offer differential transfer
functions of LP, HP, BP, BS, and AP filters. Thus, the proposed mixed-mode filter can
provide 61 transfer functions in a single topology. Thanks to the multiple outputs of the
DDTA, such as DDTA4, the proposed filter utilizes a minimum number of used DDTAs
while offering inverting and non-inverting transfer functions of LP, HP, BP, BS, and AP
filters of CM. The input signals V1 to V6 are connected to the high-impedance terminals of
the DDTA; thus, the voltage signals can be applied without any buffer circuit requirements.
The output signals Vo1 to Vo3 are connected to the low-impedance terminals of the DDTA,
which offers a cascadable output for the voltage-mode filter structures. The output signals
Io1 and Io2 are connected to the high-impedance terminals of the DDTA, which offers a
cascadable output for the current-mode filter structures. However, in the case of CM, the
inputs I1 to I3 require additional circuits, such as multiple-output current followers or
multiple-output current mirrors, to create three identical current signals from the single
original current signal. It is clear that the proposed filter is exempt from inverting-type
input signal and input matching conditions for realizing all filtering functions both in the
case of voltage and current signals.
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Table 1. Obtaining variant filtering functions of the proposed versatile mixed-mode filter.

Operation Mode Filtering Function Input Output

VM

LP

Non-inverting V1 Vo1
Inverting V2 Vo1

Non-inverting V1 Vo2
Inverting V2 Vo2

Non-inverting V1 = V6 Vo3
Inverting V2 = V5 Vo3

Differential V1−V2 Vo2

BP

Non-inverting V3 Vo1

Inverting V4 Vo1

Non-inverting V3 Vo2

Inverting V4 Vo2

Non-inverting V5 Vo3

Inverting V6 Vo3

Differential V3−V4 Vo2

HP

Non-inverting V5 Vo1

Inverting V6 Vo1

Non-inverting V5 Vo2

Inverting V6 Vo2

Non-inverting V3 = V6 Vo3

Inverting V4 = V5 Vo3

Differential V5−V6 Vo2

BS

Non-inverting V1 = V5 Vo1

Inverting V2 = V6 Vo1

Non-inverting V1 = V5 Vo2

Inverting V2 = V6 Vo2

Differential (V1 = V5)− (V2 = V6) Vo2

AP

Non-inverting V1 = V4 = V5 Vo1

Inverting V2 = V3 = V6 Vo1

Non-inverting V1 = V4 = V5 Vo2

Inverting V2 = V3 = V6 Vo2

Differential (V1 = V4 = V5)−
(V2 = V3 = V6)

Vo2

CM

LP
Non-inverting I1 Io1

Inverting I1 Io2

BP
Non-inverting I2 Io2

Inverting I2 Io1

HP
Non-inverting I3 Io1

Inverting I3 Io2

BS
Non-inverting I1 = I3 Io1

Inverting I1 = I3 Io2

AP
Non-inverting I1 = I2 = I3 Io1

Inverting I1 = I2 = I3 Io2
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Table 1. Cont.

Operation Mode Filtering Function Input Output

TAM

LP

Non-inverting V1 Io1

Inverting V2 Io1

Differential V1−V2 Io1

BP

Non-inverting V3 Io1

Inverting V4 Io1

Differential V3−V4 Io1

HP

Non-inverting V5 Io1

Inverting V6 Io1

Differential V5−V6 Io1

BS

Non-inverting V1 = V5 Io1

Inverting V2 = V6 Io1

Differential (V1 = V5)− (V2 = V6) Io1

AP

Non-inverting V1 = V4 = V5 Io1

Inverting V2 = V3 = V6 Io1

Differential (V1 = V4 = V5)−
(V2 = V3 = V6)

Io1

TIM

LP Non-inverting I1 Vo1

BP Inverting I2 Vo1

HP Non-inverting I3 Vo1

BS Non-inverting I1 = I3 Vo1

AP Non-inverting I1 = I2 = I3 Vo1

The voltage gain gm3/gm4 of the filtering functions can be obtained if the output Vo1 is
used. In the case of TAM, the inputs V1 to V6 are converted to output currents by gm3; in
the case of TIM, the input currents I1 to I3 are converted to output voltages by gm4.

The natural frequency (ωo) and the quality factor (Q) can be given by:

ωo =

√
gm2gm3

C1C2
(17)

Q =

√
C2gm2

C1gm3
(18)

It should be noted that the parameter ωo can be controlled electronically by gm2 and
gm3 and the parameter Q can be given by C2/C1.

Non-Ideality Analysis

Taking the tracking errors and the non-ideal transconductance of the MIMO-DDTA
into account, the characteristics of the MIMO-DDTA can be rewritten as:

Vw = αj+Vy+1 + αj+Vy+2 − αj−Vy− + αj−Vy−2

Io = gmnjVw

}
(19)

where αj+ =1–εj+v and εj+v (|εj+v |≪ 1) denote the voltage tracking error from non-inverting
terminals (i.e., Vy+1, Vy+2) to the w-terminal (i.e., Vw) of the j-th DDTA, αj− =1–εj-v and εj-v
(|εj-v|≪ 1) denote the voltage tracking error from inverting terminals (i.e., Vy−1, Vy−2) to
the w-terminal (i.e., Vw) of the j-th DDTA, and gmnj is the non-ideal transconductance gain
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of the j-th DDTA. The non-ideal transconductance gmnj of the j-th DDTA at a frequency
near the cut-off frequency can be expressed by [59]:

gmnj(s) ∼= gmj
(
1 − µjs

)
(20)

where µj= 1⁄ωgmj, ωgmj denotes the first pole frequency of the j-th gm.
Using (19), the denominator of (10)–(16) can be modified as:

s2C1C2 + sC1gmn3α3− + gmn2gmn3α2+α3− (21)

Using (20), (21) becomes:{
s2C1C2

(
1 − C1gm3µ3α3− − gm2gm3α2+α3−µ2µ3

C1C2

)
+ sC1gm3α3−

(
1 − gm2gm3α2+α3−(µ2 + µ3)

C1gm3α3−

)
+ gm2gm3α2+α3−

}
(22)

The tracking errors and the non-ideal effect of the transconductance of the DDTA can
be made negligible by satisfying the following condition:

gm2gm3α2+α3−(µ2+µ3)
C1gm3α3−

≪ 1
C1gm3µ3α3−−gm2gm3α2+α3−µ2µ3

C1C2
≪ 1

}
(23)

The modified natural frequency (ωon) and the modified quality factor (Qn) can be
expressed as:

ωon =

√
gm2gm3

C1C2
·α2+α3− (24)

Qn =

√
C2gm2

C1gm3
·α2+

α3−
(25)

To consider the parasitic impedances that affect the proposed mixed-mode filter, the
parasitic capacitance Co and parasitic conductance go (go = 1/Ro, Ro is the output resistance)
at the o-terminal of the DDTA are considered while the parasitic impedances at the y- and
w-terminals are neglected. Considering Figure 4, the parasitic capacitances Co1, Co4 and
parasitic conductances go1, go4 are parallel with C1 and the parasitic capacitances Co2, Co4,
and parasitic conductances go2, go4 are parallel with C2. Co1, Co2, Co4 are, respectively,
the parasitic capacitances at the o-terminal of DDTA1, DDTA2, DDTA4, and go1, go2, go4
are, respectively, the parasitic conductances at the o-terminal of DDTA1, DDTA2, DDTA4.
The parasitic capacitances can be neglected by appropriately choosing values such that
C1 ≫ Co4 + Co4, C2 ≫ Co2 + Co4, gm2 ≫ go1 + go4, and gm3 ≫ go2 + go4.

4. Simulation Results

The circuit was designed and simulated using the Cadence Virtuoso System Design
Platform using 0.18 µm CMOS technology from TSMC. The voltage supply was ±250 mV
(0.5 V) and the bias voltage VB1 = −100 mV. The transistor aspect ratios are included in
Table 2. It is worth noting that the only increase in chip area is due to the input capacitor
CB = 0.5 pF, so the total input capacitance of the proposed MIMO-DDTA is 3 pF. This value
is acceptable for integration.

Selected simulation results for the MIMO-DDTA are shown in Figures 5 and 6. Figure 5
shows the simulated results of the DC transfer characteristic of the MI-DDA Vw versus Vy+1
and of the MO-TA Io+, Io− versus Vw with various Iset. The extended linearity of operation
despite the low supply voltage is observed.

Figure 6 shows the impedances frequency characteristics of the MIMO-DDTA with
Iset = 4 nA: (a) Zy, Zo+, Zo− and (b) ZW. At low frequency, the impedance of Zy = 29.5 GΩ,
Zo+ = Zo− = 2.1 GΩ and Zw = 876 Ω. All these values are suitable for the proposed
filter application.
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Table 2. Transistor aspect ratios of the MIMO-DDTA.

MI-DDA W/L (µm/µm)
M1A, M2A, M1B, M2B M14, M15 16/3
M3–M8, M11–M12, MB 8/3
M9, M10 4/3
M16 6 × 16/3
M13 6 × 8/3
MR 4/5
MIM capacitor: CB = 0.5 pF, Cc = 6 pF
MO-TA W/L (µm/µm)
M1, M2 2 × 15/1
M3–M6, M14–M16 2 × 10/1
M3c–M6c, M14c–M16c 10/1
M7–M10, M17–M19, M13 2 × 15/1
M7c–M10c, M17c–M19c, M13c, M11, M12 15/1
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(dashed line) versus Vw with various Iset.
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For the filter application, for cutoff frequency 220 Hz and for Iset = 4 nA (gm = 27.7 nS)
the Equation (17) has been used to calculate the value of capacitors C1 = C2 = 20 pF. The
frequency responses of the gain and phase for the differential input VM, non-inverting
CM, TAM and TIM filter with Iset1–4 = 4 nA are shown in Figure 7. The simulated cutoff
frequency was 211 Hz, which is closed to the calculated one. This slight deviation in
the cutoff frequency can be easily corrected by adjusting the setting current. The power
consumption of the filter was 281 nW.
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Figure 7. The frequency characteristics of gains for the VM (a), CM (b), TAM (c), and TIM (d).

The frequency responses of LP, HP, BP, BS, and AP gains and phases for VM are shown
in Figure 8. The wide tunability of the filter is achieved by varying the setting current
Iset1–4 = (0.5, 1, 2, 4) nA, where the cutoff frequency was (28, 56, 112, 211) Hz, respectively.
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Figure 8. The frequency characteristics of gains (lines) and phases (points) for the VM filter: LPF (a),
HPF (b), BPF (c), BSF (d), and APF (e).

Monte Carlo (MC) analysis was used to perform the statistical analysis to estimate the
parametric yield and generate information about the performance characteristics of the
differential input VM filter. The gains frequency responses of LP, HP, BP, BS, and AP with
200 runs MC are shown in Figure 9. The curves are overlapping or close to each other.
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Figure 9. The 200 runs MC frequency characteristics of the gains for the differential input VM filter:
LPF (a), HPF (b), BPF (c), BSF (d), and APF (e).
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The process, voltage, and temperature (PVT) corners were also used to confirm the
robustness of the design. The process transistor corners were fast–fast, fast–slow, slow–fast,
and slow–slow. The process MIM capacitor corners were fast–fast and slow–slow. The
voltage supply corners were = ±10% (VDD-VSS) and the temperature corners were −20 ◦C
and 70 ◦C. The results for the gains frequency responses of LP, HP, BP, BS, and AP with
PVT are shown in Figure 10. The curves are again overlapping or close to each other, which
confirms the robustness of the filter design. In addition, thanks to the tunability of the filter,
any deviation in the cutoff frequency can be easily adjusted by the setting current.
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Figure 10. The PVT frequency characteristics of the gains for the VM filter: LPF (a), HPF (b), BPF (c),
BSF (d), and APF (e).

The transient response of the VM LPF with an applied input sinusoidal signal
Vin-pp = 200 mV@10 Hz is shown in Figure 11a. The spectrum of the output signal is
shown in Figure 11b, where the total harmonic distortion (THD) of 0.23% is indicated.
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Figure 11. The transient response of the VM LPF (a) and the spectrum of the output signal (b).

The THD for the VM LPF with different peak-to-peak input signal values @ 10 Hz
is shown in Figure 12. The 1% THD is achieved for Vin-pp = 300 mV. The output voltage
noise for the VM LPF is shown in Figure 13. The root-mean-square (RMS) output noise
integrated in the bandwidth of 1 to 211 Hz was 130 µV; thus, the dynamic range (DR) of
the VM LPF filter is 58.23 dB @ 1% THD.
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Figure 12. The THD of the VM LPF with different peak-to-peak input voltages @ 10 Hz.
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Figure 13. The output voltage noise of the VM LPF.

The proposed versatile mixed-mode filter was compared with the previously reported
filters in [29,32,45,51,59–61] as shown in Table 3. Compared with these previous works, the
proposed filter offers the most transfer functions of the five standard filtering functions
and the lowest voltage supply. Compared with [29,32], the proposed filter offers electronic
tuning capability of the natural frequency; compared with [59–61], the proposed filter uses
fewer active devices. The filters in [32,45,51] apply the input signal via capacitor and/or
resistor, the structure in [45] does not provide five standard filtering functions of VM, CM,
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TAM, and TIM, and the filters in [45,51] require input matching conditions for realizing
some filtering functions.

Table 3. Comparison of the proposed filter’s properties with those of mixed-mode universal filters.

Factor Proposed [29] [32] [45] [51] [59] [60] [61]

Number of active
devices 4-DDTA 3-DDCC 1-FDCCII,

1-DDCC 2-VDBA 3-VDBA 5-OTA 8-OTA 5-DDTA

Realization 0.18 µm
CMOS

0.25 µm
CMOS

0.18 µm
CMOS

0.18 µm
CMOS

0.18 µm
CMOS

0.18 µm
CMOS

0.18 µm
CMOS

0.18 µm
CMOS

Number of passive
devices 2-C 2-C, 3-R 2-C, 6-R 2-C, 2-R 2-C, 1-R 2-C 2-C 2-C

Type of filter MIMO MISO MIMO MIMO MIMO MISO MIMO MIMO

Total number of
offered responses 61 30 36 17 20 20 20 36

Each mode offers
five standard
responses

Yes Yes Yes No Yes Yes Yes Yes

Orthogonal control
of ωo and Q Yes Yes Yes Yes Yes Yes Yes Yes

Electronic control
of ωo

Yes No No Yes Yes Yes Yes Yes

All passive devices
grounded Yes Yes No No No Yes Yes Yes

High input
impedances for
VM

Yes Yes No No No Yes Yes Yes

No need for input
matching
conditions

Yes Yes Yes Yes No Yes Yes Yes

No need for
inverting input
conditions

Yes Yes Yes Yes Yes Yes Yes Yes

Power supply (V) 0.5 ±1.25 ±0.9 ±0.75 ±1.25 ±0.9 ±0.3 1.2

Power dissipation
(mW) 0.281 × 10−3 - - 0.373 5.482 0.1773 0.00577 0.33

Natural frequency
(kHz) 0.211 3.315 × 103 1.591 × 103 1.44 × 103 16.32 × 103 3.39 × 103 5 1.04

Total harmonic
distortion (%)

1@300 mVpp
(LPF)

0.723@60
µApp

2.2@300
mVpp

2.2@200
mVpp

<4@350
mVpp (HPF) - 2@120

mVpp (LPF)
1.09@650

mVpp

Dynamic range
(dB) 58.23 - - - - - 53.2 -

Verification of
result Sim Sim Sim Sim/Exp Sim/Exp Sim Sim Sim/Exp

Note: MIMO = multiple-input multiple-output, MISO = multiple-input single-output.

5. Conclusions

This paper presents a 0.5 V, 281 nW versatile mixed-mode universal filter using MIMO-
DDTAs. The MIMO-DDTA is used to realize a versatile mixed-mode universal filter that
offers many transfer functions in the same topology. To realize variant transfer functions
such as LPF, HPF, BPF, BSF, and APF of VM, CM, TAM, and TIM, inverted input signal
requirement is absent. The natural frequency can be electronically controlled. The VM
filter offers high-input impedance and low-output impedance, and the CM filter offers
high-output impedance. For the VM LP filter, the dynamic range was 58.23 dB @ 1% total
harmonic distortion. The proposed filter was designed and simulated in the Cadence
Virtuoso System Design Platform using the 0.18 µm CMOS technology from TSMC. The
simulation results, including Monte-Carlo and PVT corners, confirm the functionality of
the design.
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