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Cytokines mediate cell-cell communication in the immune system and represent
important therapeutic targets' 3. Amyriad of studies have highlighted their central
role inimmune function*™, yet we lack a global view of the cellular responses of each
immune cell type to each cytokine. To address this gap, we created the Immune
Dictionary, acompendium of single-cell transcriptomic profiles of more than17
immune cell typesin response to each of 86 cytokines (>1,400 cytokine—-cell type
combinations) in mouse lymph nodesin vivo. A cytokine-centric view of the dictionary
revealed that most cytokines induce highly cell-type-specific responses. For example,
theinflammatory cytokine interleukin-1p induces distinct gene programmes in almost
every cell type. A cell-type-centric view of the dictionary identified more than 66
cytokine-driven cellular polarization states across immune cell types, including
previously uncharacterized states such as aninterleukin-18-induced polyfunctional
natural killer cell state. Based on this dictionary, we developed companion software,
Immune Response Enrichment Analysis, for assessing cytokine activities and immune
cell polarization from gene expression data, and applied it to reveal cytokine networks
intumours following immune checkpoint blockade therapy. Our dictionary generates

new hypotheses for cytokine functions, illuminates pleiotropic effects of cytokines,
expands our knowledge of activation states of eachimmune cell type, and provides a
framework to deduce the roles of specific cytokines and cell-cell communication
networks in any immune response.

Cytokines are abroad class of small, secreted proteins that act locally
or systemically by binding to cognate receptors on target cells, which
in turn trigger downstream signalling and orchestrate activities
among cell types of the immune system. Cytokine-based therapies
and cytokine antagonists are used to treat a wide range of disorders,
including cancer and autoimmunity™. However, the large number
of immune cell types and cytokines and complex cellular responses
have made it challenging to elucidate in vivo immune responses to
cytokines.

The Immune Dictionary

To obtain a comprehensive view of cellular responses to cytokines,
we systematically profiled single-cell transcriptomic (single-cell RNA
sequencing (scRNA-seq)) responses to 86 cytokines across more
than17 immune cell types in mouse lymph nodesin vivo to generate a
large-scale perturbational scRNA-seq dataset of the immune system
(Fig.1a). The 86 cytokines represent most members of major cytokine
families, including interleukin-1 (IL-1), common y-chain/IL-13/thymic

stromal lymphopoietin (TSLP), common 3-chain, IL-6/IL-12, IL-10, IL-17,
interferon (types I, Il and IlI), tumour necrosis factor (TNF), comple-
ment and growth factor families, as well as representative molecules
fromother families with cytokine functions (for example, certain hor-
mones) (Methods and Supplementary Table 1).

We injected each freshly reconstituted carrier-free cytokine or
phosphate buffered saline (PBS; as vehicle control) under the skin of
the abdominal flank of wild-type C57BL/6 mice (three independent,
replicate mice per cytokine) inthe upper range of previously reported
bioactive doses (Methods and Supplementary Table 1). We collected
skin-draining lymph nodes (specialized immune organs that integrate
signals from surrounding tissues) 4 h after injection, one of the earli-
est time points at which the majority of the transcriptome responds
to immune stimuli'>*. We then processed the lymph nodes using an
optimized protocol for viable cell recovery, balanced cell-type repre-
sentation and high-throughput sample multiplexing (Methods). Data
quality, including batch-to-batch consistency, was strictly experimen-
tally controlled and computationally verified (Methods). Cells were
profiled using a droplet-based system (10x Genomics) to generate
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Fig.1|Generation of ascRNA-seqdictionary of gene expressionsignatures
inmorethan17immune celltypesinresponseto each of 86 cytokinesin
vivo. a, Schematic of the experimental and computational workflow. First row,
datageneration procedures; second row, illustration of the Immune Dictionary
andits companion software IREA; third row, analyses of the Immune Dictionary.
b, t-distributed stochastic neighbourembedding (¢:SNE) map of all cells collected
fromlymph nodes after cytokine stimulation or without stimulation (PBS controls)
coloured by cell-typeidentity. Cells were sorted torebalance frequencies

of major celltypes.c, Violin plots of expression levels of well-established

high-quality single-cell transcriptomes for 386,703 cells (Fig. 1b and
Extended Data Figs.1and 2).

After partitioning cells into global clusters, we observed that most
cells were segregated by cell-type identity rather than stimulation
conditions (Fig. 1b, Extended Data Fig.1b and Supplementary Table 2).
Although cytokine-treated cells did not typically form distinct clusters,
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cytokine-responsive genes following PBS or cytokine treatment. ***False
discovery rate (FDR)-adjusted P < 0.001, two-sided Wilcoxon rank-sum test.
d, Quantitative representation of overall transcriptomic response levels in
eachcelltype 4 hafter cytokine stimulation compared with PBS controls. Each
celltypeisanalysedindependently andis represented by adistinct colour,
following the colour codesinband c. Colour saturationindicates the magnitude
oftheresponse. Sizeindicates the number of genes with significant differential
expression (absolute log,(fold change (FC)) > 0.25and FDR-adjusted P < 0.05,
two-sided Wilcoxon rank-sum test) in each cytokine signature.

they were often separated from PBS controls within each cell-type
cluster (Extended Data Fig. 1b,c). After manualinspectionto ensure the
accuracy of cell-typeidentification, more than 20 cell types were identi-
fied. These corresponded to B cell, CD4" T cell, CD8" T cell, y6 T cell,
regulatory T (T,,) cell, naturalkiller (NK) cell, innate lymphoid cell (ILC),
plasmacytoid dendritic cell (pDC), conventional dendritic cell type 1



(cDC1), cDC2, migratory DC (MigDC), Langerhans cell”, extrathymic
Aire-expressing cell (€TAC)'®, macrophage (Marco* or LyzI'), monocyte,
neutrophil, mast cell, and a small number of less abundant cell types,
including basophil, blood endothelial cell (BEC), lymphatic endothelial
cell (LEC) and fibroblastic reticular cell (FRC) (Fig. 1b and Extended
DataFig.1d,e). The frequencies of most cell types remained stable after
stimulation, with the notable exception being a significant increase
inmonocyte fractionsinlymph nodes after certain cytokine treatments
(Extended DataFig. 1f,g). To identify cytokine signatures, we computed
the significantly differentially expressed genes (DEGs) in response to
cytokine treatment in each cell type (Methods and Supplementary
Table 3). We identified an average of 51 DEGs (span of 0-1,510) per
cytokine-cell type combination, and the majority (72%) of the DEGs
responding to cytokines were upregulated rather than downregu-
lated. We verified that the transcriptomic signatures were consistent
across replicate animals (Extended Data Fig. 2b) and thatevery lymph
node celltype was able to access theinjected cytokines (Extended Data
Fig. 2c). We also confirmed robust upregulation of well-established
cytokine-responsive genes, such as Tnfaip3in response to TNF, /[4i1
inresponse to IL-4, and /sg15 and other interferon-stimulated genes
(ISGs) inresponse to IFN (Fig. 1c and Supplementary Table 3).

To chart the immune cell responses to each cytokine, we created
a map that quantified the global transcriptomic changes between
cytokine-treated and PBS-treated cells for each cell type (Fig. 1d and
Methods). The map captured well-known cellular targets of cytokines,
suchasNK cellsresponding toIL-2,IL-12, IL-15and IL-18, and many less
characterized responses. Certain cytokines, such as IFNad, IFNp, IL-1a,
IL-1B, IL-18, IL-364, IL-15and TNF, induced strong changes in gene expres-
sioninnearly all cell types. Some cytokines preferentially targeted one
lineage (for example, IL-21 affected the lymphoid lineage, whereas IL-3
affected the myeloid lineage) or a subset of cell types. The transcrip-
tomicresponses of each majorimmune cell type to each major cytokine
constituted anin vivo dictionary ofimmune responses, whichwe term
the Immune Dictionary.

Cell-type-specific cytokine responses

We performed a cytokine-centric analysis of this dictionary to explore
how different cell types respond to the same cytokine. Gene expres-
sion heatmaps of top upregulated genes in response to IFN(, IL-1p
and TNF revealed that cytokines induced cell-type-specific gene
expression changes (Fig. 2a). This observation was consistent across
15 cytokines that induced strong transcriptomic changes in a large
number of cell types shownin Fig. 1d, including IL-1¢, IL-36a and IL-7
(Extended Data Fig. 3a). We computed the number of upregulated
genes that were either specifictoacell type or shared among multiple
cell types (Fig. 2b and Supplementary Table 4). Most of the upregu-
lated genes in response to a particular cytokine were specific to one
cell type regardless of thresholds for defining DEGs (Extended Data
Fig. 3b). Some cytokines induced substantial changes on one or a
small number of cell types, such asIL-18 on NK cells, IL-3 on pDCs and
GM-CSF on MigDCs. The most shared DEGs were for IFNal and IFNf3
(acrossall celltypes), IL-4 (across several combinations of cell types),
and IL-2, IL-15and IL-18 (all three of which induced cytotoxic genesin
CDS8" T cells and NK cells).

Torepresent complex cytokine responses across cell typesinacom-
pact manner, we identified gene programmes (GPs) that consisted of
co-expressed genes thatbecame upregulated asagroup inresponse to
cytokines (Fig. 2c, Supplementary Fig.1and Supplementary Table 5).
IFNaland IFN, asrelated cytokines, induced highly similar responses
toeachother,asdidIL-1a and IL-1B.IFNaland IFNp, as expected, induced
common antiviral GPs across almost all cell types (GP numbers GP27,
GP33 and GP34) but also some lineage-specific and cell-type-specific
programmes. By contrast, IL-1a.and IL-1B, pro-inflammatory cytokines
withmany known functionsintheactivation of bothinnate and adaptive

immune cells”, induced highly cell-type-specific GPs with a diverse
set of enriched biological processes (Fig. 2c). These GPs seemed to
enhance the known functions of several of these cell types, including:
(1) neutrophils upregulating chemokine and inflammatory genes such
as Cd14 (GP27), consistent with their role as first responders; (2) MigDCs
and Langerhans cells upregulating migration programmes including
Ccr7 (GP12); and (3) T, cells inducing Hifla and Ctla4 that can medi-
ate immune suppression (GP22). Our results illustrate how the type |
interferonresponseincludes acommon and autonomous viral defence
programme, while IL-1a and IL-1f3 trigger a coordinated multicellular
response composed of highly cell-type-specific functions.

Many cell-type-specific responses to a single cytokine were not
explained by secondary effects to the other cytokines studied
(Extended Data Fig. 4a,b). However, some responses could be attrib-
uted to secondary effects toinduced cytokines, such as theinduction
of Ifng (which encodes IFNy) in NK cells by IL-2, IL-12, IL-15 and IL-18,
which probably in turn stimulate B cells, DCs and macrophages to
strongly express IFNy signatures (Extended Data Fig. 4c-e). AsIL-2,
IL-12,IL-15and IL-18 have been applied as therapies with the intention of
activatingT cells, our results highlight theimportance of considering
rapidly induced secondary effects on non-intended cell types due to
complex in vivo immune responses to a single cytokine. In summary,
our systematic analysis of how different cell types respond to each
cytokine provides a molecular map for observed pleiotropic effects
of cytokines®™.

Cytokine-driven cell polarization states

We next performed a cell-type-centric analysis of the dictionary to
identify cell states induced by cytokines. Cytokines are major driv-
ers ofimmune cell polarization, with a classic example being distinct
cytokines driving macrophages into pro-inflammatory M1-like or
reparative M2-like states”. However, the polarization states of many
immune cell types have not been comprehensively characterized,
and even macrophage polarization is more complex than the M1/M2
dichotomy?. Gene expression profiling can simultaneously measure
the entire transcriptome and has been particularly useful for defin-
ing cell states driven by environmental cues™****, Here we leveraged
the dictionary to systematically identify single cytokine-induced cell
polarization states. We subclustered eachimmune cell type and defined
66 major polarization states as subclusters significantly enriched for
cytokine-treated relative to PBS-treated cells and expressing meaning-
ful biological programmes (Methods and Fig. 3, with the complete
landscape in Extended Data Figs. 5-8, Supplementary Figs. 2-11 and
Supplementary Tables 6-8). Each polarization state was induced by
one or a handful of dominant cytokine drivers (Fig. 3a-n, Extended
Data Figs. 5f,g, 6f,g, 7,f.g and 8f,g and Supplementary Figs. 2f,g, 3f,g,
4f,g, 5f,g, 6f,g, 7f,g, 8f,g, 9f g, 10f,g and 11f,g).

We examined macrophages and monocytes to see whether this
approachuncovers previously established polarization states (Fig. 3I,m,
Extended Data Fig. 8 and Supplementary Fig. 10). As expected from
previous studies®, IFNy induced a ‘Mac-b’ state that overexpresses
Ml-associated pro-inflammatory genes (for example, Cxc/9 and Cxcl10).
IL-4 and IL-13 induced a distinct ‘Mac-e’ state that was not marked by
these pro-inflammatory genes but by Chchd10, Glrx and Retnla. We also
confirmed previous findings that monocytes had higher /[1b expres-
sionwhentreated with IL-1c, IL-1B or IL-36a (Supplementary Fig. 10h),
thereby potentially creating an inflammatory feed-forward loop®. In
addition, IFNal, IFNB and TNF triggered other polarization states.

NK cells are known for their cytotoxic functions, but other functions
arestillbeing discovered®. As expected from previous knowledge, IL-2,
IL-12 and IL-15 induced a state with increased expression of cytotoxic
genes, and type linterferonsinduced the expression of both cytotoxic
genes and ISGs (Fig. 3f,0,p and Extended Data Fig. 6). IL-1ac and IL-1p
induced a distinct ‘NK-c’ state with low correlation with other NK cell
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Fig.2|Cytokinesinduce cell-type-specific transcriptomic responses.

a, Heatmapsof the top DEGs per cell type inresponse to IFN, IL-13 and TNF
relative to PBS controls. Colour gradient representslog,(FC) (capped at twofold)
incomparisonwith PBS treatment for the respective cell type. b, Number of
DEGs (log,(FC) > 0.3 and FDR-adjusted P< 0.05, two-sided Wilcoxon rank-sum
test) following each cytokine treatment, grouped by sharing pattern, either
specifically overexpressed by one cell type (top) or shared by two or more cell
types (bottom). Cell-type combinations with the most shared genes (>16 DEGs
inany giventreatment) are shown. A maximum of 100 cells per cytokine
treatment for each of the 7representative cell types were sampled to ensure

states and lacking overexpression of cytotoxic molecules (Extended
Data Fig. 6b). However, in this state, /fngrl was upregulated, which
potentially enhances NK cell activation by IFNy (Fig. 3p, Extended Data
Fig. 6 and Supplementary Fig.12). Although IL-18 is known to activate
NK cells, we found that IL-18-activated NK cells, predominantly in the
‘NK-f’ state, displayed markedly different properties than NK cells acti-
vated by IL-2, IL-12 or IL-15. IL-18 triggered the upregulation of more
than 1,000 genes (Fig. 2b and Supplementary Table 3), an order of
magnitude more than cells stimulated with other cytokines. This had
apartial overlap with the IL-2, IL-12, IL-15 and interferon states, includ-
ing Gzmb and Xcl1. Compared with PBS treatment, the IL-18-induced
state was strongly enriched in biosynthetic processes, including the
induction of Myc (which controls growth and proliferation), immune
processes such as maturation of myeloid cells (Csf2 (which encodes
GM-CSF)), recruitment of DCs (XclI), cytotoxicity (Gzmb) and regula-
tors of differentiation (Kit and Batf) (Fig. 3p, Extended Data Fig. 6 and
Supplementary Fig.12).1L-18 has shown promise in preclinical studies
of cancerimmunotherapy? and canactivate T cells, NK cells and other
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comparability across cell types for this analysis. The x axes span from O to the
highest DEG counts. ¢, Upregulated GPs following IFNaland IFN( (top) or
IL-1cand IL-1B (bottom) treatment with respect to PBS control. GPs that are
significantly upregulated between cytokine and PBS treatment (effect size >1
and FDR-adjusted P < 0.01, two-sided Wilcoxon rank-sum test) in any cell type
areshown. Significant GPs (FDR < 0.05) for each cell type are represented as
circles, with the circle size indicating significance and the colour representing

the effectsize (capped at10). Representative enriched biological processes

(FDR-adjusted P< 0.05; black tiles) for the top-weighted genesin each GP
areshown.

cell types?. This unique and strong NK cell response to IL-18 suggests
apolyfunctional role for the IL-18-NK cell axis in the immune system.

B cells were polarized by IL-4 to a distinct /l4i1* state and by CD40L
orIL-21toaproliferating phenotype (Fig. 3aand Extended Data Fig. 5).
Similar totheir effect on NK cells, IL-1a and IL-13 induced Ifngrl upregu-
lationin T cell subsets (Supplementary Figs.2h and 3h). y6 T cells exhib-
ited diverse polarizationstates, including adistinct ‘Tgd-f’ stateinduced
byIL-23that overexpresses/[22,and a‘Tgd-d’ stateinduced by TNF, TL1A
or IL-17E that overexpresses Odcl (Fig. 3d and Supplementary Fig. 4).
While prior studies of lymphocyte differentiation states have been in
the context of TCR or BCR stimulation, our findings demonstrate that
restinglymphnodeB cellsand T cells canalso be polarized by cytokines
to express diverse GPs.

We observed shared polarization states and cytokine drivers in
MigDCs and Langerhans cells (Fig. 3j,k and Supplementary Figs. 8
and9). TNF uniquely increased the proportion of cells in astate marked
by Cd40 and Ccl22 expression, thereby potentially enhancing antigen
presentation and interaction with T cells through the CCR4-CCL22
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Fig.3|Cytokinesdrive diverse polarization statesineachcell type.

a-n, Uniform manifold approximation and projection (UMAP) plots of cells
shownforeach celltype.a,Bcell.b,CD4 ' Tcell.c,CD8 Tcell.d,y8 T cell.

e, T cell.f,NKcell.g,pDC. h,cDCI.i,cDC2.j, MigDC.k, Langerhans cell.

I, Marco* macrophage. m, Monocyte, n, Neutrophil. Coloured circlesinthe
UMAP plots and next to state names correspond to polarization states. Cells
coloured grey do not map to polarization states described. Cell polarization
state name, single cytokine drivers and top marker genes are shownin the
table for each cell type. Cytokine drivers coloured blue are probably indirect

polarization state relative to all other cells of the same cell type. Coloursin
different panels are unrelated. o,p, Additional views of fusing NK cells as an
exampletoillustrate polarization-state analyses. 0, UMAP plots coloured by
cytokine or PBS treatment for major cytokine drivers of polarization states
showninf. p, Violin plots of expression levels of selected marker genes after
cytokine or PBS treatment. Colours correspond to the polarization states that
the cytokines are most strongly associated. This figure isasummary of the
completelandscape for each cell type in Extended Data Figs. 5-8 and
Supplementary Figs. 2-11.

inducers. Top marker genes are defined as highly upregulated genesin the

axis. IL-1aand IL-1f increased the expression of Ccr7, and GM-CSF and
IL-1family cytokines induced the upregulation of Nr4a3, which has a
key role in DC migration?. These results suggest that TNF can trigger
localinflammation and DC-T cellinteractions, and that the IL-1family
cytokines can boost DC migration to prime T cell responses in lymph

nodes.

Overall, our reference map of cytokine-driven cellular polarization
states reveals the plasticity of allimmune cell types. These polariza-
tion states may be shared across cell types, such as type l interferons
inducing ISG I states and type Il interferons inducing ISG Il states in
each cell type (Extended Data Fig. 9a), or specific for one cell type,
suchas‘cDC1-f’induced by IL-10 to cDC1 (Extended DataFig. 7), ‘pDC-¢e’
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Fig.4|Cytokine production map by cell type. a, Heatmap of row-normalized
geneexpression of the 86 cytokines studied. Protein names encoded by the
genesarein parentheses. b, Scatter plot showing the abundance of each cell
type (log,,scaled) inlymphnodesin PBS-treated controls compared with the
number of cytokine genes expressed (calculated from an equal number of
cellsper cell type; threshold of detection = 0.1). Smoothed conditional means
and 95% confidenceintervals fromafitted linear model are shown. Pearson

induced by IL-36a to pDCs (Supplementary Fig. 6) and ‘NK-¢’induced
by IL-1acor IL-13 to NK cells (Extended Data Fig. 9b).

Cytokine production-response map

Tobetter understand the cell-cell communication carried out by each
celltype, weidentified the production sources of each cytokine by quan-
tifying the corresponding transcriptlevels averaged across all baseline
and cytokine-stimulated conditions to account for stimulation-induced
expression (Fig. 4a and Supplementary Table 9). FRCs expressed the
highest number of distinct cytokines, consistent with previous findings
regarding their heterogeneity and maintenance functions in various
immune and non-immune compartments®. Other rare cell types in
lymphnodes, suchasbasophils andILCs, also expressed a large number
of cytokines. There was aninverse correlation between the abundance
of animmune cell type and the number of cytokines that the cell type
produced (Fig.4b and Extended Data Fig.10a), with cytokine produc-
tion calculated using the same number of cells per cell type to ensure
comparability. These findings, which were robust against different
values of analysis parameters (Extended Data Fig. 10b), suggest that
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correlation coefficientandits associated P value obtained from two-sided
t-testareshown.aincludedall cellsin the study, whereasbsampled an equal
number of cells per cell type to ensure comparability across cell types.

¢, Cytokine-mediated cell-cellinteractome shown for FRCand cDCl cells
(completeinteractome presented in Extended Data Fig.11). Asterisks indicate
multimeric cytokines.

rarer cell types are crucial playersinimmune cell-cell communication
networks despite their low numbers.

On the basis of cytokine production levels inferred from the abun-
dance of transcripts encoding each cytokine and of cytokine responses
obtained from the global analysis (Fig. 1d), we built a cell-cell inter-
actome charting available cell-cell communication channels in the
immune system (Fig. 4c, Extended Data Fig. 11 and Supplementary
Table 10). Our dataindicated that FRCs caninfluence nearly every cell
type through a multitude of produced cytokines (Fig. 4c, left). cDC1
cells canalso affect almost all cell types, but through a smaller number
of cytokines, most prominently through IL-1B, which affects many cells
(Fig.4c, right). Aglobal view of the network showed that most cell types
can affect almost every other cell type through at least one cytokine
(withthe exceptionof B cellsand T cells, which are not stimulated with
antigens used in our study), demonstrating a high level of intercon-
nectivity in the immune system (Supplementary Fig. 13).

Inaddition, we created acytokine-receptor expression map per cell
type (Extended Data Fig. 10c and Supplementary Table 9). Cytokine
treatment induced changes in cytokine or receptor expression, such
asthe upregulation of Cd40in cDClcellsin response to TNF and IFNf3



a ) Data from any b User input IREA
(Ijmmune ;esptonset An immune Polarization states
(disease, treatment, response Control a b ¢ d : 1

vaccination, and so on)

|

Immune cell
polarization?

Active cytokines?

Genes

Immune Dictionary reference data

IREA output
Cytokine signatures Cell polarization Active cytokines  : Cell-cell
2 a H 188 o + communication

[%2]
w

I'I_I

IREA output on immune cells in
Cytokine responses in NK cells

c d

Induced by
IFNy

N Mac-b

Immune cell polarization
Mac-a

Induced by
IL-4, IL-13

Mac-e ¥

Mac-c Mac-d
Macrophage

T8-a
.0
T8-b T8-f
NK-c
T8-c T8-e

Fig.5|IREA enables theinference of cytokine activities, immune cell
polarization and cell-cell communications based on transcriptomic data.
a, Problem statement for cytokine responseinference, b, lllustration of the
IREA softwareinputand output. Coloursin the heatmaps represent different
expression values. Userinput can be gene sets or transcriptome matrices.

Blue backgrounds represent cell polarization analysis; orange backgrounds
represent cytokine response analysis. c-e, Examples of IREA analysis output on
scRNA-seqdatacollected from cellsin the tumour microenvironment following
anti-PD-1treatmentrelative to control antibody treatment. ¢, IREA radar plots
showing enrichment of macrophage, NK celland CD8" T cell polarization states
describedinFig.3. Cytokinedrivers of selected polarization states are indicated

NK-a

NK-f

Induced by
N 12, IL-15, IL-12

NK-e

(Extended Data Fig. 10d), which potentially sensitizes cells to subse-
quent response to other cytokines. Some cytokines induced responses
even in the absence of highly expressed receptors, such as IL-1acand
IL-1B affecting T cells, NK cellsand DCs (Supplementary Fig.12j and Sup-
plementary Table 10). This effect could be due to insensitive detection
of receptor transcripts, rapid secondary effects to moleculesinduced
by the cytokine or unknownreceptors. Thus, our cell-cellinteractome
reveals diverse ways by which cells caninteract with one anotherin vivo
through the cytokine network.

Immune Response Enrichment Analysis

The use of transcriptomics to study immune processes and diseases
has become standard and has led to the generation of large public
datasets*>*'. However, transcriptomic data do not reveal the factors
that trigger the observed cell states and their functions, calling for
an approach for inferring cytokine responses and revealing cell-cell
communication networks based on cytokine-induced gene expression
programmes**, Most methods to infer cell-cell interactions from tran-
scriptomic data use ligand and receptor expression associations>**,
However, receptor expression alone is not an accurate predictor of
cytokineresponses, as the ligands may not reach the cell or downstream
pathways may not be functional. A more precise approach should also
consider whether cells express the response signature of acytokine as
defined in our dictionary. Furthermore, there is a need for acompu-
tational approach to automatically assess immune cell polarization
from transcriptomic data.

tumour following anti-PD-1 therapy

e Cytokine network

MGDC g, IL-15

5.0+
| | 25ES>0

0

li13
IL-10
4-18BL | M-CSF

li2

18
| GM-CSF | IL-12

IL-15
liFNy
iSoes<o ™F
by arrows.d, IREA cytokine enrichment plot showing the enrichment score (ES)
foreachofthe 86 cytokine responsesin NK cells following anti-PD-1 treatment.
Barlengthrepresentsthe ES, shading represents the FDR-adjusted P value
(two-sided Wilcoxon rank-sum test), with darker colours representing more
significant enrichment (red, enriched in anti-PD-1 treatment, blue, enriched
inuntreated control). Cytokines withreceptors expressed areindicated by
black filled boxes. e, Inferred cell-cell communication network mediated by
cytokines. For ease of identification, cytokines are plotted from left to right in
eachsegmentinthe sameorderasthelegend. For clarity, individual cytokine
plots following the same visualization scheme are shown on therightandin
Extended DataFig.12c.

Toinferimmune cell polarization and cytokine responses fromany
transcriptomic data, we created Immune Response Enrichment Analysis
(IREA), which is the companion software for the Immune Dictionary.
IREA implements statistical tests to assess the enrichment of either
cell polarization or cytokine signatures in transcriptomes, which can
then be used to derive cell-cell communication networks that explain
observed immune responses (Methods and Fig. 5a,b).

We applied IREA to a published single-cell transcriptomic dataset
fromimmune cellsin tumours of mice treated with an anti-PD-1check-
point blockade therapy?®® (Fig. 5c—e and Extended Data Fig. 12a—c).
IREA automatically inferred that monocytes and macrophages after
treatment polarized into the IFNy-induced ‘Mac-b’ (M1-like) state and
away fromthelL-4-induced ‘Mac-e’state, whichisinaccordance withthe
known antitumour properties of IFNy-polarized M1-like macrophages
(Fig. 5¢). This method enabled the characterization of immune cells
across multiple polarization states on a continuous scale, consistent
withrecent views thatimmune cells are not dichotomously polarized®.
Polarization was also identified in other cell types, including the polari-
zation of NK cellsinto acytotoxic ‘NK-e’ state, which can be induced by
IL-2, IL-12 and IL-15 (Fig. 5c and Extended Data Fig. 12a). NK cells were
enriched for signatures of these cytokines, and IL-12 subunit genes were
expressed in DCs and other myeloid cells (Fig. 5d, red bars, Fig. 5e), in
agreementwith theknown role of IL-12 in anti-PD-1therapy”. Among the
86 cytokines, IREA found that the immunosuppressive cytokine TGF31
showed the most negative response in anti-PD-1-treated cells compared
with untreated cells, consistent with its known role in attenuating the
immune enhancement from PD-1and PD-L1 blockade®. These and
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various other cytokines were produced by and acted on specific cell
typesinthe tumour, which created a cytokine network in the effective
response to immunotherapy (Fig. 5d,e). Receptors were expressed
for cytokines with inferred responses, but also for some cytokines
without responses, highlighting that the presence of receptors is
not sufficient for response (Fig. 5d). Applying IREA to severe COVID-19
infection® revealed responses to cytokines in B cells and T cells in
severe disease, reflecting known increases in plasma cytokines that
regulate lymphocytes (Extended Data Fig. 12d and Supplementary
Fig.14). Our framework therefore enabled us to infer the key secreted
factorsthattrigger observed cellular responses (for example, Fig. 5¢,d)
andto generate amolecular model of cell-cellinteractions (for exam-
ple, Fig. 5e) that underlie acomplex immune response.

Discussion

Our dictionary of in vivo immune responses to cytokines enabled a
high-resolution view of the cytokine network, which showed that the
complexity of cytokine responses and plasticity of immune cells are
much greater than previously appreciated. Even a single cytokine,
such asIL-1B, can trigger distinct responses in each cell type to create
a coordinated multicellular immune response. Extending early dis-
coveries of macrophage polarization, we systematically identified
cytokine-induced polarization statesineachimmune cell type, thereby
highlighting the general property of immune cells in their plastic
responses to environmental cues. We created cytokine response and
cytokine-receptor expression maps and used themto derive acell-cell
interactome thatillustrated diverse ways thatimmune cells caninteract
with one another and the role of rare cell types in immune cell-cell
communication. Finally, we introduced IREA, a method for inferring
cytokine activities,immune cell polarization and cell-cell communica-
tion networks in any immune process for which gene expression data
have been collected. Note that because the dictionary was collected
atsingle-cell resolution, one can easily re-analyse the responses in any
cellsubpopulation of interest. Future directions include studying dif-
ferent cytokine doses, times, biological contexts and combinations of
stimuli. Insummary, our study created a systematic cell-type-specific
dictionary of cytokine responses, providing new insights into cytokine
functions and a basis for inferring cell-cell communication networks
inany immune response.
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Methods

Cytokine injection
Alist of the cytokines studied and their alternative names are shown
inFig.1d and Supplementary Table 1. We selected 86 cytokines repre-
senting most members of major cytokine families, including the fol-
lowing families: IL-1 (IL-1«, IL-1f, IL-1Ra, IL-18, IL-33, IL-36x and IL-36Ra);
common y-chain/IL-13/TSLP (IL-2, IL-4, IL-13, IL-7, TSLP, IL-9, IL-15 and
IL-21); common B-chain (GM-CSF, IL-3 and IL-5); IL-6/IL-12 (IL-6, IL-11,
IL-27, IL-30, IL-31, LIF, OSM, CT-1, NP, IL-12, IL-23 and IL-Y); IL-10 (IL-10,
IL-19, IL-20, IL-22 and IL-24); IL-17 (IL-17A, IL-17B, IL-17C, IL-17D, IL-17E,
IL-17F); interferon (type I: IFNad, IFNB, IFNe and IFNk; type II: IFNy;
and type IlI: IFNA2); TNF (LTal/p2, LTa2/31, TNF, OX40L, CD40L, FasL,
CD27L, CD30L, 4-1BBL, TRAIL, RANKL, TWEAK, APRIL, BAFF, LIGHT,
TL1A and GITRL); complement (C3a and C5a); growth factor (FLT3L,
IL-34, M-CSF, G-CSF, SCF, EGF, VEGF, FGF3, HGF and IGF-1). Representa-
tive cytokines (TGFB1, GDNF, persephin (PSPN), prolactin (PRL), leptin,
adiponectin (AdipoQ), resistin (ADSF), noggin, decorin and throm-
bopoietin (TPO)) from other protein families were also included.
Every recombinant mouse cytokine was obtained from at least two
separate orders. The endotoxin level was <0.1 ng pg ™ of protein for
every cytokine per the information from the vendors (Peprotech and
R&D). To preserve cytokine activities, carrier-free cytokines were
freshly reconstituted according to the manufacturer’s instructions,
stored at4 °Cinsterile conditions and used within 28 h after reconsti-
tution. For each cytokine, 5 pg in 100 pl sterile PBS was injected into
each animal. Wild-type female C57BL/6 mice were purchased fromthe
Jackson Laboratory and used in studies as 11-15-week-old young adults
afterresting for atleast 1 week in the facility. Mice were maintained on
al2-hlight-dark cycle at room temperature (21 + 2 °C) and 40 +10%
humidity. Cytokines were injected under the skin (50% subcutaneous,
50% intradermal) bilaterally in the abdominal flank of each mouse.
Bilateral skin-draining inguinal lymph nodes were collected 4 h after
injection at 6:00-8:00 and pooled for downstream processing. For
each of the 86 cytokines, replicate experiments were performed in
threeindependent C57BL/6 mice to ensure reproducibility. Asa control,
PBSalone wasinjected into mice for each experimental batch, totalling
14 PBS-injected mice. All experiments were reviewed and approved by
the Broad Institute’s Institutional Animal Care and Use Committee.

Data generation quality assurance

Allsamples were processed using an optimized experimental pipeline
to ensure quality. In particular, batch effects that arise from experi-
ments performed on different days are known to be amajor source of
artefactintranscriptomic studies. Therefore, batch-to-batch consist-
ency was strictly experimentally ensured and then computationally
verified. Specifically, the mice were ordered from the same batch and
housed inthe same environment. Animals were randomly allocated to
the experimental groups. Lymph nodes were collected at 6:00-8:00
in all experiments to exclude the impact of circadian clocks on tran-
scriptomic profiles. Samples were processed freshin every experiment
and were kept on ice during processing whenever possible. The same
researchers performed the same steps of the sample processing and
sequencing pipeline following the same, highly optimized procedures.
Theinvestigators performing animal experiments and RNA sequencing
were blinded from each other during data collection. The number of
batches was minimized whenever possible. The three replicated mice
for each cytokine were processed in different batches to ensure that
batch effects, if any, would not influence biological interpretations.
All samples were sequenced on two sequencing runs, with the first
sequencing run containing the first set of replicates and the second
containing the second and third set of replicates. PBS controls were
included in every batch to ensure comparability, and transcriptomic
profiles of PBS samples from different batches were computation-
ally compared to verify batch-to-batch consistency (Extended Data

Fig. 2a). In brief, Euclidean distances were calculated for each pair of
PBS-treated cells of the same cell type based on the entire transcriptome
to ensure that the within-batch distances and between-batch distances
were comparable.

Lymph node dissociation and cell sorting for scRNA-seq
experiments

Anoptimized pipeline for viable cell recovery and more balanced cell-
type representation was used to process lymph nodes for scRNA-seq.
Lymph nodes were enzymatically digested using a protocol that
maximizes the recovery of myeloid and stromal cells while maintain-
ing high viability*°. In brief, lymph nodes were placed in RPMI with
collagenase IV, dispase and Dnase I at 37 °C, and cells were collected
once they were detached. The cells were then immediately placed
onice and washed with PBS supplemented with 2 mM EDTA and 0.5%
biotin-free BSA, then filtered througha 70 pm cell strainer. Cells were
incubated with Fc blocking antibodies 4 °C, then with a biotinylated
anti-CD3 and anti-CD19 antibody cocktail. Antibodies were used at a
dilution of 1:100. Streptavidin microbeads were then added and the
cells were magnetically sorted using MACS MS columns according
to the manufacturer’s protocol (Miltenyi Biotec). After cell sorting,
asmallfraction of the CD3" or CD19" cells was pooled with CD3"CD19~
cellsfor morebalanced representation of all cell types and proceeded
immediately to scRNA-seq.

sCRNA-seq

Cell hashing was used to combine multiple samples into the same
single-cell emulsion channel*. The mouse cells obtained from dif-
ferent stimulation conditions were stained with TotalSeq antibodies
(BioLegend anti-mouse hashtags 1-8; used at 1:100 dilution), washed 5
timesat4 °Cand pooled in PBS with 0.04% BSA according to the manu-
facturer’s protocol. Next, 55,000 cells were loaded onto a10x Genomics
Chromiuminstrument (10x Genomics) according to the manufacturer’s
instructions. The scRNA-seq libraries were processed usinga Chromium
Single Cell 3’ Library & Gel Bead v3 kit (10x Genomics) with modifica-
tions for generating hashtag libraries*. Quality control for amplified
cDNA libraries and final sequencing libraries was performed using a
Bioanalyzer High Sensitivity DNA kit (Agilent). scRNA-seq and hash-
inglibraries were normalized to 4 nM concentration and pooled. The
pooledlibraries were paired-end sequenced on aNovaSeq S4 platform
targeting an average sequencing depth of 20,000 reads per cell for
gene expression libraries, and on aNovaSeq S4 or SP platform target-
ing 5,000 reads per cell for hashtag libraries.

scRNA-seq data pre-processing
The raw bcl sequencing data were processed using the CellRanger
(v.3.0) Gene Expression pipeline (10x Genomics), including demulti-
plexing and alignment. Sequencing reads were aligned to the mm10
mouse reference genome, and transcriptomic count matrices were
assembled. Hashtag library FASTQ files were processed using the
CITE-seq-Count tool (v.1.4.3; github.com/Hoohm/CITE-seq-Count).
Gene expressionand hashtag were matched using the MULTIseqDemux
function of the Seurat R package (v.4.1)*2. Cells with multiple hashtags
were considered multiplets (for example, doublets or triplets) and
were excluded from further analysis. The Seurat R pipeline was used to
perform quality control to include only cells with>500 genes, >1,000
unique molecularidentifiers and <10% mitochondrial gene content. The
expression matrix was globally scaled by normalizing the gene expres-
sion measurements by the total expression per cell. The resulting values
were multiplied by ascale factor of10,000 and natural log-transformed.
For the initial global analysis of all cells, the top 3,000 variable
genes were selected for dimensionality reduction analysis. Princi-
pal component analysis (PCA) was then used to denoise and to find
alower-dimensional representation of the data. The top 75 principal
components (PCs) were used for global clustering and for visualization
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usingat-SNE map*. Clusters were identified using the Louvain cluster-
ing algorithm. This step resulted in a total of 61 non-singleton global
(level 1) clusters (Extended Data Fig.1d). We removed potential multi-
plets by removing the cells with the top 2% gene countsin each cluster.
Asdifferent cell types have variationsin the numbers of genes detected
onaverage, this stepwas done at the cluster level rather than for all data.
For each level 1 cluster of cells, we then performed another round of
clustering (level 2) to further verify the identity of each cluster and to
remove potential doublets. This step resulted in a total of 183 global
level 2 clusters. The cell-typeidentity of each level 2 cluster was assigned
onthebasis of the expression of 115 known marker genes (Supplemen-
tary Table 2). Clusters enriched for marker genes of multiple cell types
were considered multiplets and removed. The top DEGs between each
cell type and others are listed in Supplementary Table 2.

Quantitative measures of reproducibility across animal
replicates

A gene expression vector for each biological replicate was created for
each cytokine stimulation condition in a given cell type by taking the
difference between the average expression vector of cytokine-treated
cells and the average expression vector of PBS-treated cells. Genes
were included if they were significantly differentially expressed
(FDR < 0.05and absolute log,(FC) > 0.25) compared with PBS controls
and were expressed in >10% of cytokine-treated cells for upregulated
genes or >10% of PBS-treated cells for downregulated genes. Rps, Rpl,
mitochondrial genes and unlabelled genes were excluded. Pairwise
Pearson correlation coefficients were then calculated for these vectors
(Extended DataFig. 2b).

Assessment of access to injected cytokines by each lymph node
celltype

To determine whether the injected cytokines can be accessed by each
cell type in the draining lymph nodes, we examined ISG expression
levels in cells treated with IFNal or IFNJ (IFNal/IFN() or PBS for each
celltype. Type linterferon was chosen for this analysis given its strong
induction of antiviral programmesin awide range of cell types. A maxi-
mum of 100 cells were sampled from each condition. ISG scores were
obtained by summing the normalized expressions of ISGsin each cell.
These scores were then used to predict whether each cell was treated
with IFNa1/IFN or PBS, and the accuracy of the prediction was rep-
resented as receiver operating characteristics curves (Extended Data
Fig.2c). TheISGs were obtained from the MSigDB hallmark gene set.

Differential gene expression analysis

Analyses of DEGs were performed to identify marker genes for cell clus-
ters or cytokine-responsive genes. Analyses of DEGs were performed
between two groups of cells using the two-sided Wilcoxon rank-sum
test on normalized gene expression values. The P values obtained from
the tests were then adjusted (Bonferroni or FDR) to address multiple
testing. Genes were considered DEGs in the cytokine signature if they
had FDR < 0.05and absolute log,(FC) > 0.25between cytokine-treated
and PBS-treated cells of the same cell type, were expressed in >10% of
cytokine-treated cells for upregulated genes or >10% of PBS-treated
cells for downregulated genes, and satisfied the FC threshold for at
least two out of the three mice (to mitigate the influence of potential
single-mouse outliers). Rps, Rpl, mitochondrial genes and unlabelled
genes were excluded from the signatures. Cell-type-specific cytokine
signatures are listed for all major cell types in Supplementary Table 3.

Quantification of overall magnitude of transcriptomic
responses to each cytokinein each cell type

We constructed aglobal reference map that quantified the overall gene
expression changesinduced by each cytokinein each cell type (Fig.1d).
This maps takes into account two metrics: the number of DEGs and the
magnitude of change across the entire transcriptome. The number

of DEGs is the total number of genes in each cytokine signature. The
overall magnitude of cytokine-induced differential expression was
computed as the Euclidean distance between the centroid vectors of
cytokine-treated cells and PBS-treated cells. This value was normalized
to a scale ranging from O (low) to 100 (high). To reduce the impact of
outliersin the normalization process, winsorization was applied such
that values above the 95th percentile were replaced with values at the
95th percentile before normalization. A maximum of 100 cells from
each cytokine treatment condition were sampled for each cell type for
the magnitude calculation. A distinct colour ramp was used for each
cell type to emphasize that cell types have different properties (for
example, different number of genes expressed on average) and were
independently analysed. Cytokine-cell type combinations with five
or more cells sampled were included in this analysis.

Identification of GPs per cytokine treatment and per cell type
GP analysis was used to identify co-regulated genes for each cytokine
treatment across cell types (Fig. 2c and Supplementary Fig. 1) or for
each celltypeacrossalltreatment conditions (Extended Data Figs. 5i,j,
6i,j,7i,jand 8i,jand Supplementary Figs. 2i,j, 3i,j, 4i,j, 5i,j, 6i,j, 7i,j, 8i,j,
9i,j,10i,j and 11i,j). GPs were constructed using the non-negative matrix
factorization (NMF) algorithm** using the R package NMFN (v.2.0). We
removed genes associated with tissue dissociation* and the cell cycle,
aswell asmitochondrial genes, Rps and Rp/, unlabelled genes, globally
overabundant genes and those expressed in fewer than ten cells.

In the cytokine-centric analysis, NMF was used to identify cell-
type-specific GPs in response to each cytokine. Cells treated with the
specified cytokines or PBS were used for NMF, with a maximum of
100 cells per cell type per condition. NMF was run separately for each
cytokine in this analysis, except that IFNal and IFNf were processed
together and IL-1a and IL-1f3 were processed together in Fig. 2c and
Supplementary Table 5. We identified 40 GPs per cytokine treatment,
with some predominantly correspondingto cell-typeidentity and oth-
ers predominantly to cellular responses to cytokine stimulation. To
quantitatively identify GPs predominantly corresponding to cellular
responsesto cytokine stimulation, atwo-sided Wilcoxon rank-sum test
was used to identify GPs with weights that were significantly different
between the cytokine-treated cells and PBS-treated cells. GPs show-
ing significant upregulation in any cell types were displayed. The top
30 genes with the highest weights for each GP were used to identify
enriched biological processes using clusterProfiler (v.4.2.1)* on the
Hallmark gene sets from the MSigDB database*. Genes highlightedin
the text for biological significance satisfied two criteria: (1) they were
among the top 30 highest-weighted genes for a significantly upregu-
lated GP in response to cytokines; and (2) the genes individually also
showed significant upregulation in response to cytokines in the DEG
analysis of cytokine signatures.

Inthe cell-type-centric analysis, NMF was used to analyse GPs of each
celltype across all cytokine treatment conditions to identify cytokines
that induce similar cellular processes. We identified ten GPs for each
celltype and visualized the relationship between GPs and subclusters
for each cell type using heatmaps in Extended Data Fig. 5-8 and Sup-
plementary Figs. 2-11. The top genes with the highest weights for each
GP are shown in Extended Data Figs. 5j, 6j, 7j and 8j, Supplementary
Figs. 2j, 3j,4j, 5j, 6j, 7j, 8j, 9j,10j and 11j and Supplementary Table 8.

Analysis of secondary responses toinduced IFNy
ThelFNy-induced gene expression signature was used to infer the level
of cellular responses to cytokine-induced IFNy. The IFNysignature score
foreach celltype was constructed by summing the expressions of signif-
icantly overexpressed genes in IFNy-treated cells relative to PBS-treated
cells (FDR-adjusted P < 0.001and log,(FC) > 1) inthe corresponding cell
type. The log,(FC) of the signature scores and FDR-adjusted P value
relative to PBS-treated cells were calculated for every cytokine treat-
ment and shown in Extended Data Fig. 4e.



Identification of cellular polarization states

Toidentify cellular polarization states induced by cytokines, subclus-
tering was performed for cells of each cell type. For heterogeneous cell
types (for example, macrophage, MigDCand yS T cell), the most abun-
danthomogeneous subset was analysed to identify cytokine-induced
statesinstead of re-deriving cell subsetsin the polarization state analy-
sis. We used PCs to subcluster on the basis of discriminating genes,
defined as genes with a large absolute log,(FC) (between 0.75 and 1.5
depending on cell type) in any cytokine-treated cells compared with
PBS-treated cells. We removed genes associated with tissue dissocia-
tion* and the cell cycle, as well as mitochondrial genes and Rps and
Rpl. We then performed PCA and visualized the cells using UMAP*%,
The proportion of cells falling into each cluster was calculated for each
cytokine or PBS control. Major polarization states were identified on
basis of two criteria: (1) cell clusters with significantly (FDR-adjusted
P <0.01) more thanthe expected number of cytokine-stimulated cells
using a hypergeometric test; and (2) manual verification of biological
relevance of the highly expressed genes or GPs in the subcluster and
cytokines inducing the changes. To find discriminating markers and
biological functions of each state, we analysed DEGs and co-regulated
GPs per state relative to all other cells for the cell type. DEGs were
identified using the two-sided Wilcoxon rank-sum test between each
polarization state and other cells of the same cell type. The signifi-
cantly overexpressed genes with the largest log,(FC) are shown. The
moststrongly polarized states are summarized in Fig. 3. The complete
landscape, including less-strongly polarized states, in each cell type can
befoundinExtended DataFigs.5-8 and Supplementary Figs. 2-11. We
compared the polarization states by calculating the pairwise Pearson
correlation coefficients between the gene expression profiles of each
polarization state after subtracting the profiles of PBS-treated cells of
the same cell type to remove cell-type-specific gene expression. These
results are displayed in Extended DataFigs. 5b, 6b, 7b and 8b and Sup-
plementary Figs. 2b, 3b, 4b, 5b, 6b, 7b, 8b, 9b,10b and 11b.

We assigned a unique identifier to each polarization state using the
following convention: ‘<cell type abbreviation>-<lower case letters>’",
When applicable, the letters a-d were reserved for type I interferon,
type Il interferon, IL-1a and IL-1$3, and TNF, respectively, which are
cytokines that induce polarization states across a large number of
celltypes.

Comparative global view of polarization states across immune
celltypes

To gain a global view of the 66 polarization states across immune cell
types defined in Fig. 3, we used Jaccard similarity index to evaluate
similarity between each pair of cell states (Extended Data Fig. 9). The
gene expression profile of each polarization state was compared with
PBS-treated cells of the same cell type to remove cell-type-specific
gene expression. The genes with an absolute log,(FC) > 0.5 compared
with PBS-treated cells were used to compute the Jaccard similarity
score. Upregulated and downregulated genes were separately calcu-
lated. The rows and columns were hierarchically clustered using the
average-linkage method on the Euclidean distances to identify groups
of similar polarization states. To visualize unique polarization states
with low similarity to other states, the same results were illustrated
using a force-directed network, with a higher circle size indicating a
more unique state, which was calculated on the basis of the inverse of
mean Jaccard similarity value with other states.

Pathway enrichment analysis for NK cells

Toidentifybiological processes enriched for the IL-18-treated NK cells, a
pre-ranked gene list was computed by subtracting average gene expres-
sion values of PBS-treated NK cells from those in IL-18-treated NK cells.
Gene set enrichment analysis was performed using clusterProfiler
(v.4.2.1) onthe gene ontology biological processes gene sets. Gene sets

with aFDR-adjusted P < 0.1are shown. Asacomparison, representative
cytokines from other NK cell polarization states were analysed using
the same method.

Cytokine and cytokine-receptor gene expression maps

A map of cell-type-specific production of cytokines was derived from
our dataset. Cytokine genes expressedin atleast 50 cells were included
in the cytokine expression heatmap. The cells were obtained from
all conditions (PBS or cytokine treated) to provide a map of cytokine
expression under all unstimulated or cytokine stimulation conditions
(thatis, toaccount forinduced expression). The gene expression level
was then normalized relative to the cell type with the maximum expres-
sion level (whereby the maximum level is capped at 1 expression unit
before normalization) to account for the variation in the number of
transcripts produced or detected for each cytokine. A cytokine was
considered expressedinacell typeif more than 0.1 normalized expres-
sion units were detected.

The cytokine-receptor expression map was constructed using the
same approach. This included signalling receptors, decoy receptors
and receptors that form complexes with cytokines. A list of genes
encoding known functional receptors for the 86 studied cytokines
arelistedinSupplementary Table 1. The cytokine expression map and
the cytokine-receptor expressionmap are showninFig.4a, Extended
Data Fig.10c and Supplementary Table 9.

Cell-cellinteractome network construction

A cell-cell interactome network was constructed to chart available
cytokine-mediated cell-cell communication channels. The network
was constructed such that the source and sink nodes are cell types
and intermediate nodes are cytokines. The paths between source
cell-typenodes and sink cell-type nodes through cytokine nodes were
established on the basis of the detectability of the cytokine mRNA in
the cell population (normalized expression > 0.1) and the responsive-
ness of the cell type to the cytokine (more than ten DEGs in the corre-
sponding cytokine signature). For heteromeric cytokines or cytokine
complexes composed of two subunits (IL-12, IL-23, IL-27, LTa1/B2 and
LTa2/P1), the cytokine is shown as expressed and is annotated with
an asterisk if the genes encoding at least one subunit are expressed
as there is evidence of extracellular assembly of some components
into functional cytokines under healthy or pathological conditions®.
The network was plotted separately for each source node for ease of
interpretability.

To construct the ligand-receptor interactome, we identified func-
tional cognate receptors for each cytokine from the literature, which
is listed in Supplementary Table 1. For a receptor to be considered
expressedina cell type, the normalized expression value of the recep-
tor gene needed to be greater than a cut-off threshold (default of 0.1
expression unit). For heteromeric receptors, allcomponents needed to
be expressed for the receptor to be considered expressed. For cytokines
with more than one functional receptor, the receptor was considered
expressedifany functional receptors are expressed. We then connected
the cytokines with the cell types expressing the cognate receptors.
The cytokine production portion of the interactome is the same as
the onein the ligand-response interactome. The ligand-response
and ligand-receptor networks were then compared to generate the
cell-cell communication paths that are common or different between
these two approaches.

IREA for cytokine response analysis

We offer two types of IREA analysis options to assess cytokine responses
inauser’s data depending on the input, which can be agene set or a
gene expression matrix. The cell type in the user data is specified by
theuser. User data are then compared with the transcriptional cytokine
responses of the same cell type from the Immune Dictionary using the
following methods:
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1. For the gene set input, we first find gene set scores by summing the
normalized expression value of allgenesin the gene setin each of the
cytokine-treated cells or PBS-treated cells. Statistical significance is
assessed using atwo-sided Wilcoxon rank-sum test between gene set
scores on cytokine-treated cells and gene set scores on PBS-treated
cells, and an FDR correction is applied to all cytokine calculations.
Enrichment can also be calculated using the hypergeometric test
onsignificant DEGs (FDR < 0.01between cytokine-treated cellsand
PBS-treated cells), amethod commonly used in pathway analyses.

2. For the gene expression matrix input, the expression matrices are
first normalized such that the total expression per cell sums to
10,000 units; the expressionis then log-transformed. Genes giving
significant contribution to the enrichment score, with the default
being those having an average of more than 0.25 expression values,
were included. Next, the projection score is calculated by finding
the cosine similarity score between user inputand cytokine-treated
or PBS-treated cells. Statistical significance is assessed using a
two-sided Wilcoxon rank-sum test between projection scores on
cytokine-treated cells and projection scores on PBS-treated cells,
and an FDR correction is applied to all cytokine calculations. The
effect size is the mean difference between projection scores on
cytokine-treated cells and on PBS-treated cells. The effect size and
FDR-adjusted P value for each of the 86 cytokines can thenbe visual-
ized usingacompass plot showninFig.5d. Conceptually, this method
takesinto consideration the direction and magnitude of expression
of each gene. That is, a strongly upregulated gene in both the user
dataset and Immune Dictionary reference dataset is given a high
weight thatincreases the overall likelihood of enrichment; a strongly
upregulated gene in one dataset but not the other is given lower
weight; and agene thatisupregulatedin one dataset butdownregu-
lated inthe other is given negative weight that decreases the overall
likelihood of enrichment. The genes contributing the highest weights
totheenrichment canbe visualized using a diverging bar plot shown
inExtended Data Fig.12b.

IREA for cellular polarization analysis

IREA polarization analysis implements the same statistical test as the
IREA cytokine response analysis. In IREA polarization, user data are
compared with the polarization state gene expression profiles. A polar-
ized radar plotis shownif at least one cellular polarization state is sig-
nificantly enriched (FDR-adjusted P < 0.05). If no state is significantly
enriched, the radar plot shows anenrichment score of O for every state,
which signifies that the input cells are unpolarized. The enrichment
score is normalized to be between 0 and 1 on the radar plot.

IREA for cell-cell communication network construction

We constructed models of cell-cell communication networks by taking
into account cytokine production and cytokine response. Cytokine
production was obtained by examining the transcripts mapped to
each of the 86 cytokines. The cytokine response was assessed using
IREA, and cytokines with IREA output of FDR < 0.01 were included.
For heteromeric cytokines or cytokine complexes composed of two
subunits, the cytokine was displayed as expressed if at least one subunit
isexpressed asthere is evidence of extracellular assembly of some com-
ponentsinto functional cytokines* (same method as for the cell-cell
interactome). Cytokine networks can be visualized as shownin Fig. 5e
and Extended Data Fig. 12c.

IREA analysis of mouse tumour scRNA-seq data

The scRNA-seq data were downloaded as 10x Genomics data files®.
Datawere processed using the same approach as described above but
with aminor modification, whereby 40 PCs were used for downstream
analysis. Cell types were annotated as shown in the publication®. The
IREA analysis was done between anti-PD-1treatment and controls for
each cell type using the transcriptome-wide approach with default

parameters. A receptor expression threshold of 0.05 was applied to
produce the datain the receptorringinthe cytokine enrichment plot.

IREA analysis of human COVID-19 blood scRNA-seq data

The scRNA-seq data were downloaded as a Seurat object from the
human COVID-19 blood study®. Cluster annotations were used as
defined in the Seurat object. IREA analysis was performed using data
from ventilated patients with COVID-19 and compared with healthy
individuals for each cell type using the transcriptome-wide approach
with default parameters and species specified as human. IREA imple-
ments mouse and humanhomologue gene conversion using the most
recent release of the National Center for Biotechnology Information
HomoloGene database (release 68). A receptor expression thresh-
old of 0.05 was applied to produce the datain the receptor ring in the
compass plot.

Statistical analysis

The statistical tests used are described for each analysis in the corre-
sponding text. Two-sided statistical tests were used unless otherwise
specified. FDR or Bonferroni adjustments were made for the analyses
for which multiple hypothesis testing applies.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The Immune Dictionary interactive web portal can be accessed at
www.immune-dictionary.org, where the single-cell transcriptomic
data generated in this study are made publicly available through a
user-friendly interface. Raw fastq files of the data are available from
the Gene Expression Omnibus (GEO) database under accession number
GSE202186.Source tables are included for every figure and extended
datafigure at appropriate locations in the article. In addition, the fol-
lowing publicly available datasets were used: the MSigDB database was
used for annotating biological processes and can be accessed at www.
gsea-msigdb.org/gsea/msigdb; mouse and human homologue gene
conversionwasbased on the National Center for Biotechnology Infor-
mationHomoloGene database (release 68); the mouse tumour dataset
is available from the GEO under accession number GSE119352; and
the human COVID-19 dataset is available at www.covid19cellatlas.org.
Source data are provided with this paper.

Code availability
IREA is available at www.immune-dictionary.org.
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Extended DataFig.1|See next page for caption.



Extended DataFig.1|scRNA-seqdatasummary and quality metrics.

a, Violin plots showing the distributions of percentage of mitochondrial gene
content (top), number of genes detected (middle), and number of unique
molecularidentifiers (UMIs) detected (bottom) per cell post-quality control
across cytokine or PBS treatment conditions. The interquartile range is shown
asawhiteboxinsideeachviolin plot.n=386,703 independent cells over 272
independent mice (3 mice per cytokine and 14 mice for PBS control). b, Two-
dimensional t-SNE visualization of all cells (following the coordinates in Fig. 1b),
colored by any cytokine treatment (pink) or PBS control (blue). ¢, Contour plot
ofthet-SNEmap inb.d, t-SNE visualization of all cells, colored by level-1Louvain

clustersidentified from global clustering. The dominant cell type associated
witheachclusterisindicatedinthe accompanyingtable. Each cluster is further
dividedintolevel-2 clusters torefine cell type identification (Supplementary
Table 2). e, Dot plot showing the scaled average expression of cell type marker
genes and percentage of cells expressing the genesin each annotated cell type.
f, Celltype compositionin each treatment. g, Changesinthefractionofnon-B,
non-Timmune cell types after cytokine treatmentrelative to PBS controls.
*denotes P-value < 0.05, one-sided Wilcoxon rank-sum test with FDR adjustment.
Only CD3-and CD19-immune cells are shown as these cell types are not
influenced by the cell sorting strategy used.
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Extended DataFig.2|Additional scRNA-seq data quality metrics. node celltype toaccesstheinjected cytokines, IFN-o/f responsesin eachcell
a, Distributions of Euclidean distances between individual PBS-treated cells typeareshown. At thesingle-celllevel, ISG scores can accurately classify
based ontheir transcriptomic profiles, colored by whether cellscompared are IFN-o/B-treated cells vs. PBS-treated cells based on areas under receiver
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batches. b, Pearson correlation coefficients between cytokine-induced gene the vast majority of the cells can access theinjected cytokines. ISG expression

expression signatures obtained from different animal replicates, usingcDClas  ineachcellisshownasindividual dotsand violin plots on the left side, and the
arepresentative example. c, Asa positive control for the ability of each lymph classificationaccuracyis shownasROC curves on theright side.
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Extended DataFig.3|Cell type-specific gene expression changesinduced
byIFN-al, IFN-B, IFN-k, IFN-y, IL-1«, IL-1B, IL-18, IL-36«, IL-2, IL-4, IL-7,IL-15,
IL-3, GM-CSF, and TNF-a. a, Gene expression heatmapsillustrating top genes
upregulated by cytokine treatment compared to PBS treatment in any of the
celltypes shown. Allgenes shown have atleastlog,FC >0.3and FDR< 0.05in
oneormorecell types. Color gradientindicates average log,FC relative to PBS
treatment of the same cell type. Genes expressed in fewer than10% of cells in

both cytokine and PBS treatment conditions are denoted as no change.

b, Percentage of upregulated DEGs exclusive to asingle cell type (green) or
sharedamongtwo or more cell types (other colors) after cytokine treatment
atvarious DEG cutoff thresholds. Eachbox shows a differentlog,FCand FDR
threshold for defining DEGs. This is an extension of the analysis in Fig. 2b,
showing consistency of the cell type-specific effectsirrespective of DEG cutoffs.
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Examples of cell type-specific genes regulated by IL-10/B treatment that are not explained by responses to the other cytokines studied
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Examples of cell type-specific genes regulated by IFN-a1/8 treatment that are not explained by responses to the other cytokines studied
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Extended DataFig. 4 |See next page for caption.




Extended DataFig. 4 |Cell type-specificresponsestoacytokinecanbe
exclusive to the cytokine or canbe attributed to secondary effects from
induced cytokines. a-b, Examples of cell type-specific responses to acytokine
thatarenotobservedintheresponsestothe other cytokinesstudied.a, Examples
of celltype-specificgeneregulationinresponse to IL-1a/B and exclusively to
IL-10t/B. Left, Heatmaps showing differential expression of IL-1a/B-regulated
genesrelative to PBS treatment per cell type, highlighting cell type-specific
responses to the same cytokines. Threeindependent mice for each cytokine
treatment are showninadjacent columns. Right, for the IL-1a/B-induced cell
type-specific DEGs in the heatmaps, the plots show whether they can be induced
by any other of the 86 cytokine stimulations. Color of square, log, fold change
ineach cytokine treatmentrelative to PBS; size of square, -log,, transformed
FDR-adjusted P-value obtained from two-sided Wilcoxon rank-sum test. Results
withFDR<0.05and log,FC > 0.5areshown. IL-1a/B treatments are highlighted
ingray. Celltypesincolumnsontheleftand rows on theright follow the same
color code. Note thatbothIL-36a and IL-1a/f are proinflammatory cytokines in
thelIL-1cytokine family. b, Examples of cell type-specific generegulationin
responseto IFN-al/f and exclusively to IFN-a1/f; following the same visualization
asina.NotethatbothIFN-kand IFN-a1/B are typelinterferonsand share

receptors. c-e, Examples of cell type-specific responses to acytokine that can
beattributed to secondary effects frominduced cytokines. c, Heatmaps
showing DEGsinresponse toIL-2,IL-12,IL-15,IL-18 relative to PBS treatment,
highlighting different responsesto the same cytokine in NK cells vs. other cell
types.Heatmap for IFN-y treatmentisincluded as acomparison. Stat1is known
toberegulated by IFN-ysignaling.d, Violin plot showing /fng gene expression
inNK cells after each of the 86 cytokine treatments or PBS treatment. Samples
withahigh expression (>0.8 normalized expression units) are colored dark blue.
e, Induction of IFN-y signatures across cell types after each cytokine treatment.
ThelFN-ysignatureis obtained for each cell type from the IFN-y treatment.
Expression of the signature is obtained from summing normalized expression
units of allgenesin the signature for each cell type. Significant (FDR < 0.01)
responses are shown as squares, with color gradient representing average
log,FCineach cytokine treatment relative to PBS (capped at 50), and size
representing -log,, transformed FDR-adjusted P-value obtained from two-sided
Wilcoxon rank-sum test. Cytokinesinducing a high expression of Ifng are
highlightedingrayindand e.dand eare vertically aligned toillustrate that

the cytokine treatmentsinducing an upregulation of [fngin NK cells display
astrongIFN-ysignature in other cell types.
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Extended DataFig. 5|See next page for caption.




Extended DataFig.5|B cellresponsesto cytokines: polarizationstates,
subclusters, marker gene expression, and gene programs. a, Top, UMAP
visualization of B cells for all cytokines, colored by polarization states; bottom,
table with cell type polarization states (left column), single cytokine drivers
(middle column), and top marker genes (right column); reproduced from Fig.3
forease of reference. b, Pairwise Pearson correlation coefficients between
polarization states. ¢, UMAP visualization of B cellsshown independently for
each cytokine treatment, colored by cytokine treatment (blue) or PBS treatment
control (gray).d, UMAP visualization of B cells for all cytokine or PBS treatment;
cellscolored for B cell Louvain subclusters. e, Top overexpressed genesin each
Louvainsubclusterind; color, column-scaled average expression; size of circle,
percentage of cellsin the subcluster expressing each gene. f-i, B cell responses

to each cytokine stimulation. f, Fraction of cells per subcluster in each cytokine
treatment. Colorsrepresent subclusters definedind. g, Enrichment of each
subclusterin each cytokine treatment; size of circle, Bonferroni-adjusted P-value
of hypergeometric test relative to PBS; blackfills, P< 0.01. h, Row-normalized
relative expression of representative marker genes of each polarization statein
cytokine-treated vs. PBS-treated cells. i, Enrichment of B cellgene programs
obtained from NMF analysis of all B cellsin cytokine-treated cells relative to
PBS-treated cells; size of circle, FDR-adjusted P-value from two-sided Wilcoxon
rank-sum test; shade, effect size representing the mean differencein gene
programweight. j, Top weighted genesineach gene programini.k, Average
gene programweightineach subcluster. Rows and columns were hierarchically
clustered using the complete-linkage method on Euclidean distances.
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Extended DataFig. 6 |NK cell responses to cytokines: polarizationstates,
subclusters, marker gene expression, and gene programs. a, Top, UMAP
visualization of NK cells for all cytokines, colored by polarization states; bottom,
table with cell type polarization states (left column), single cytokine drivers
(middle column), and top marker genes (right column); reproduced from Fig.3
forease of reference. b, Pairwise Pearson correlation coefficients between
polarization states. ¢, UMAP visualization of NK cells shown independently for
each cytokine treatment, colored by cytokine treatment (blue) or PBS treatment
control (gray).d, UMAP visualization of NK cells for all cytokine or PBS treatment;
cellscolored for NK cell Louvain subclusters. e, Top overexpressed genesin
each Louvainsubclusterind; color, column-scaled average expression; size of
circle, percentage of cellsin the subcluster expressing each gene. f-i, NK cell
responses to each cytokine stimulation. f, Fraction of cells per subclusterineach

cytokine treatment. Colorsrepresent subclusters definedind. g, Enrichment
of each subclusterin each cytokine treatment; size of circle, Bonferroni-
adjusted P-value of hypergeometric test relative to PBS; black fills, P < 0.01.

h, Row-normalized relative expression of representative marker genes of

each polarizationstatein cytokine-treated vs. PBS-treated cells. i, Enrichment
of NK cellgene programs obtained from NMF analysis of all NK cells in cytokine-
treated cells relative to PBS-treated cells; size of circle, FDR-adjusted P-value
from two-sided Wilcoxon rank-sum test; shade, effect size representing the mean
differenceingene program weight. j, Top weighted genesin each gene program
ini.k, Average gene program weightin each subcluster. Rows and columns
were hierarchically clustered using the complete-linkage method on Euclidean
distances.
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Extended DataFig.7|cDClresponses to cytokines: polarizationstates,
subclusters, marker gene expression, and gene programs. a, Top, UMAP
visualization of cDC1cells for all cytokines, colored by polarization states;
bottom, table with cell type polarization states (left column), single cytokine
drivers (middle column), and top marker genes (right column); reproduced
fromFig.3for ease of reference. b, Pairwise Pearson correlation coefficients
between polarization states. c, UMAP visualization of cDC1 cellsshown
independently for each cytokine treatment, colored by cytokine treatment
(blue) or PBS treatment control (gray). d, UMAP visualization of cDC1 cells
for all cytokine or PBS treatment; cells colored for cDC1 Louvain subclusters.
e, Top overexpressed genesin each Louvain subcluster ind; color, column-
scaled average expression; size of circle, percentage of cellsin the subcluster
expressing each gene. f-i, cDClresponses to each cytokine stimulation.

f, Fraction of cells per subcluster ineach cytokine treatment. Colors represent
subclusters definedind. g, Enrichment of each subclusterineach cytokine
treatment; size of circle, Bonferroni-adjusted P-value of hypergeometric test
relative to PBS; blackfills, P < 0.01. h, Row-normalized relative expression of
representative marker genes of each polarizationstatein cytokine-treated vs.
PBS-treated cells. i, Enrichment of cDC1gene programs obtained from NMF
analysis of allcDCl cellsin cytokine-treated cellsrelative to PBS-treated cells;
size of circle, FDR-adjusted P-value from two-sided Wilcoxon rank-sum test;
shade, effect size representing the mean difference in gene program weight.
Jj. Topweighted genesineachgene programini.k, Average gene program
weightineach subcluster. Rows and columns were hierarchically clustered
using the complete-linkage method on Euclidean distances.



average
expression

2

1

0
[
Percent
expressed

5
°
T
3
]

® 50
® 100

PBS

©
£
3
=
3
[ ]

it

LIF
b

IL-31
oo

genes in each
1]

IL-30

L-27

Most highly

TNF-a

IL-11

Macrophage

L6
Cytokine stimulation

LT-a1/2 LT-a2/81

GM-CSF

IFN-A2

IFN-y

Rsad2,
Retnla,
e

If7

3
°
3
N
3
S

o5
@
S
Psz
s 3
32
o g
o=
o3
<
3
1%}

Ncl, Prps1

mﬁaﬂ
£ 8
s s
3 g
. 8
IS
L o
x =
3
Sl (S

Correlation
Top marker genes
Chchd10, Girx,
Subcluster

g
2
g
o
8
<
B
s
3
%]
3

Ifit3, Isg15, Ifit2,

Cytokine
drivers
IFN-y;
IL-2,-12,-15,-18
IL-10,-1B,-36a
TNF-a
IL-4,-13

IFN-a1,-B,-€,-k

Pol.
@0 vaca
@® Mach
® Macc
® Macd

Article

uoyoey} (|80
ssisnppgng

000000000000 0|
©00000000000 0|
000000000000 0|
000000000000 0|
000000000000 0|
000000000000 0|
©00000000000 0|
000000000000 0|
©00000000000 0|
000000000000 0|
000000000000 0|
0000000000000
000000000000 0|
0000000000000
000000000000 0|

900000000004
000000000000 0|
0000000000000

0000000000000
0000000000000
©0000000000000|
0000000000000
©000000000000
0000000000000
0000000000000
0000000000000
0000000000000
0000000000000

00000000000 o
000@000800004

uolpejuasaldai-1ano
Jsisnpgng

Effect size
logioP

Weight

Weight

Weight

Weight

Weight

Weight

Weight

Weight

inasg

Weight

GP02

a5 | e—
alr | e—

Man/ | —

Hep:
Hsp90h ] |mumm  Serpi

Weight

GPO1

sauab Joxew pejos|as sweiboid auab abeydoioepy

Extended DataFig. 8 |See next page for caption.



Extended DataFig. 8| Macrophage (Marco+) responsesto cytokines:
polarizationstates, subclusters, marker gene expression, and gene
programs. a, Top, UMAP visualization of Macro+ macrophages for all cytokines,
colored by polarization states; bottom, table with cell type polarization states
(left column), single cytokine drivers (middle column), and top marker genes
(right column); reproduced from Fig. 3 for ease of reference. b, Pairwise Pearson
correlation coefficients between polarization states. c, UMAP visualization of
macrophages shownindependently for each cytokine treatment, colored by
cytokine treatment (blue) or PBS treatment control (gray). d, UMAP visualization
of macrophages for all cytokine or PBS treatment; cells colored for macrophage
Louvainsubclusters. e, Top overexpressed genesin each Louvain subclusterin
d; color, column-scaled average expression; size of circle, percentage of cells
inthe subcluster expressing each gene. f-i, Macrophage responses to each

cytokine stimulation. f, Fraction of cells per subclusterin each cytokine
treatment. Colorsrepresent subclusters definedind. g, Enrichment of each
subclusterin each cytokine treatment; size of circle, Bonferroni-adjusted P-value
of hypergeometric test relative to PBS; blackfills, P< 0.01. h, Row-normalized
relative expression of representative marker genes of each polarization state
incytokine-treated vs. PBS-treated cells. i, Enrichment of macrophage gene
programs obtained from NMF analysis of allmacrophagesin cytokine-treated
cellsrelative to PBS-treated cells; size of circle, FDR-adjusted P-value from
two-sided Wilcoxon rank-sum test; shade, effect size representing the mean
differencein gene program weight.j, Top weighted genesineach gene program
ini.k, Average gene program weightin each subcluster. Rows and columns
were hierarchically clustered using the complete-linkage method on Euclidean
distances.
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Extended DataFig.10|A map of cytokine receptor expressionby cell type
and additional information on the cytokine production map. a, Correlation
between celltype abundance and number of distinct cytokine genes expressed;
added B cellsand T cells (hollow circles) to Fig. 4b. B celland T cellabundances
areestimatesintegrated from literature, all other cell types are obtained from
PBS-treated conditionsinlymph nodes from our dictionary. Smoothed
conditional means and 95% confidence intervals fromafitted linear model are
shown. b, Robustness analysis for Fig. 4b; showing correlations between the
abundanceofeach celltype and the numbers of distinct cytokine genes

expressed inthe cell type under various cutoff thresholds for a cytokine gene
tobe considered expressed. Both Pearson and Spearman correlation coefficients
areshown.c, Amap of cytokine receptor expression by cell type. The map
includes signaling receptors, decoy receptors, as well asreceptors that form
complexes with cytokines. The values are normalized to the maximum expression
ineachrow.d, Expression of cytokine (left) or receptor (right) genesin cDCls
following PBS or cytokine treatment. * represents FDR-adjusted P < 0.05 for
significant change in expression relative to PBS control.
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Extended DataFig.11|A draft network of cytokine-mediated cell-cell
interactome. a, Aninteractome network showing cell-cell communication
potential based on cytokine expressionand theimpact of cytokine on each
celltype. Limebox, source nodes or cell types secreting cytokines; red box,
cytokines mediating the communication; blue box, sink nodes or cell types
responding to cytokines. A pathis established between source and sink cell
typesthroughacytokineifthesource cell type produces the cytokine
(normalized expression > 0.1) and the sink cell type shows a significant
responseto the cytokine (>10 DEGsin the cytokine signatures). Asterisks

indicate heteromeric cytokines or cytokine complexes. Rare cell types,
including basophils, BECs, LECs, and FRCs, were not analyzed for the response,
butwereaggregated across treatment conditions to generate the production
map.b-v, Theinteractome using same conventionsasina plotted separately
by source node for ease of visualization, shown for b, B cell; ¢, CD4+ T cell;
d,CD8+Tcell;e,y5 Tcell; f, Treg; g, NK cell; h,ILC; i, pDC; j,cDC1; k,cDC2;
1,MigDC; m, Langerhans cell; n, eTAC; 0o, macrophage; p, monocyte; g, neutrophil;
r,mast cell; s, basophil; t, BEC; u, LEC; v, FRC.jand vare reproduced from Fig. 4c.
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Extended DataFig.12|IREA software output on mouse tumor samples
following anti-PD-1treatment and on humanblood samplesinsevere
COVID-19. a-c, Additional IREA analyses on mouse tumor samples following
anti-PD-1treatmentrelative to the control. a, IREA radar plots showing
enrichments ofimmune cell polarization states described in Fig. 3. b, Toimprove
theinterpretability of the enrichment scoresinFig. 5d, top genes contributing
tothelL-12 enrichmentin NK cellsare shown. Bar length represents gene
expression fold change; left: changesin gene expressionin NK cellsinresponse
tolIL-12inthe Immune Dictionary; right: changesin gene expressionin NK

cells after anti-PD-1treatment in the tumor dataset (red: upregulated relative
to control; blue: downregulated relative to control). ¢, Inferred cell-cell
communication network mediated by cytokines. The plotonthe topis

reproduced from Fig. Se for ease of reference. Individual cytokine plots
following the same visualization scheme are shownbelow. d, IREA analysis on
peripheral blood cells collected from severe COVID-19 patients relative to
healthy volunteers. Top, IREA compass plot showing enrichment scores for
eachofthe 86 cytokinesin B cells. Bar length represents enrichmentscore,
shaderepresents FDR adjusted P-value (two-sided Wilcoxon rank-sum test),
withdarker colors representing more significantenrichment (red: enrichedin
ventilated COVID-19 patients, blue: enriched in healthy control). Cytokines
withreceptorsexpressedareindicated by black filled boxes. Bottom, IREA radar
plots showing enrichments ofimmune cell polarization statesin monocytes,
Bcells,and CD4+T cells. The reference polarization states are described in Fig. 3.
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dataset is available on GEO under the accession number GSE119352. The human COVID-19 dataset is available on https://www.covid19cellatlas.org.
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Sample size Transcriptomic profiles of 386,703 independent cells were measured from 272 mice. At least 3 independent mice were used for each
condition to allow for standard statistical tests.

Data exclusions  Pre-established quality control criteria were used: we included cell barcodes with >500 genes, >1,000 UMls, and <10% mitochondrial gene
content. Multiplets (more than one cells mapped to the same barcode) that arise from the microfluidics technology were identified based on
the Methods provided and were excluded from downstream analyses.

Replication For each condition, at least 3 independent animals were used. The results were reproducible across animal replicates.

Randomization  Animals of the same sex, age group, and genetic background were randomly allocated to the experimental groups. The animal replicates of
each condition were randomized into different experimental batches to ensure that batch effects, if any, do not influence biological

interpretations.

Blinding The investigators performing animal experiments and RNA-sequencing were blinded from each other during data collection. Single-cell
analysis was performed computationally in a completely unbiased fashion.
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Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z| |:| ChlP-seq
Eukaryotic cell lines |Z| |:| Flow cytometry
Palaeontology and archaeology |Z| |:| MRI-based neuroimaging

Animals and other organisms
Human research participants
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Antibodies

Antibodies used TotalSeq™ anti-mouse hashtag 1-7 antibodies (BioLegend A0301-A0307; clones: M1/42, 30-F11; catalogue numbers: 155801,
155803, 155805, 155807, 155809, 155811, 155813).
Biotin anti-mouse CD19 (BioLegend; clone: 6D5; catalogue number: 115504).
Biotin anti-mouse CD3 (BioLegend; clone: 17A2; catalogue number: 100244).
TruStain fcX™ anti-mouse CD16/32 (Biolegend; clone: 93; catalogue number: 101320).

Validation TotalSeq™ antibodies were validated in Stoeckius, M., et al, Genome Biology (2018).

All antibodies used are commercially available and have been validated by the manufacturer and prior publications. Validation data
are available on BiolLegend's website.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Wild type female C57BL6/) mice at 11-15 weeks were studied. Mice were maintained on a 12-hour light/dark cycle at room
temperature (21°C £ 2°C) and 40% + 10% humidity.




Wild animals No wild animals were used in the study.
Field-collected samples  No field-collected samples were used in the study.

Ethics oversight All experiments were reviewed and approved by the Broad Institute’s Institutional Animal Care and Use Committee (IACUC).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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