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Dictionary of immune responses to 
cytokines at single-cell resolution

Ang Cui1,2,12 ✉, Teddy Huang3, Shuqiang Li2,3, Aileen Ma2,4, Jorge L. Pérez2,4, Chris Sander2,5,6, 
Derin B. Keskin2,3,7, Catherine J. Wu2,7,8, Ernest Fraenkel2,9 & Nir Hacohen2,10,11 ✉

Cytokines mediate cell–cell communication in the immune system and represent 
important therapeutic targets1–3. A myriad of studies have highlighted their central 
role in immune function4–13, yet we lack a global view of the cellular responses of each 
immune cell type to each cytokine. To address this gap, we created the Immune 
Dictionary, a compendium of single-cell transcriptomic profiles of more than 17 
immune cell types in response to each of 86 cytokines (>1,400 cytokine–cell type 
combinations) in mouse lymph nodes in vivo. A cytokine-centric view of the dictionary 
revealed that most cytokines induce highly cell-type-specific responses. For example, 
the inflammatory cytokine interleukin-1β induces distinct gene programmes in almost 
every cell type. A cell-type-centric view of the dictionary identified more than 66 
cytokine-driven cellular polarization states across immune cell types, including 
previously uncharacterized states such as an interleukin-18-induced polyfunctional 
natural killer cell state. Based on this dictionary, we developed companion software, 
Immune Response Enrichment Analysis, for assessing cytokine activities and immune 
cell polarization from gene expression data, and applied it to reveal cytokine networks 
in tumours following immune checkpoint blockade therapy. Our dictionary generates 
new hypotheses for cytokine functions, illuminates pleiotropic effects of cytokines, 
expands our knowledge of activation states of each immune cell type, and provides a 
framework to deduce the roles of specific cytokines and cell–cell communication 
networks in any immune response.

Cytokines are a broad class of small, secreted proteins that act locally 
or systemically by binding to cognate receptors on target cells, which 
in turn trigger downstream signalling and orchestrate activities 
among cell types of the immune system. Cytokine-based therapies 
and cytokine antagonists are used to treat a wide range of disorders, 
including cancer and autoimmunity14. However, the large number 
of immune cell types and cytokines and complex cellular responses 
have made it challenging to elucidate in vivo immune responses to  
cytokines. 

The Immune Dictionary
To obtain a comprehensive view of cellular responses to cytokines, 
we systematically profiled single-cell transcriptomic (single-cell RNA 
sequencing (scRNA-seq)) responses to 86 cytokines across more 
than 17 immune cell types in mouse lymph nodes in vivo to generate a 
large-scale perturbational scRNA-seq dataset of the immune system 
(Fig. 1a). The 86 cytokines represent most members of major cytokine 
families, including interleukin-1 (IL-1), common γ-chain/IL-13/thymic 

stromal lymphopoietin (TSLP), common β-chain, IL-6/IL-12, IL-10, IL-17, 
interferon (types I, II and III), tumour necrosis factor (TNF), comple-
ment and growth factor families, as well as representative molecules 
from other families with cytokine functions (for example, certain hor-
mones) (Methods and Supplementary Table 1).

We injected each freshly reconstituted carrier-free cytokine or 
phosphate buffered saline (PBS; as vehicle control) under the skin of 
the abdominal flank of wild-type C57BL/6 mice (three independent, 
replicate mice per cytokine) in the upper range of previously reported 
bioactive doses (Methods and Supplementary Table 1). We collected 
skin-draining lymph nodes (specialized immune organs that integrate 
signals from surrounding tissues) 4 h after injection, one of the earli-
est time points at which the majority of the transcriptome responds 
to immune stimuli15,16. We then processed the lymph nodes using an 
optimized protocol for viable cell recovery, balanced cell-type repre-
sentation and high-throughput sample multiplexing (Methods). Data 
quality, including batch-to-batch consistency, was strictly experimen-
tally controlled and computationally verified (Methods). Cells were 
profiled using a droplet-based system (10x Genomics) to generate 
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high-quality single-cell transcriptomes for 386,703 cells (Fig. 1b and 
Extended Data Figs. 1 and 2).

After partitioning cells into global clusters, we observed that most 
cells were segregated by cell-type identity rather than stimulation 
conditions (Fig. 1b, Extended Data Fig. 1b and Supplementary Table 2). 
Although cytokine-treated cells did not typically form distinct clusters, 

they were often separated from PBS controls within each cell-type 
cluster (Extended Data Fig. 1b,c). After manual inspection to ensure the 
accuracy of cell-type identification, more than 20 cell types were identi-
fied. These corresponded to B cell, CD4+ T cell, CD8+ T cell, γδ T cell, 
regulatory T (Treg) cell, natural killer (NK) cell, innate lymphoid cell (ILC), 
plasmacytoid dendritic cell (pDC), conventional dendritic cell type 1 

0

2

4

PBS IFNβ

E
xp

re
ss

io
n

0

2

PBS IL-4

E
xp

re
ss

io
n

a

b

d
IL-1β
IL-2   
TNF
IFNβ
…

Administer 86 cytokines
into distinct mice

(3 mice per cytokine) 

Collect draining lymph nodes
at 4 h, enzymatically dissociate,

cell sort and multiplex  

Perform scRNA-seq
experiments
and analyses

Immune Dictionary

17+ immune cell types

86
 c

yt
ok

in
es

e.g. IL-2 signature 
in NK cells

Gene expression
change 

User data

Active cytokines

Companion software

Immune Response
Enrichment Analysis

NK cell Neutrophil

+ IL-1β

G
en

e
p

ro
gr

am
m

es

+ IFNγ + IL-4

Cell types

Il15

Tnf

Csf2

Cytokine responses
in each cell type

Cellular
polarization states

Cytokine
production sources

Cell–cell interaction
networks

c

IL-1

Common β-chain

Common γ-chain/
IL-13/TSLP

IL-6/IL-12

IL-10

IL-17

Interferon

TNF

Complement

Growth
factor

Other

Family

cDC1

B cell

Treg cell
NK cell

Macrophage
(Marco+)

CD8+ T cell

CD4+ T cell

γδ T cell

BEC

LEC

Mast cell

MigDC

Neutrophil
Basophil

Langerhans

pDC

Monocyte

eTAC

n = 386,703 cells

FRC

ILC

TPO
Decorin
Noggin

ADSF
AdipoQ

Leptin
PRL

PSPN
GDNF
TGFβ1
IGF-1
HGF

FGFβ
VEGF

EGF
SCF

G-CSF
M-CSF

IL-34
FLT3L

C5a
C3a

GITRL
TL1A

LIGHT
BAFF

APRIL
TWEAK
RANKL
TRAIL

4-1BBL
CD30L
CD27L

FasL
CD40L
OX40L

TNF
LTα2/β1
LTα1/β2

IFNλ2
IFNγ
IFNκ
IFNε
IFNβ

IFNα1
IL-17F
IL-17E
IL-17D
IL-17C
IL-17B
IL-17A

IL-24
IL-22
IL-20
IL-19
IL-10
IL-Y

IL-23
IL-12

NP
CT-1
OSM

LIF
IL-31
IL-30
IL-27
IL-11
IL-6

GM-CSF
IL-5
IL-3

IL-21
IL-15
IL-9

TSLP
IL-7

IL-13
IL-4
IL-2

IL-36Ra
IL-36α

IL-33
IL-18

IL-1Ra
IL-1β
IL-1α

≥50

40

30

20

≤10

Number of
DEGs in
cytokine
signature

Cytokine

Gzmb in NK cell      

Isg15 in macrophage  

*** 

Tnfaip3 in cDC1

 Il4i1 in B cell 

0

2

4

PBS IL-7

E
xp

re
ss

io
n

0
2
4
6

PBS IL-15

E
xp

re
ss

io
n

0

2

PBS TNF

E
xp

re
ss

io
n

Bcl2 in CD4+ T cell        
*** 

*** 

   *** 

   *** 

B
 c

el
l

C
D

4+
 T

 c
el

l
C

D
8+

 T
 c

el
l

γδ
T 

ce
ll

T r
eg

 c
el

l
N

K
 c

el
l

IL
C

p
D

C
cD

C
1

cD
C

2
M

ig
D

C
La

ng
er

ha
ns

eT
A

C
M

ac
ro

p
ha

ge
M

on
oc

yt
e

N
eu

tr
op

hi
l

M
as

t 
ce

ll

Lymphoid Myeloid

Low

High

Global 
magnitude
of cytokine
response    

t-SNE1

t-
S

N
E

2

Gzmb
Ncl

Eif5a
Npm1
Cycs

Mif

cDC2

cDC1

B cell

Treg cell
NK cell

Macrophage
(Marco+)

Macrophage
(Lyz1+)

CD8+ T cell

CD4+ T cell

γδ T cell

BEC

LEC

Mast cell

MigDC

Neutrophil
Basophil

Langerhans

pDC

Monocyte

eTAC

FRC

ILC

cDC2

Fig. 1 | Generation of a scRNA-seq dictionary of gene expression signatures 
in more than 17 immune cell types in response to each of 86 cytokines in 
vivo. a, Schematic of the experimental and computational workflow. First row, 
data generation procedures; second row, illustration of the Immune Dictionary 
and its companion software IREA; third row, analyses of the Immune Dictionary. 
b, t-distributed stochastic neighbour embedding (t-SNE) map of all cells collected 
from lymph nodes after cytokine stimulation or without stimulation (PBS controls) 
coloured by cell-type identity. Cells were sorted to rebalance frequencies  
of major cell types. c, Violin plots of expression levels of well-established 

cytokine-responsive genes following PBS or cytokine treatment. ***False 
discovery rate (FDR)-adjusted P < 0.001, two-sided Wilcoxon rank-sum test.  
d, Quantitative representation of overall transcriptomic response levels in 
each cell type 4 h after cytokine stimulation compared with PBS controls. Each 
cell type is analysed independently and is represented by a distinct colour, 
following the colour codes in b and c. Colour saturation indicates the magnitude 
of the response. Size indicates the number of genes with significant differential 
expression (absolute log2(fold change (FC)) > 0.25 and FDR-adjusted P < 0.05, 
two-sided Wilcoxon rank-sum test) in each cytokine signature.
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(cDC1), cDC2, migratory DC (MigDC), Langerhans cell17, extrathymic 
Aire-expressing cell (eTAC)18, macrophage (Marco+ or Lyz1+), monocyte, 
neutrophil, mast cell, and a small number of less abundant cell types, 
including basophil, blood endothelial cell (BEC), lymphatic endothelial 
cell (LEC) and fibroblastic reticular cell (FRC) (Fig. 1b and Extended 
Data Fig. 1d,e). The frequencies of most cell types remained stable after 
stimulation, with the notable exception being a significant increase 
in monocyte fractions in lymph nodes after certain cytokine treatments 
(Extended Data Fig. 1f,g). To identify cytokine signatures, we computed 
the significantly differentially expressed genes (DEGs) in response to 
cytokine treatment in each cell type (Methods and Supplementary 
Table 3). We identified an average of 51 DEGs (span of 0–1,510) per 
cytokine–cell type combination, and the majority (72%) of the DEGs 
responding to cytokines were upregulated rather than downregu-
lated. We verified that the transcriptomic signatures were consistent 
across replicate animals (Extended Data Fig. 2b) and that every lymph 
node cell type was able to access the injected cytokines (Extended Data 
Fig. 2c). We also confirmed robust upregulation of well-established 
cytokine-responsive genes, such as Tnfaip3 in response to TNF, Il4i1 
in response to IL-4, and Isg15 and other interferon-stimulated genes 
(ISGs) in response to IFNβ (Fig. 1c and Supplementary Table 3).

To chart the immune cell responses to each cytokine, we created 
a map that quantified the global transcriptomic changes between 
cytokine-treated and PBS-treated cells for each cell type (Fig. 1d and 
Methods). The map captured well-known cellular targets of cytokines, 
such as NK cells responding to IL-2, IL-12, IL-15 and IL-18, and many less 
characterized responses. Certain cytokines, such as IFNα1, IFNβ, IL-1α, 
IL-1β, IL-18, IL-36α, IL-15 and TNF, induced strong changes in gene expres-
sion in nearly all cell types. Some cytokines preferentially targeted one 
lineage (for example, IL-21 affected the lymphoid lineage, whereas IL-3 
affected the myeloid lineage) or a subset of cell types. The transcrip-
tomic responses of each major immune cell type to each major cytokine 
constituted an in vivo dictionary of immune responses, which we term 
the Immune Dictionary.

Cell-type-specific cytokine responses
We performed a cytokine-centric analysis of this dictionary to explore 
how different cell types respond to the same cytokine. Gene expres-
sion heatmaps of top upregulated genes in response to IFNβ, IL-1β 
and TNF revealed that cytokines induced cell-type-specific gene 
expression changes (Fig. 2a). This observation was consistent across 
15 cytokines that induced strong transcriptomic changes in a large 
number of cell types shown in Fig. 1d, including IL-1α, IL-36α and IL-7 
(Extended Data Fig. 3a). We computed the number of upregulated 
genes that were either specific to a cell type or shared among multiple 
cell types (Fig. 2b and Supplementary Table 4). Most of the upregu-
lated genes in response to a particular cytokine were specific to one 
cell type regardless of thresholds for defining DEGs (Extended Data 
Fig. 3b). Some cytokines induced substantial changes on one or a 
small number of cell types, such as IL-18 on NK cells, IL-3 on pDCs and 
GM-CSF on MigDCs. The most shared DEGs were for IFNα1 and IFNβ 
(across all cell types), IL-4 (across several combinations of cell types), 
and IL-2, IL-15 and IL-18 (all three of which induced cytotoxic genes in 
CD8+ T cells and NK cells).

To represent complex cytokine responses across cell types in a com-
pact manner, we identified gene programmes (GPs) that consisted of 
co-expressed genes that became upregulated as a group in response to 
cytokines (Fig. 2c, Supplementary Fig. 1 and Supplementary Table 5). 
IFNα1 and IFNβ, as related cytokines, induced highly similar responses 
to each other, as did IL-1α and IL-1β. IFNα1 and IFNβ, as expected, induced 
common antiviral GPs across almost all cell types (GP numbers GP27, 
GP33 and GP34) but also some lineage-specific and cell-type-specific 
programmes. By contrast, IL-1α and IL-1β, pro-inflammatory cytokines 
with many known functions in the activation of both innate and adaptive 

immune cells19, induced highly cell-type-specific GPs with a diverse 
set of enriched biological processes (Fig. 2c). These GPs seemed to 
enhance the known functions of several of these cell types, including: 
(1) neutrophils upregulating chemokine and inflammatory genes such 
as Cd14 (GP27), consistent with their role as first responders; (2) MigDCs 
and Langerhans cells upregulating migration programmes including 
Ccr7 (GP12); and (3) Treg cells inducing Hif1a and Ctla4 that can medi-
ate immune suppression (GP22). Our results illustrate how the type I 
interferon response includes a common and autonomous viral defence 
programme, while IL-1α and IL-1β trigger a coordinated multicellular 
response composed of highly cell-type-specific functions.

Many cell-type-specific responses to a single cytokine were not 
explained by secondary effects to the other cytokines studied 
(Extended Data Fig. 4a,b). However, some responses could be attrib-
uted to secondary effects to induced cytokines, such as the induction 
of Ifng (which encodes IFNγ) in NK cells by IL-2, IL-12, IL-15 and IL-18, 
which probably in turn stimulate B cells, DCs and macrophages to 
strongly express IFNγ signatures (Extended Data Fig. 4c–e). As IL-2, 
IL-12, IL-15 and IL-18 have been applied as therapies with the intention of 
activating T cells, our results highlight the importance of considering 
rapidly induced secondary effects on non-intended cell types due to 
complex in vivo immune responses to a single cytokine. In summary, 
our systematic analysis of how different cell types respond to each 
cytokine provides a molecular map for observed pleiotropic effects  
of cytokines20.

Cytokine-driven cell polarization states
We next performed a cell-type-centric analysis of the dictionary to 
identify cell states induced by cytokines. Cytokines are major driv-
ers of immune cell polarization, with a classic example being distinct 
cytokines driving macrophages into pro-inflammatory M1-like or 
reparative M2-like states21. However, the polarization states of many 
immune cell types have not been comprehensively characterized, 
and even macrophage polarization is more complex than the M1/M2 
dichotomy22. Gene expression profiling can simultaneously measure 
the entire transcriptome and has been particularly useful for defin-
ing cell states driven by environmental cues13,23,24. Here we leveraged 
the dictionary to systematically identify single cytokine-induced cell 
polarization states. We subclustered each immune cell type and defined 
66 major polarization states as subclusters significantly enriched for 
cytokine-treated relative to PBS-treated cells and expressing meaning-
ful biological programmes (Methods and Fig. 3, with the complete 
landscape in Extended Data Figs. 5–8, Supplementary Figs. 2–11 and 
Supplementary Tables 6–8). Each polarization state was induced by 
one or a handful of dominant cytokine drivers (Fig. 3a–n, Extended 
Data Figs. 5f,g, 6f,g, 7,f,g and 8f,g and Supplementary Figs. 2f,g, 3f,g, 
4f,g, 5f,g, 6f,g, 7f,g, 8f,g, 9f,g, 10f,g and 11f,g).

We examined macrophages and monocytes to see whether this 
approach uncovers previously established polarization states (Fig. 3l,m, 
Extended Data Fig. 8 and Supplementary Fig. 10). As expected from 
previous studies13, IFNγ induced a ‘Mac-b’ state that overexpresses 
M1-associated pro-inflammatory genes (for example, Cxcl9 and Cxcl10). 
IL-4 and IL-13 induced a distinct ‘Mac-e’ state that was not marked by 
these pro-inflammatory genes but by Chchd10, Glrx and Retnla. We also 
confirmed previous findings that monocytes had higher Il1b expres-
sion when treated with IL-1α, IL-1β or IL-36α (Supplementary Fig. 10h), 
thereby potentially creating an inflammatory feed-forward loop19. In 
addition, IFNα1, IFNβ and TNF triggered other polarization states.

NK cells are known for their cytotoxic functions, but other functions 
are still being discovered25. As expected from previous knowledge, IL-2, 
IL-12 and IL-15 induced a state with increased expression of cytotoxic 
genes, and type I interferons induced the expression of both cytotoxic 
genes and ISGs (Fig. 3f,o,p and Extended Data Fig. 6). IL-1α and IL-1β 
induced a distinct ‘NK-c’ state with low correlation with other NK cell 
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states and lacking overexpression of cytotoxic molecules (Extended 
Data Fig. 6b). However, in this state, Ifngr1 was upregulated, which 
potentially enhances NK cell activation by IFNγ (Fig. 3p, Extended Data 
Fig. 6 and Supplementary Fig. 12). Although IL-18 is known to activate 
NK cells, we found that IL-18-activated NK cells, predominantly in the 
‘NK-f’ state, displayed markedly different properties than NK cells acti-
vated by IL-2, IL-12 or IL-15. IL-18 triggered the upregulation of more 
than 1,000 genes (Fig. 2b and Supplementary Table 3), an order of 
magnitude more than cells stimulated with other cytokines. This had 
a partial overlap with the IL-2, IL-12, IL-15 and interferon states, includ-
ing Gzmb and Xcl1. Compared with PBS treatment, the IL-18-induced 
state was strongly enriched in biosynthetic processes, including the 
induction of Myc (which controls growth and proliferation), immune 
processes such as maturation of myeloid cells (Csf2 (which encodes 
GM-CSF)), recruitment of DCs (Xcl1), cytotoxicity (Gzmb) and regula-
tors of differentiation (Kit and Batf) (Fig. 3p, Extended Data Fig. 6 and 
Supplementary Fig. 12). IL-18 has shown promise in preclinical studies 
of cancer immunotherapy26 and can activate T cells, NK cells and other 

cell types27. This unique and strong NK cell response to IL-18 suggests 
a polyfunctional role for the IL-18–NK cell axis in the immune system.

B cells were polarized by IL-4 to a distinct Il4i1+ state and by CD40L 
or IL-21 to a proliferating phenotype (Fig. 3a and Extended Data Fig. 5). 
Similar to their effect on NK cells, IL-1α and IL-1β induced Ifngr1 upregu
lation in T cell subsets (Supplementary Figs. 2h and 3h). γδ T cells exhib-
ited diverse polarization states, including a distinct ‘Tgd-f’ state induced 
by IL-23 that overexpresses Il22, and a ‘Tgd-d’ state induced by TNF, TL1A 
or IL-17E that overexpresses Odc1 (Fig. 3d and Supplementary Fig. 4). 
While prior studies of lymphocyte differentiation states have been in 
the context of TCR or BCR stimulation, our findings demonstrate that 
resting lymph node B cells and T cells can also be polarized by cytokines 
to express diverse GPs.

We observed shared polarization states and cytokine drivers in  
MigDCs and Langerhans cells (Fig. 3j,k and Supplementary Figs. 8  
and 9). TNF uniquely increased the proportion of cells in a state marked 
by Cd40 and Ccl22 expression, thereby potentially enhancing antigen 
presentation and interaction with T cells through the CCR4–CCL22 
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Fig. 2 | Cytokines induce cell-type-specific transcriptomic responses.  
a, Heatmaps of the top DEGs per cell type in response to IFNβ, IL-1β and TNF 
relative to PBS controls. Colour gradient represents log2(FC) (capped at twofold) 
in comparison with PBS treatment for the respective cell type. b, Number of 
DEGs (log2(FC) > 0.3 and FDR-adjusted P < 0.05, two-sided Wilcoxon rank-sum 
test) following each cytokine treatment, grouped by sharing pattern, either 
specifically overexpressed by one cell type (top) or shared by two or more cell 
types (bottom). Cell-type combinations with the most shared genes (>16 DEGs 
in any given treatment) are shown. A maximum of 100 cells per cytokine 
treatment for each of the 7 representative cell types were sampled to ensure 

comparability across cell types for this analysis. The x axes span from 0 to the 
highest DEG counts. c, Upregulated GPs following IFNα1 and IFNβ (top) or  
IL-1α and IL-1β (bottom) treatment with respect to PBS control. GPs that are 
significantly upregulated between cytokine and PBS treatment (effect size > 1 
and FDR-adjusted P < 0.01, two-sided Wilcoxon rank-sum test) in any cell type 
are shown. Significant GPs (FDR < 0.05) for each cell type are represented as 
circles, with the circle size indicating significance and the colour representing 
the effect size (capped at 10). Representative enriched biological processes 
(FDR-adjusted P < 0.05; black tiles) for the top-weighted genes in each GP  
are shown.
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axis. IL-1α and IL-1β increased the expression of Ccr7, and GM-CSF and 
IL-1 family cytokines induced the upregulation of Nr4a3, which has a 
key role in DC migration28. These results suggest that TNF can trigger 
local inflammation and DC–T cell interactions, and that the IL-1 family 
cytokines can boost DC migration to prime T cell responses in lymph 
nodes.

Overall, our reference map of cytokine-driven cellular polarization 
states reveals the plasticity of all immune cell types. These polariza-
tion states may be shared across cell types, such as type I interferons 
inducing ISG I states and type II interferons inducing ISG II states in 
each cell type (Extended Data Fig. 9a), or specific for one cell type, 
such as ‘cDC1-f’ induced by IL-10 to cDC1 (Extended Data Fig. 7), ‘pDC-e’ 
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Fig. 3 | Cytokines drive diverse polarization states in each cell type.  
a–n, Uniform manifold approximation and projection (UMAP) plots of cells 
shown for each cell type. a, B cell. b, CD4+ T cell. c, CD8+ T cell. d, γδ T cell.  
e, Treg cell. f, NK cell. g, pDC. h, cDC1. i, cDC2. j, MigDC. k, Langerhans cell.  
l, Marco+ macrophage. m, Monocyte, n, Neutrophil. Coloured circles in the 
UMAP plots and next to state names correspond to polarization states. Cells 
coloured grey do not map to polarization states described. Cell polarization 
state name, single cytokine drivers and top marker genes are shown in the  
table for each cell type. Cytokine drivers coloured blue are probably indirect 
inducers. Top marker genes are defined as highly upregulated genes in the 

polarization state relative to all other cells of the same cell type. Colours in 
different panels are unrelated. o,p, Additional views of f using NK cells as an 
example to illustrate polarization-state analyses. o, UMAP plots coloured by 
cytokine or PBS treatment for major cytokine drivers of polarization states 
shown in f. p, Violin plots of expression levels of selected marker genes after 
cytokine or PBS treatment. Colours correspond to the polarization states that 
the cytokines are most strongly associated. This figure is a summary of the 
complete landscape for each cell type in Extended Data Figs. 5–8 and 
Supplementary Figs. 2–11.
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induced by IL-36α to pDCs (Supplementary Fig. 6) and ‘NK-c’ induced 
by IL-1α or IL-1β to NK cells (Extended Data Fig. 9b).

Cytokine production–response map
To better understand the cell–cell communication carried out by each 
cell type, we identified the production sources of each cytokine by quan-
tifying the corresponding transcript levels averaged across all baseline 
and cytokine-stimulated conditions to account for stimulation-induced 
expression (Fig. 4a and Supplementary Table 9). FRCs expressed the 
highest number of distinct cytokines, consistent with previous findings 
regarding their heterogeneity and maintenance functions in various 
immune and non-immune compartments29. Other rare cell types in 
lymph nodes, such as basophils and ILCs, also expressed a large number 
of cytokines. There was an inverse correlation between the abundance 
of an immune cell type and the number of cytokines that the cell type 
produced (Fig. 4b and Extended Data Fig. 10a), with cytokine produc-
tion calculated using the same number of cells per cell type to ensure 
comparability. These findings, which were robust against different 
values of analysis parameters (Extended Data Fig. 10b), suggest that 

rarer cell types are crucial players in immune cell–cell communication 
networks despite their low numbers.

On the basis of cytokine production levels inferred from the abun-
dance of transcripts encoding each cytokine and of cytokine responses 
obtained from the global analysis (Fig. 1d), we built a cell–cell inter-
actome charting available cell–cell communication channels in the 
immune system (Fig. 4c, Extended Data Fig. 11 and Supplementary 
Table 10). Our data indicated that FRCs can influence nearly every cell 
type through a multitude of produced cytokines (Fig. 4c, left). cDC1 
cells can also affect almost all cell types, but through a smaller number 
of cytokines, most prominently through IL-1β, which affects many cells 
(Fig. 4c, right). A global view of the network showed that most cell types 
can affect almost every other cell type through at least one cytokine 
(with the exception of B cells and T cells, which are not stimulated with 
antigens used in our study), demonstrating a high level of intercon-
nectivity in the immune system (Supplementary Fig. 13).

In addition, we created a cytokine–receptor expression map per cell 
type (Extended Data Fig. 10c and Supplementary Table 9). Cytokine 
treatment induced changes in cytokine or receptor expression, such 
as the upregulation of Cd40 in cDC1 cells in response to TNF and IFNβ 
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(Extended Data Fig. 10d), which potentially sensitizes cells to subse-
quent response to other cytokines. Some cytokines induced responses 
even in the absence of highly expressed receptors, such as IL-1α and 
IL-1β affecting T cells, NK cells and DCs (Supplementary Fig. 12j and Sup-
plementary Table 10). This effect could be due to insensitive detection 
of receptor transcripts, rapid secondary effects to molecules induced 
by the cytokine or unknown receptors. Thus, our cell–cell interactome 
reveals diverse ways by which cells can interact with one another in vivo 
through the cytokine network.

Immune Response Enrichment Analysis
The use of transcriptomics to study immune processes and diseases 
has become standard and has led to the generation of large public 
datasets30,31. However, transcriptomic data do not reveal the factors 
that trigger the observed cell states and their functions, calling for 
an approach for inferring cytokine responses and revealing cell–cell 
communication networks based on cytokine-induced gene expression 
programmes32,33. Most methods to infer cell–cell interactions from tran-
scriptomic data use ligand and receptor expression associations34,35. 
However, receptor expression alone is not an accurate predictor of 
cytokine responses, as the ligands may not reach the cell or downstream 
pathways may not be functional. A more precise approach should also 
consider whether cells express the response signature of a cytokine as 
defined in our dictionary. Furthermore, there is a need for a compu-
tational approach to automatically assess immune cell polarization 
from transcriptomic data. 

To infer immune cell polarization and cytokine responses from any 
transcriptomic data, we created Immune Response Enrichment Analysis 
(IREA), which is the companion software for the Immune Dictionary. 
IREA implements statistical tests to assess the enrichment of either 
cell polarization or cytokine signatures in transcriptomes, which can 
then be used to derive cell–cell communication networks that explain 
observed immune responses (Methods and Fig. 5a,b).

We applied IREA to a published single-cell transcriptomic dataset 
from immune cells in tumours of mice treated with an anti-PD-1 check-
point blockade therapy36 (Fig. 5c–e and Extended Data Fig. 12a–c). 
IREA automatically inferred that monocytes and macrophages after 
treatment polarized into the IFNγ-induced ‘Mac-b’ (M1-like) state and 
away from the IL-4-induced ‘Mac-e’ state, which is in accordance with the 
known antitumour properties of IFNγ-polarized M1-like macrophages 
(Fig. 5c). This method enabled the characterization of immune cells 
across multiple polarization states on a continuous scale, consistent 
with recent views that immune cells are not dichotomously polarized22. 
Polarization was also identified in other cell types, including the polari-
zation of NK cells into a cytotoxic ‘NK-e’ state, which can be induced by 
IL-2, IL-12 and IL-15 (Fig. 5c and Extended Data Fig. 12a). NK cells were 
enriched for signatures of these cytokines, and IL-12 subunit genes were 
expressed in DCs and other myeloid cells (Fig. 5d, red bars, Fig. 5e), in 
agreement with the known role of IL-12 in anti-PD-1 therapy37. Among the 
86 cytokines, IREA found that the immunosuppressive cytokine TGFβ1 
showed the most negative response in anti-PD-1-treated cells compared 
with untreated cells, consistent with its known role in attenuating the 
immune enhancement from PD-1 and PD-L1 blockade38. These and 
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various other cytokines were produced by and acted on specific cell 
types in the tumour, which created a cytokine network in the effective 
response to immunotherapy (Fig. 5d,e). Receptors were expressed 
for cytokines with inferred responses, but also for some cytokines 
without responses, highlighting that the presence of receptors is  
not sufficient for response (Fig. 5d). Applying IREA to severe COVID-19  
infection39 revealed responses to cytokines in B cells and T cells in 
severe disease, reflecting known increases in plasma cytokines that 
regulate lymphocytes (Extended Data Fig. 12d and Supplementary  
Fig. 14). Our framework therefore enabled us to infer the key secreted 
factors that trigger observed cellular responses (for example, Fig. 5c,d) 
and to generate a molecular model of cell–cell interactions (for exam-
ple, Fig. 5e) that underlie a complex immune response.

Discussion
Our dictionary of in vivo immune responses to cytokines enabled a 
high-resolution view of the cytokine network, which showed that the 
complexity of cytokine responses and plasticity of immune cells are 
much greater than previously appreciated. Even a single cytokine, 
such as IL-1β, can trigger distinct responses in each cell type to create  
a coordinated multicellular immune response. Extending early dis-
coveries of macrophage polarization, we systematically identified 
cytokine-induced polarization states in each immune cell type, thereby 
highlighting the general property of immune cells in their plastic 
responses to environmental cues. We created cytokine response and 
cytokine–receptor expression maps and used them to derive a cell–cell 
interactome that illustrated diverse ways that immune cells can interact 
with one another and the role of rare cell types in immune cell–cell 
communication. Finally, we introduced IREA, a method for inferring 
cytokine activities, immune cell polarization and cell–cell communica-
tion networks in any immune process for which gene expression data 
have been collected. Note that because the dictionary was collected 
at single-cell resolution, one can easily re-analyse the responses in any 
cell subpopulation of interest. Future directions include studying dif-
ferent cytokine doses, times, biological contexts and combinations of 
stimuli. In summary, our study created a systematic cell-type-specific 
dictionary of cytokine responses, providing new insights into cytokine 
functions and a basis for inferring cell–cell communication networks 
in any immune response.
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Methods

Cytokine injection
A list of the cytokines studied and their alternative names are shown 
in Fig. 1d and Supplementary Table 1. We selected 86 cytokines repre-
senting most members of major cytokine families, including the fol-
lowing families: IL-1 (IL-1α, IL-1β, IL-1Ra, IL-18, IL-33, IL-36α and IL-36Ra); 
common γ-chain/IL-13/TSLP (IL-2, IL-4, IL-13, IL-7, TSLP, IL-9, IL-15 and 
IL-21); common β-chain (GM-CSF, IL-3 and IL-5); IL-6/IL-12 (IL-6, IL-11, 
IL-27, IL-30, IL-31, LIF, OSM, CT-1, NP, IL-12, IL-23 and IL-Y); IL-10 (IL-10, 
IL-19, IL-20, IL-22 and IL-24); IL-17 (IL-17A, IL-17B, IL-17C, IL-17D, IL-17E, 
IL-17F); interferon (type I: IFNα1, IFNβ, IFNε and IFNκ; type II: IFNγ; 
and type III: IFNλ2); TNF (LTα1/β2, LTα2/β1, TNF, OX40L, CD40L, FasL, 
CD27L, CD30L, 4-1BBL, TRAIL, RANKL, TWEAK, APRIL, BAFF, LIGHT, 
TL1A and GITRL); complement (C3a and C5a); growth factor (FLT3L, 
IL-34, M-CSF, G-CSF, SCF, EGF, VEGF, FGFβ, HGF and IGF-1). Representa-
tive cytokines (TGFβ1, GDNF, persephin (PSPN), prolactin (PRL), leptin, 
adiponectin (AdipoQ), resistin (ADSF), noggin, decorin and throm-
bopoietin (TPO)) from other protein families were also included.

Every recombinant mouse cytokine was obtained from at least two 
separate orders. The endotoxin level was <0.1 ng µg–1 of protein for 
every cytokine per the information from the vendors (Peprotech and 
R&D). To preserve cytokine activities, carrier-free cytokines were 
freshly reconstituted according to the manufacturer’s instructions, 
stored at 4 °C in sterile conditions and used within 28 h after reconsti-
tution. For each cytokine, 5 μg in 100 μl sterile PBS was injected into 
each animal. Wild-type female C57BL/6 mice were purchased from the 
Jackson Laboratory and used in studies as 11–15-week-old young adults 
after resting for at least 1 week in the facility. Mice were maintained on 
a 12-h light–dark cycle at room temperature (21 ± 2 °C) and 40 ± 10% 
humidity. Cytokines were injected under the skin (50% subcutaneous, 
50% intradermal) bilaterally in the abdominal flank of each mouse. 
Bilateral skin-draining inguinal lymph nodes were collected 4 h after 
injection at 6:00–8:00 and pooled for downstream processing. For 
each of the 86 cytokines, replicate experiments were performed in 
three independent C57BL/6 mice to ensure reproducibility. As a control, 
PBS alone was injected into mice for each experimental batch, totalling 
14 PBS-injected mice. All experiments were reviewed and approved by 
the Broad Institute’s Institutional Animal Care and Use Committee.

Data generation quality assurance
All samples were processed using an optimized experimental pipeline 
to ensure quality. In particular, batch effects that arise from experi-
ments performed on different days are known to be a major source of 
artefact in transcriptomic studies. Therefore, batch-to-batch consist-
ency was strictly experimentally ensured and then computationally 
verified. Specifically, the mice were ordered from the same batch and 
housed in the same environment. Animals were randomly allocated to 
the experimental groups. Lymph nodes were collected at 6:00–8:00 
in all experiments to exclude the impact of circadian clocks on tran-
scriptomic profiles. Samples were processed fresh in every experiment 
and were kept on ice during processing whenever possible. The same 
researchers performed the same steps of the sample processing and 
sequencing pipeline following the same, highly optimized procedures. 
The investigators performing animal experiments and RNA sequencing 
were blinded from each other during data collection. The number of 
batches was minimized whenever possible. The three replicated mice 
for each cytokine were processed in different batches to ensure that 
batch effects, if any, would not influence biological interpretations. 
All samples were sequenced on two sequencing runs, with the first 
sequencing run containing the first set of replicates and the second 
containing the second and third set of replicates. PBS controls were 
included in every batch to ensure comparability, and transcriptomic 
profiles of PBS samples from different batches were computation-
ally compared to verify batch-to-batch consistency (Extended Data 

Fig. 2a). In brief, Euclidean distances were calculated for each pair of 
PBS-treated cells of the same cell type based on the entire transcriptome 
to ensure that the within-batch distances and between-batch distances 
were comparable.

Lymph node dissociation and cell sorting for scRNA-seq 
experiments
An optimized pipeline for viable cell recovery and more balanced cell- 
type representation was used to process lymph nodes for scRNA-seq. 
Lymph nodes were enzymatically digested using a protocol that  
maximizes the recovery of myeloid and stromal cells while maintain-
ing high viability40. In brief, lymph nodes were placed in RPMI with 
collagenase IV, dispase and Dnase I at 37 °C, and cells were collected 
once they were detached. The cells were then immediately placed 
on ice and washed with PBS supplemented with 2 mM EDTA and 0.5% 
biotin-free BSA, then filtered through a 70 µm cell strainer. Cells were 
incubated with Fc blocking antibodies 4 °C, then with a biotinylated 
anti-CD3 and anti-CD19 antibody cocktail. Antibodies were used at a 
dilution of 1:100. Streptavidin microbeads were then added and the 
cells were magnetically sorted using MACS MS columns according 
to the manufacturer’s protocol (Miltenyi Biotec). After cell sorting,  
a small fraction of the CD3+ or CD19+ cells was pooled with CD3–CD19– 
cells for more balanced representation of all cell types and proceeded 
immediately to scRNA-seq.

scRNA-seq
Cell hashing was used to combine multiple samples into the same 
single-cell emulsion channel41. The mouse cells obtained from dif-
ferent stimulation conditions were stained with TotalSeq antibodies 
(BioLegend anti-mouse hashtags 1–8; used at 1:100 dilution), washed 5 
times at 4 °C and pooled in PBS with 0.04% BSA according to the manu-
facturer’s protocol. Next, 55,000 cells were loaded onto a 10x Genomics 
Chromium instrument (10x Genomics) according to the manufacturer’s 
instructions. The scRNA-seq libraries were processed using a Chromium 
Single Cell 3′ Library & Gel Bead v3 kit (10x Genomics) with modifica-
tions for generating hashtag libraries41. Quality control for amplified 
cDNA libraries and final sequencing libraries was performed using a 
Bioanalyzer High Sensitivity DNA kit (Agilent). scRNA-seq and hash-
ing libraries were normalized to 4 nM concentration and pooled. The 
pooled libraries were paired-end sequenced on a NovaSeq S4 platform 
targeting an average sequencing depth of 20,000 reads per cell for 
gene expression libraries, and on a NovaSeq S4 or SP platform target-
ing 5,000 reads per cell for hashtag libraries.

scRNA-seq data pre-processing
The raw bcl sequencing data were processed using the CellRanger 
(v.3.0) Gene Expression pipeline (10x Genomics), including demulti-
plexing and alignment. Sequencing reads were aligned to the mm10 
mouse reference genome, and transcriptomic count matrices were 
assembled. Hashtag library FASTQ files were processed using the 
CITE-seq-Count tool (v.1.4.3; github.com/Hoohm/CITE-seq-Count). 
Gene expression and hashtag were matched using the MULTIseqDemux 
function of the Seurat R package (v.4.1)42. Cells with multiple hashtags 
were considered multiplets (for example, doublets or triplets) and 
were excluded from further analysis. The Seurat R pipeline was used to 
perform quality control to include only cells with >500 genes, >1,000 
unique molecular identifiers and <10% mitochondrial gene content. The 
expression matrix was globally scaled by normalizing the gene expres-
sion measurements by the total expression per cell. The resulting values 
were multiplied by a scale factor of 10,000 and natural log-transformed.

For the initial global analysis of all cells, the top 3,000 variable 
genes were selected for dimensionality reduction analysis. Princi-
pal component analysis (PCA) was then used to denoise and to find 
a lower-dimensional representation of the data. The top 75 principal 
components (PCs) were used for global clustering and for visualization 

https://github.com/Hoohm/CITE-seq-Count
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using a t-SNE map43. Clusters were identified using the Louvain cluster-
ing algorithm. This step resulted in a total of 61 non-singleton global 
(level 1) clusters (Extended Data Fig. 1d). We removed potential multi-
plets by removing the cells with the top 2% gene counts in each cluster. 
As different cell types have variations in the numbers of genes detected 
on average, this step was done at the cluster level rather than for all data. 
For each level 1 cluster of cells, we then performed another round of 
clustering (level 2) to further verify the identity of each cluster and to 
remove potential doublets. This step resulted in a total of 183 global 
level 2 clusters. The cell-type identity of each level 2 cluster was assigned 
on the basis of the expression of 115 known marker genes (Supplemen-
tary Table 2). Clusters enriched for marker genes of multiple cell types 
were considered multiplets and removed. The top DEGs between each 
cell type and others are listed in Supplementary Table 2.

Quantitative measures of reproducibility across animal 
replicates
A gene expression vector for each biological replicate was created for 
each cytokine stimulation condition in a given cell type by taking the 
difference between the average expression vector of cytokine-treated 
cells and the average expression vector of PBS-treated cells. Genes 
were included if they were significantly differentially expressed 
(FDR < 0.05 and absolute log2(FC) > 0.25) compared with PBS controls 
and were expressed in >10% of cytokine-treated cells for upregulated 
genes or >10% of PBS-treated cells for downregulated genes. Rps, Rpl, 
mitochondrial genes and unlabelled genes were excluded. Pairwise  
Pearson correlation coefficients were then calculated for these vectors 
(Extended Data Fig. 2b).

Assessment of access to injected cytokines by each lymph node 
cell type
To determine whether the injected cytokines can be accessed by each 
cell type in the draining lymph nodes, we examined ISG expression 
levels in cells treated with IFNα1 or IFNβ (IFNα1/IFNβ) or PBS for each 
cell type. Type I interferon was chosen for this analysis given its strong 
induction of antiviral programmes in a wide range of cell types. A maxi-
mum of 100 cells were sampled from each condition. ISG scores were 
obtained by summing the normalized expressions of ISGs in each cell. 
These scores were then used to predict whether each cell was treated 
with IFNα1/IFNβ or PBS, and the accuracy of the prediction was rep-
resented as receiver operating characteristics curves (Extended Data 
Fig. 2c). The ISGs were obtained from the MSigDB hallmark gene set.

Differential gene expression analysis
Analyses of DEGs were performed to identify marker genes for cell clus-
ters or cytokine-responsive genes. Analyses of DEGs were performed 
between two groups of cells using the two-sided Wilcoxon rank-sum 
test on normalized gene expression values. The P values obtained from 
the tests were then adjusted (Bonferroni or FDR) to address multiple 
testing. Genes were considered DEGs in the cytokine signature if they 
had FDR < 0.05 and absolute log2(FC) > 0.25 between cytokine-treated 
and PBS-treated cells of the same cell type, were expressed in >10% of 
cytokine-treated cells for upregulated genes or >10% of PBS-treated 
cells for downregulated genes, and satisfied the FC threshold for at 
least two out of the three mice (to mitigate the influence of potential 
single-mouse outliers). Rps, Rpl, mitochondrial genes and unlabelled 
genes were excluded from the signatures. Cell-type-specific cytokine 
signatures are listed for all major cell types in Supplementary Table 3.

Quantification of overall magnitude of transcriptomic 
responses to each cytokine in each cell type
We constructed a global reference map that quantified the overall gene 
expression changes induced by each cytokine in each cell type (Fig. 1d). 
This maps takes into account two metrics: the number of DEGs and the 
magnitude of change across the entire transcriptome. The number 

of DEGs is the total number of genes in each cytokine signature. The 
overall magnitude of cytokine-induced differential expression was 
computed as the Euclidean distance between the centroid vectors of 
cytokine-treated cells and PBS-treated cells. This value was normalized 
to a scale ranging from 0 (low) to 100 (high). To reduce the impact of 
outliers in the normalization process, winsorization was applied such 
that values above the 95th percentile were replaced with values at the 
95th percentile before normalization. A maximum of 100 cells from 
each cytokine treatment condition were sampled for each cell type for 
the magnitude calculation. A distinct colour ramp was used for each 
cell type to emphasize that cell types have different properties (for 
example, different number of genes expressed on average) and were 
independently analysed. Cytokine–cell type combinations with five 
or more cells sampled were included in this analysis.

Identification of GPs per cytokine treatment and per cell type
GP analysis was used to identify co-regulated genes for each cytokine 
treatment across cell types (Fig. 2c and Supplementary Fig. 1) or for 
each cell type across all treatment conditions (Extended Data Figs. 5i,j, 
6i,j, 7i,j and 8i,j and Supplementary Figs. 2i,j, 3i,j, 4i,j, 5i,j, 6i,j, 7i,j, 8i,j, 
9i,j, 10i,j and 11i,j). GPs were constructed using the non-negative matrix 
factorization (NMF) algorithm44 using the R package NMFN (v.2.0). We 
removed genes associated with tissue dissociation45 and the cell cycle, 
as well as mitochondrial genes, Rps and Rpl, unlabelled genes, globally 
overabundant genes and those expressed in fewer than ten cells.

In the cytokine-centric analysis, NMF was used to identify cell- 
type-specific GPs in response to each cytokine. Cells treated with the 
specified cytokines or PBS were used for NMF, with a maximum of 
100 cells per cell type per condition. NMF was run separately for each 
cytokine in this analysis, except that IFNα1 and IFNβ were processed 
together and IL-1α and IL-1β were processed together in Fig. 2c and 
Supplementary Table 5. We identified 40 GPs per cytokine treatment, 
with some predominantly corresponding to cell-type identity and oth-
ers predominantly to cellular responses to cytokine stimulation. To 
quantitatively identify GPs predominantly corresponding to cellular 
responses to cytokine stimulation, a two-sided Wilcoxon rank-sum test 
was used to identify GPs with weights that were significantly different 
between the cytokine-treated cells and PBS-treated cells. GPs show-
ing significant upregulation in any cell types were displayed. The top 
30 genes with the highest weights for each GP were used to identify 
enriched biological processes using clusterProfiler (v.4.2.1)46 on the 
Hallmark gene sets from the MSigDB database47. Genes highlighted in 
the text for biological significance satisfied two criteria: (1) they were 
among the top 30 highest-weighted genes for a significantly upregu-
lated GP in response to cytokines; and (2) the genes individually also 
showed significant upregulation in response to cytokines in the DEG 
analysis of cytokine signatures.

In the cell-type-centric analysis, NMF was used to analyse GPs of each 
cell type across all cytokine treatment conditions to identify cytokines 
that induce similar cellular processes. We identified ten GPs for each 
cell type and visualized the relationship between GPs and subclusters 
for each cell type using heatmaps in Extended Data Fig. 5–8 and Sup-
plementary Figs. 2–11. The top genes with the highest weights for each 
GP are shown in Extended Data Figs. 5j, 6j, 7j and 8j, Supplementary 
Figs. 2j, 3j, 4j, 5j, 6j, 7j, 8j, 9j, 10j and 11j and Supplementary Table 8.

Analysis of secondary responses to induced IFNγ
The IFNγ-induced gene expression signature was used to infer the level 
of cellular responses to cytokine-induced IFNγ. The IFNγ signature score 
for each cell type was constructed by summing the expressions of signif-
icantly overexpressed genes in IFNγ-treated cells relative to PBS-treated 
cells (FDR-adjusted P < 0.001 and log2(FC) > 1) in the corresponding cell 
type. The log2(FC) of the signature scores and FDR-adjusted P value 
relative to PBS-treated cells were calculated for every cytokine treat-
ment and shown in Extended Data Fig. 4e.



Identification of cellular polarization states
To identify cellular polarization states induced by cytokines, subclus-
tering was performed for cells of each cell type. For heterogeneous cell 
types (for example, macrophage, MigDC and γδ T cell), the most abun-
dant homogeneous subset was analysed to identify cytokine-induced 
states instead of re-deriving cell subsets in the polarization state analy-
sis. We used PCs to subcluster on the basis of discriminating genes, 
defined as genes with a large absolute log2(FC) (between 0.75 and 1.5 
depending on cell type) in any cytokine-treated cells compared with 
PBS-treated cells. We removed genes associated with tissue dissocia-
tion45 and the cell cycle, as well as mitochondrial genes and Rps and 
Rpl. We then performed PCA and visualized the cells using UMAP48. 
The proportion of cells falling into each cluster was calculated for each 
cytokine or PBS control. Major polarization states were identified on 
basis of two criteria: (1) cell clusters with significantly (FDR-adjusted 
P < 0.01) more than the expected number of cytokine-stimulated cells 
using a hypergeometric test; and (2) manual verification of biological 
relevance of the highly expressed genes or GPs in the subcluster and 
cytokines inducing the changes. To find discriminating markers and 
biological functions of each state, we analysed DEGs and co-regulated 
GPs per state relative to all other cells for the cell type. DEGs were 
identified using the two-sided Wilcoxon rank-sum test between each 
polarization state and other cells of the same cell type. The signifi-
cantly overexpressed genes with the largest log2(FC) are shown. The 
most strongly polarized states are summarized in Fig. 3. The complete 
landscape, including less-strongly polarized states, in each cell type can 
be found in Extended Data Figs. 5–8 and Supplementary Figs. 2–11. We 
compared the polarization states by calculating the pairwise Pearson 
correlation coefficients between the gene expression profiles of each 
polarization state after subtracting the profiles of PBS-treated cells of 
the same cell type to remove cell-type-specific gene expression. These 
results are displayed in Extended Data Figs. 5b, 6b, 7b and 8b and Sup-
plementary Figs. 2b, 3b, 4b, 5b, 6b, 7b, 8b, 9b, 10b and 11b.

We assigned a unique identifier to each polarization state using the 
following convention: ‘<cell type abbreviation>-<lower case letters>’. 
When applicable, the letters a–d were reserved for type I interferon, 
type II interferon, IL-1α and IL-1β, and TNF, respectively, which are 
cytokines that induce polarization states across a large number of 
cell types.

Comparative global view of polarization states across immune 
cell types
To gain a global view of the 66 polarization states across immune cell 
types defined in Fig. 3, we used Jaccard similarity index to evaluate 
similarity between each pair of cell states (Extended Data Fig. 9). The 
gene expression profile of each polarization state was compared with 
PBS-treated cells of the same cell type to remove cell-type-specific 
gene expression. The genes with an absolute log2(FC) > 0.5 compared 
with PBS-treated cells were used to compute the Jaccard similarity 
score. Upregulated and downregulated genes were separately calcu-
lated. The rows and columns were hierarchically clustered using the 
average-linkage method on the Euclidean distances to identify groups 
of similar polarization states. To visualize unique polarization states 
with low similarity to other states, the same results were illustrated 
using a force-directed network, with a higher circle size indicating a 
more unique state, which was calculated on the basis of the inverse of 
mean Jaccard similarity value with other states.

Pathway enrichment analysis for NK cells
To identify biological processes enriched for the IL-18-treated NK cells, a 
pre-ranked gene list was computed by subtracting average gene expres-
sion values of PBS-treated NK cells from those in IL-18-treated NK cells. 
Gene set enrichment analysis was performed using clusterProfiler 
(v.4.2.1) on the gene ontology biological processes gene sets. Gene sets 

with a FDR-adjusted P < 0.1 are shown. As a comparison, representative 
cytokines from other NK cell polarization states were analysed using 
the same method.

Cytokine and cytokine–receptor gene expression maps
A map of cell-type-specific production of cytokines was derived from 
our dataset. Cytokine genes expressed in at least 50 cells were included 
in the cytokine expression heatmap. The cells were obtained from 
all conditions (PBS or cytokine treated) to provide a map of cytokine 
expression under all unstimulated or cytokine stimulation conditions 
(that is, to account for induced expression). The gene expression level 
was then normalized relative to the cell type with the maximum expres-
sion level (whereby the maximum level is capped at 1 expression unit 
before normalization) to account for the variation in the number of 
transcripts produced or detected for each cytokine. A cytokine was 
considered expressed in a cell type if more than 0.1 normalized expres-
sion units were detected.

The cytokine–receptor expression map was constructed using the 
same approach. This included signalling receptors, decoy receptors 
and receptors that form complexes with cytokines. A list of genes 
encoding known functional receptors for the 86 studied cytokines 
are listed in Supplementary Table 1. The cytokine expression map and 
the cytokine–receptor expression map are shown in Fig. 4a, Extended 
Data Fig. 10c and Supplementary Table 9.

Cell–cell interactome network construction
A cell–cell interactome network was constructed to chart available 
cytokine-mediated cell–cell communication channels. The network 
was constructed such that the source and sink nodes are cell types 
and intermediate nodes are cytokines. The paths between source 
cell-type nodes and sink cell-type nodes through cytokine nodes were 
established on the basis of the detectability of the cytokine mRNA in 
the cell population (normalized expression > 0.1) and the responsive-
ness of the cell type to the cytokine (more than ten DEGs in the corre-
sponding cytokine signature). For heteromeric cytokines or cytokine 
complexes composed of two subunits (IL-12, IL-23, IL-27, LTα1/β2 and 
LTα2/β1), the cytokine is shown as expressed and is annotated with 
an asterisk if the genes encoding at least one subunit are expressed 
as there is evidence of extracellular assembly of some components 
into functional cytokines under healthy or pathological conditions49. 
The network was plotted separately for each source node for ease of  
interpretability.

To construct the ligand–receptor interactome, we identified func-
tional cognate receptors for each cytokine from the literature, which 
is listed in Supplementary Table 1. For a receptor to be considered 
expressed in a cell type, the normalized expression value of the recep-
tor gene needed to be greater than a cut-off threshold (default of 0.1 
expression unit). For heteromeric receptors, all components needed to 
be expressed for the receptor to be considered expressed. For cytokines 
with more than one functional receptor, the receptor was considered 
expressed if any functional receptors are expressed. We then connected 
the cytokines with the cell types expressing the cognate receptors. 
The cytokine production portion of the interactome is the same as 
the one in the ligand–response interactome. The ligand–response 
and ligand–receptor networks were then compared to generate the 
cell–cell communication paths that are common or different between 
these two approaches.

IREA for cytokine response analysis
We offer two types of IREA analysis options to assess cytokine responses 
in a user’s data depending on the input, which can be a gene set or a 
gene expression matrix. The cell type in the user data is specified by 
the user. User data are then compared with the transcriptional cytokine 
responses of the same cell type from the Immune Dictionary using the 
following methods:
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1.	 For the gene set input, we first find gene set scores by summing the 

normalized expression value of all genes in the gene set in each of the 
cytokine-treated cells or PBS-treated cells. Statistical significance is 
assessed using a two-sided Wilcoxon rank-sum test between gene set 
scores on cytokine-treated cells and gene set scores on PBS-treated 
cells, and an FDR correction is applied to all cytokine calculations. 
Enrichment can also be calculated using the hypergeometric test 
on significant DEGs (FDR < 0.01 between cytokine-treated cells and 
PBS-treated cells), a method commonly used in pathway analyses.

2.	For the gene expression matrix input, the expression matrices are 
first normalized such that the total expression per cell sums to 
10,000 units; the expression is then log-transformed. Genes giving 
significant contribution to the enrichment score, with the default 
being those having an average of more than 0.25 expression values, 
were included. Next, the projection score is calculated by finding 
the cosine similarity score between user input and cytokine-treated 
or PBS-treated cells. Statistical significance is assessed using a 
two-sided Wilcoxon rank-sum test between projection scores on 
cytokine-treated cells and projection scores on PBS-treated cells, 
and an FDR correction is applied to all cytokine calculations. The 
effect size is the mean difference between projection scores on 
cytokine-treated cells and on PBS-treated cells. The effect size and 
FDR-adjusted P value for each of the 86 cytokines can then be visual-
ized using a compass plot shown in Fig. 5d. Conceptually, this method 
takes into consideration the direction and magnitude of expression 
of each gene. That is, a strongly upregulated gene in both the user 
dataset and Immune Dictionary reference dataset is given a high 
weight that increases the overall likelihood of enrichment; a strongly 
upregulated gene in one dataset but not the other is given lower 
weight; and a gene that is upregulated in one dataset but downregu-
lated in the other is given negative weight that decreases the overall 
likelihood of enrichment. The genes contributing the highest weights 
to the enrichment can be visualized using a diverging bar plot shown 
in Extended Data Fig. 12b.

IREA for cellular polarization analysis
IREA polarization analysis implements the same statistical test as the 
IREA cytokine response analysis. In IREA polarization, user data are 
compared with the polarization state gene expression profiles. A polar-
ized radar plot is shown if at least one cellular polarization state is sig-
nificantly enriched (FDR-adjusted P < 0.05). If no state is significantly 
enriched, the radar plot shows an enrichment score of 0 for every state, 
which signifies that the input cells are unpolarized. The enrichment 
score is normalized to be between 0 and 1 on the radar plot.

IREA for cell–cell communication network construction
We constructed models of cell–cell communication networks by taking 
into account cytokine production and cytokine response. Cytokine 
production was obtained by examining the transcripts mapped to 
each of the 86 cytokines. The cytokine response was assessed using 
IREA, and cytokines with IREA output of FDR < 0.01 were included. 
For heteromeric cytokines or cytokine complexes composed of two 
subunits, the cytokine was displayed as expressed if at least one subunit 
is expressed as there is evidence of extracellular assembly of some com-
ponents into functional cytokines49 (same method as for the cell–cell 
interactome). Cytokine networks can be visualized as shown in Fig. 5e 
and Extended Data Fig. 12c.

IREA analysis of mouse tumour scRNA-seq data
The scRNA-seq data were downloaded as 10x Genomics data files36. 
Data were processed using the same approach as described above but 
with a minor modification, whereby 40 PCs were used for downstream 
analysis. Cell types were annotated as shown in the publication36. The 
IREA analysis was done between anti-PD-1 treatment and controls for 
each cell type using the transcriptome-wide approach with default 

parameters. A receptor expression threshold of 0.05 was applied to 
produce the data in the receptor ring in the cytokine enrichment plot.

IREA analysis of human COVID-19 blood scRNA-seq data
The scRNA-seq data were downloaded as a Seurat object from the 
human COVID-19 blood study39. Cluster annotations were used as 
defined in the Seurat object. IREA analysis was performed using data 
from ventilated patients with COVID-19 and compared with healthy 
individuals for each cell type using the transcriptome-wide approach 
with default parameters and species specified as human. IREA imple-
ments mouse and human homologue gene conversion using the most 
recent release of the National Center for Biotechnology Information 
HomoloGene database (release 68). A receptor expression thresh-
old of 0.05 was applied to produce the data in the receptor ring in the 
compass plot.

Statistical analysis
The statistical tests used are described for each analysis in the corre-
sponding text. Two-sided statistical tests were used unless otherwise 
specified. FDR or Bonferroni adjustments were made for the analyses 
for which multiple hypothesis testing applies.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The Immune Dictionary interactive web portal can be accessed at 
www.immune-dictionary.org, where the single-cell transcriptomic 
data generated in this study are made publicly available through a 
user-friendly interface. Raw fastq files of the data are available from 
the Gene Expression Omnibus (GEO) database under accession number 
GSE202186. Source tables are included for every figure and extended 
data figure at appropriate locations in the article. In addition, the fol-
lowing publicly available datasets were used: the MSigDB database was 
used for annotating biological processes and can be accessed at www.
gsea-msigdb.org/gsea/msigdb; mouse and human homologue gene 
conversion was based on the National Center for Biotechnology Infor-
mation HomoloGene database (release 68); the mouse tumour dataset 
is available from the GEO under accession number GSE119352; and 
the human COVID-19 dataset is available at www.covid19cellatlas.org.  
Source data are provided with this paper.

Code availability
IREA is available at www.immune-dictionary.org.
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10  Treg 26  CD8+ T cell 42  MigDC 58  Mixed

11  CD8+ T cell 27  NK cell 43  MigDC 59  Basophil

12  CD8+ T cell 28  cDC2 44  Ki67+ cDC1 60  Mixed

13  γδ T cell 29  CD4+ T cell 45  CD4+ T cell

14  pDC 30  Macrophage 46  Mixed

15  CD4+ T cell 31  Monocyte 47  BEC/LEC
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Extended Data Fig. 1 | scRNA-seq data summary and quality metrics.  
a, Violin plots showing the distributions of percentage of mitochondrial gene 
content (top), number of genes detected (middle), and number of unique 
molecular identifiers (UMIs) detected (bottom) per cell post-quality control 
across cytokine or PBS treatment conditions. The interquartile range is shown 
as a white box inside each violin plot. n = 386,703 independent cells over 272 
independent mice (3 mice per cytokine and 14 mice for PBS control). b, Two-
dimensional t-SNE visualization of all cells (following the coordinates in Fig. 1b), 
colored by any cytokine treatment (pink) or PBS control (blue). c, Contour plot 
of the t-SNE map in b. d, t-SNE visualization of all cells, colored by level-1 Louvain 

clusters identified from global clustering. The dominant cell type associated 
with each cluster is indicated in the accompanying table. Each cluster is further 
divided into level-2 clusters to refine cell type identification (Supplementary 
Table 2). e, Dot plot showing the scaled average expression of cell type marker 
genes and percentage of cells expressing the genes in each annotated cell type. 
f, Cell type composition in each treatment. g, Changes in the fraction of non-B, 
non-T immune cell types after cytokine treatment relative to PBS controls.  
* denotes P-value < 0.05, one-sided Wilcoxon rank-sum test with FDR adjustment. 
Only CD3– and CD19– immune cells are shown as these cell types are not 
influenced by the cell sorting strategy used.
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Correlations of cytokine signatures between independent mice

Extended Data Fig. 2 | Additional scRNA-seq data quality metrics.  
a, Distributions of Euclidean distances between individual PBS-treated cells 
based on their transcriptomic profiles, colored by whether cells compared are 
from the same sample processing batch or across different sample processing 
batches. b, Pearson correlation coefficients between cytokine-induced gene 
expression signatures obtained from different animal replicates, using cDC1 as 
a representative example. c, As a positive control for the ability of each lymph 

node cell type to access the injected cytokines, IFN-α/β responses in each cell 
type are shown. At the single-cell level, ISG scores can accurately classify 
IFN-α/β-treated cells vs. PBS-treated cells based on areas under receiver 
operating characteristics (AUROC) curves in each cell type, confirming that  
the vast majority of the cells can access the injected cytokines. ISG expression 
in each cell is shown as individual dots and violin plots on the left side, and the 
classification accuracy is shown as ROC curves on the right side.



a

b Percentage of cytokine-induced DEGs unique to a cell type vs. shared between ≥2 cell types at various DEG thresholds

(Unique)

Top genes upregulated by cytokine treatment

Extended Data Fig. 3 | Cell type-specific gene expression changes induced 
by IFN-α1, IFN-β, IFN-κ, IFN-γ, IL-1α, IL-1β, IL-18, IL-36α, IL-2, IL-4, IL-7, IL-15, 
IL-3, GM-CSF, and TNF-α. a, Gene expression heatmaps illustrating top genes 
upregulated by cytokine treatment compared to PBS treatment in any of the 
cell types shown. All genes shown have at least log2FC > 0.3 and FDR < 0.05 in 
one or more cell types. Color gradient indicates average log2FC relative to PBS 
treatment of the same cell type. Genes expressed in fewer than 10% of cells in 

both cytokine and PBS treatment conditions are denoted as no change.  
b, Percentage of upregulated DEGs exclusive to a single cell type (green) or 
shared among two or more cell types (other colors) after cytokine treatment  
at various DEG cutoff thresholds. Each box shows a different log2FC and FDR 
threshold for defining DEGs. This is an extension of the analysis in Fig. 2b, 
showing consistency of the cell type-specific effects irrespective of DEG cutoffs.
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Extended Data Fig. 4 | Cell type-specific responses to a cytokine can be 
exclusive to the cytokine or can be attributed to secondary effects from 
induced cytokines. a-b, Examples of cell type-specific responses to a cytokine 
that are not observed in the responses to the other cytokines studied. a, Examples 
of cell type-specific gene regulation in response to IL-1α/β and exclusively to  
IL-1α/β. Left, Heatmaps showing differential expression of IL-1α/β-regulated 
genes relative to PBS treatment per cell type, highlighting cell type-specific 
responses to the same cytokines. Three independent mice for each cytokine 
treatment are shown in adjacent columns. Right, for the IL-1α/β-induced cell 
type-specific DEGs in the heatmaps, the plots show whether they can be induced 
by any other of the 86 cytokine stimulations. Color of square, log2 fold change 
in each cytokine treatment relative to PBS; size of square, –log10 transformed 
FDR-adjusted P-value obtained from two-sided Wilcoxon rank-sum test. Results 
with FDR < 0.05 and log2FC > 0.5 are shown. IL-1α/β treatments are highlighted 
in gray. Cell types in columns on the left and rows on the right follow the same 
color code. Note that both IL-36α and IL-1α/β are proinflammatory cytokines in 
the IL-1 cytokine family. b, Examples of cell type-specific gene regulation in 
response to IFN-α1/β and exclusively to IFN-α1/β; following the same visualization 
as in a. Note that both IFN-κ and IFN-α1/β are type I interferons and share 

receptors. c-e, Examples of cell type-specific responses to a cytokine that can 
be attributed to secondary effects from induced cytokines. c, Heatmaps 
showing DEGs in response to IL-2, IL-12, IL−15, IL−18 relative to PBS treatment, 
highlighting different responses to the same cytokine in NK cells vs. other cell 
types. Heatmap for IFN-γ treatment is included as a comparison. Stat1 is known 
to be regulated by IFN-γ signaling. d, Violin plot showing Ifng gene expression 
in NK cells after each of the 86 cytokine treatments or PBS treatment. Samples 
with a high expression (>0.8 normalized expression units) are colored dark blue. 
e, Induction of IFN-γ signatures across cell types after each cytokine treatment. 
The IFN-γ signature is obtained for each cell type from the IFN-γ treatment. 
Expression of the signature is obtained from summing normalized expression 
units of all genes in the signature for each cell type. Significant (FDR < 0.01) 
responses are shown as squares, with color gradient representing average 
log2FC in each cytokine treatment relative to PBS (capped at 50), and size 
representing –log10 transformed FDR-adjusted P-value obtained from two-sided 
Wilcoxon rank-sum test. Cytokines inducing a high expression of Ifng are 
highlighted in gray in d and e. d and e are vertically aligned to illustrate that  
the cytokine treatments inducing an upregulation of Ifng in NK cells display  
a strong IFN-γ signature in other cell types.
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Extended Data Fig. 5 | B cell responses to cytokines: polarization states, 
subclusters, marker gene expression, and gene programs. a, Top, UMAP 
visualization of B cells for all cytokines, colored by polarization states; bottom, 
table with cell type polarization states (left column), single cytokine drivers 
(middle column), and top marker genes (right column); reproduced from Fig. 3 
for ease of reference. b, Pairwise Pearson correlation coefficients between 
polarization states. c, UMAP visualization of B cells shown independently for 
each cytokine treatment, colored by cytokine treatment (blue) or PBS treatment 
control (gray). d, UMAP visualization of B cells for all cytokine or PBS treatment; 
cells colored for B cell Louvain subclusters. e, Top overexpressed genes in each 
Louvain subcluster in d; color, column-scaled average expression; size of circle, 
percentage of cells in the subcluster expressing each gene. f-i, B cell responses 

to each cytokine stimulation. f, Fraction of cells per subcluster in each cytokine 
treatment. Colors represent subclusters defined in d. g, Enrichment of each 
subcluster in each cytokine treatment; size of circle, Bonferroni-adjusted P-value 
of hypergeometric test relative to PBS; black fills, P < 0.01. h, Row-normalized 
relative expression of representative marker genes of each polarization state in 
cytokine-treated vs. PBS-treated cells. i, Enrichment of B cell gene programs 
obtained from NMF analysis of all B cells in cytokine-treated cells relative to 
PBS-treated cells; size of circle, FDR-adjusted P-value from two-sided Wilcoxon 
rank-sum test; shade, effect size representing the mean difference in gene 
program weight. j, Top weighted genes in each gene program in i. k, Average 
gene program weight in each subcluster. Rows and columns were hierarchically 
clustered using the complete-linkage method on Euclidean distances.
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Extended Data Fig. 6 | NK cell responses to cytokines: polarization states, 
subclusters, marker gene expression, and gene programs. a, Top, UMAP 
visualization of NK cells for all cytokines, colored by polarization states; bottom, 
table with cell type polarization states (left column), single cytokine drivers 
(middle column), and top marker genes (right column); reproduced from Fig. 3 
for ease of reference. b, Pairwise Pearson correlation coefficients between 
polarization states. c, UMAP visualization of NK cells shown independently for 
each cytokine treatment, colored by cytokine treatment (blue) or PBS treatment 
control (gray). d, UMAP visualization of NK cells for all cytokine or PBS treatment; 
cells colored for NK cell Louvain subclusters. e, Top overexpressed genes in 
each Louvain subcluster in d; color, column-scaled average expression; size of 
circle, percentage of cells in the subcluster expressing each gene. f-i, NK cell 
responses to each cytokine stimulation. f, Fraction of cells per subcluster in each 

cytokine treatment. Colors represent subclusters defined in d. g, Enrichment 
of each subcluster in each cytokine treatment; size of circle, Bonferroni-
adjusted P-value of hypergeometric test relative to PBS; black fills, P < 0.01.  
h, Row-normalized relative expression of representative marker genes of  
each polarization state in cytokine-treated vs. PBS-treated cells. i, Enrichment 
of NK cell gene programs obtained from NMF analysis of all NK cells in cytokine-
treated cells relative to PBS-treated cells; size of circle, FDR-adjusted P-value 
from two-sided Wilcoxon rank-sum test; shade, effect size representing the mean 
difference in gene program weight. j, Top weighted genes in each gene program 
in i. k, Average gene program weight in each subcluster. Rows and columns 
were hierarchically clustered using the complete-linkage method on Euclidean 
distances.
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Extended Data Fig. 7 | cDC1 responses to cytokines: polarization states, 
subclusters, marker gene expression, and gene programs. a, Top, UMAP 
visualization of cDC1 cells for all cytokines, colored by polarization states; 
bottom, table with cell type polarization states (left column), single cytokine 
drivers (middle column), and top marker genes (right column); reproduced 
from Fig. 3 for ease of reference. b, Pairwise Pearson correlation coefficients 
between polarization states. c, UMAP visualization of cDC1 cells shown 
independently for each cytokine treatment, colored by cytokine treatment 
(blue) or PBS treatment control (gray). d, UMAP visualization of cDC1 cells  
for all cytokine or PBS treatment; cells colored for cDC1 Louvain subclusters.  
e, Top overexpressed genes in each Louvain subcluster in d; color, column-
scaled average expression; size of circle, percentage of cells in the subcluster 
expressing each gene. f-i, cDC1 responses to each cytokine stimulation.  

f, Fraction of cells per subcluster in each cytokine treatment. Colors represent 
subclusters defined in d. g, Enrichment of each subcluster in each cytokine 
treatment; size of circle, Bonferroni-adjusted P-value of hypergeometric test 
relative to PBS; black fills, P < 0.01. h, Row-normalized relative expression of 
representative marker genes of each polarization state in cytokine-treated vs. 
PBS-treated cells. i, Enrichment of cDC1 gene programs obtained from NMF 
analysis of all cDC1 cells in cytokine-treated cells relative to PBS-treated cells; 
size of circle, FDR-adjusted P-value from two-sided Wilcoxon rank-sum test; 
shade, effect size representing the mean difference in gene program weight.  
j, Top weighted genes in each gene program in i. k, Average gene program 
weight in each subcluster. Rows and columns were hierarchically clustered 
using the complete-linkage method on Euclidean distances.
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Extended Data Fig. 8 | Macrophage (Marco+) responses to cytokines: 
polarization states, subclusters, marker gene expression, and gene 
programs. a, Top, UMAP visualization of Macro+ macrophages for all cytokines, 
colored by polarization states; bottom, table with cell type polarization states 
(left column), single cytokine drivers (middle column), and top marker genes 
(right column); reproduced from Fig. 3 for ease of reference. b, Pairwise Pearson 
correlation coefficients between polarization states. c, UMAP visualization of 
macrophages shown independently for each cytokine treatment, colored by 
cytokine treatment (blue) or PBS treatment control (gray). d, UMAP visualization 
of macrophages for all cytokine or PBS treatment; cells colored for macrophage 
Louvain subclusters. e, Top overexpressed genes in each Louvain subcluster in 
d; color, column-scaled average expression; size of circle, percentage of cells  
in the subcluster expressing each gene. f-i, Macrophage responses to each 

cytokine stimulation. f, Fraction of cells per subcluster in each cytokine 
treatment. Colors represent subclusters defined in d. g, Enrichment of each 
subcluster in each cytokine treatment; size of circle, Bonferroni-adjusted P-value 
of hypergeometric test relative to PBS; black fills, P < 0.01. h, Row-normalized 
relative expression of representative marker genes of each polarization state  
in cytokine-treated vs. PBS-treated cells. i, Enrichment of macrophage gene 
programs obtained from NMF analysis of all macrophages in cytokine-treated 
cells relative to PBS-treated cells; size of circle, FDR-adjusted P-value from  
two-sided Wilcoxon rank-sum test; shade, effect size representing the mean 
difference in gene program weight. j, Top weighted genes in each gene program 
in i. k, Average gene program weight in each subcluster. Rows and columns 
were hierarchically clustered using the complete-linkage method on Euclidean 
distances.
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Force-directed network illustrating similar vs. unique immune cell polarization states

ISG DC activation

Extended Data Fig. 9 | A comparative global view of the 66 major polarization 
states across immune cell types. a, Heatmap showing pairwise Jaccard 
similarity index between immune cell polarization states defined in Fig. 3, 
Extended Data Figs. 5–8, and Supplementary Figs. 2–11. Jaccard similarity index 
is defined based on genes with >0.5 log2 fold difference in each polarization 
state compared to PBS-treatment of the same cell type. Cell types are marked 
by colors on the edges of the heatmap. Cytokine drivers are indicated in square 
brackets. Groups of similar polarization states are annotated above the heatmap. 

b, Force-directed graph visualization of Jaccard similarity index between 
immune cell polarization states to highlight unique polarization states. Vertices 
represent polarization states. A line connects a pair of vertices that have Jaccard 
similarity index > 0.15. Unconnected states are randomly positioned in the 
force-directed graph. A larger circle represents a more unique polarization 
state, based on a lower median Jaccard similarity index with other polarization 
states. Cell types are marked by colors indicated in a.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | A map of cytokine receptor expression by cell type 
and additional information on the cytokine production map. a, Correlation 
between cell type abundance and number of distinct cytokine genes expressed; 
added B cells and T cells (hollow circles) to Fig. 4b. B cell and T cell abundances 
are estimates integrated from literature, all other cell types are obtained from 
PBS-treated conditions in lymph nodes from our dictionary. Smoothed 
conditional means and 95% confidence intervals from a fitted linear model are 
shown. b, Robustness analysis for Fig. 4b; showing correlations between the 
abundance of each cell type and the numbers of distinct cytokine genes 

expressed in the cell type under various cutoff thresholds for a cytokine gene 
to be considered expressed. Both Pearson and Spearman correlation coefficients 
are shown. c, A map of cytokine receptor expression by cell type. The map 
includes signaling receptors, decoy receptors, as well as receptors that form 
complexes with cytokines. The values are normalized to the maximum expression 
in each row. d, Expression of cytokine (left) or receptor (right) genes in cDC1s 
following PBS or cytokine treatment. * represents FDR-adjusted P < 0.05 for 
significant change in expression relative to PBS control.
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Extended Data Fig. 11 | A draft network of cytokine-mediated cell-cell 
interactome. a, An interactome network showing cell-cell communication 
potential based on cytokine expression and the impact of cytokine on each  
cell type. Lime box, source nodes or cell types secreting cytokines; red box, 
cytokines mediating the communication; blue box, sink nodes or cell types 
responding to cytokines. A path is established between source and sink cell 
types through a cytokine if the source cell type produces the cytokine 
(normalized expression > 0.1) and the sink cell type shows a significant 
response to the cytokine (>10 DEGs in the cytokine signatures). Asterisks 

indicate heteromeric cytokines or cytokine complexes. Rare cell types, 
including basophils, BECs, LECs, and FRCs, were not analyzed for the response, 
but were aggregated across treatment conditions to generate the production 
map. b-v, The interactome using same conventions as in a plotted separately  
by source node for ease of visualization, shown for b, B cell; c, CD4+ T cell;  
d, CD8+ T cell; e, γδ T cell; f, Treg; g, NK cell; h, ILC; i, pDC; j, cDC1; k, cDC2;  
l, MigDC; m, Langerhans cell; n, eTAC; o, macrophage; p, monocyte; q, neutrophil; 
r, mast cell; s, basophil; t, BEC; u, LEC; v, FRC. j and v are reproduced from Fig. 4c.
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Extended Data Fig. 12 | IREA software output on mouse tumor samples 
following anti-PD-1 treatment and on human blood samples in severe 
COVID-19. a-c, Additional IREA analyses on mouse tumor samples following 
anti-PD-1 treatment relative to the control. a, IREA radar plots showing 
enrichments of immune cell polarization states described in Fig. 3. b, To improve 
the interpretability of the enrichment scores in Fig. 5d, top genes contributing 
to the IL-12 enrichment in NK cells are shown. Bar length represents gene 
expression fold change; left: changes in gene expression in NK cells in response 
to IL-12 in the Immune Dictionary; right: changes in gene expression in NK  
cells after anti-PD-1 treatment in the tumor dataset (red: upregulated relative 
to control; blue: downregulated relative to control). c, Inferred cell-cell 
communication network mediated by cytokines. The plot on the top is 

reproduced from Fig. 5e for ease of reference. Individual cytokine plots 
following the same visualization scheme are shown below. d, IREA analysis on 
peripheral blood cells collected from severe COVID-19 patients relative to 
healthy volunteers. Top, IREA compass plot showing enrichment scores for 
each of the 86 cytokines in B cells. Bar length represents enrichment score, 
shade represents FDR adjusted P-value (two-sided Wilcoxon rank-sum test), 
with darker colors representing more significant enrichment (red: enriched in 
ventilated COVID-19 patients, blue: enriched in healthy control). Cytokines 
with receptors expressed are indicated by black filled boxes. Bottom, IREA radar 
plots showing enrichments of immune cell polarization states in monocytes,  
B cells, and CD4+ T cells. The reference polarization states are described in Fig. 3.
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The Immune Dictionary interactive web portal can be accessed at www.immune-dictionary.org, where the single-cell transcriptomic data generated in this study are 
made publicly available through a user-friendly interface. Raw fastq files of the data are available on Gene Expression Omnibus (GEO) under the accession number 
GSE202186.  
In addition, the following publicly available datasets were used. The MSigDB database was used for annotating biological processes and can be accessed at https://
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www.gsea-msigdb.org/gsea/msigdb. Mouse and human homolog gene conversion was based on the NCBI HomoloGene database (release 68). The mouse tumor 
dataset is available on GEO under the accession number GSE119352. The human COVID-19 dataset is available on https://www.covid19cellatlas.org.
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Life sciences study design
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Sample size Transcriptomic profiles of 386,703 independent cells were measured from 272 mice. At least 3 independent mice were used for each 
condition to allow for standard statistical tests. 

Data exclusions Pre-established quality control criteria were used: we included cell barcodes with >500 genes, >1,000 UMIs, and <10% mitochondrial gene 
content. Multiplets (more than one cells mapped to the same barcode) that arise from the microfluidics technology were identified based on 
the Methods provided and were excluded from downstream analyses. 

Replication For each condition, at least 3 independent animals were used. The results were reproducible across animal replicates. 

Randomization Animals of the same sex, age group, and genetic background were randomly allocated to the experimental groups. The animal replicates of 
each condition were randomized into different experimental batches to ensure that batch effects, if any, do not influence biological 
interpretations. 

Blinding The investigators performing animal experiments and RNA-sequencing were blinded from each other during data collection. Single-cell 
analysis was performed computationally in a completely unbiased fashion. 

Reporting for specific materials, systems and methods
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system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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n/a Involved in the study
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Animals and other organisms
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Clinical data
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Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used TotalSeq™ anti-mouse hashtag 1-7 antibodies (BioLegend A0301-A0307; clones: M1/42, 30-F11; catalogue numbers: 155801, 

155803, 155805, 155807, 155809, 155811, 155813).   
Biotin anti-mouse CD19 (BioLegend; clone: 6D5; catalogue number: 115504). 
Biotin anti-mouse CD3 (BioLegend; clone: 17A2; catalogue number: 100244). 
TruStain fcX™ anti-mouse CD16/32 (Biolegend; clone: 93; catalogue number: 101320).

Validation TotalSeq™ antibodies were validated in Stoeckius, M., et al, Genome Biology (2018).  
All antibodies used are commercially available and have been validated by the manufacturer and prior publications. Validation data 
are available on BioLegend's website. 

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Wild type female C57BL6/J mice at 11-15 weeks were studied. Mice were maintained on a 12-hour light/dark cycle at room 
temperature (21°C ± 2°C) and 40% ± 10% humidity. 
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Wild animals No wild animals were used in the study.

Field-collected samples No field-collected samples were used in the study.

Ethics oversight All experiments were reviewed and approved by the Broad Institute’s Institutional Animal Care and Use Committee (IACUC).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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