
Vol:.(1234567890)

Phenomics (2023) 3:576–585
https://doi.org/10.1007/s43657-023-00108-y

1 3

ARTICLE

Performance of 18F‑DCFPyL PET/CT in Primary Prostate Cancer 
Diagnosis, Gleason Grading and D'Amico Classification: 
A Radiomics‑Based Study

Yuekai Li1   · Fengcai Li2   · Shaoli Han4   · Jing Ning4   · Peng Su1   · Jianfeng Liu1   · Lili Qu1   · Shuai Huang1   · 
Shiwei Wang4   · Xin Li1   · Xiang Li3 

Received: 1 November 2022 / Revised: 6 April 2023 / Accepted: 13 April 2023 / Published online: 25 July 2023 
© International Human Phenome Institutes (Shanghai) 2023

Abstract
This study aimed to investigate the performance of 18F-DCFPyL positron emission tomography/computerized tomography 
(PET/CT) models for predicting benign-vs-malignancy, high pathological grade (Gleason score > 7), and clinical D'Amico 
classification with machine learning. The study included 138 patients with treatment-naïve prostate cancer presenting positive 
18F-DCFPyL scans. The primary lesions were delineated on PET images, followed by the extraction of tumor-to-background-
based general and higher-order textural features by applying five different binning approaches. Three layer-machine learning 
approaches were used to identify relevant in vivo features and patient characteristics and their relative weights for predicting 
high-risk malignant disease. The weighted features were integrated and implemented to establish individual predictive models 
for malignancy (Mm), high path-risk lesions (by Gleason score) (Mgs), and high clinical risk disease (by amico) (Mamico). The 
established models were validated in a Monte Carlo cross-validation scheme. In patients with all primary prostate cancer, 
the highest areas under the curve for our models were calculated. The performance of established models as revealed by the 
Monte Carlo cross-validation presenting as the area under the receiver operator characteristic curve (AUC): 0.97 for Mm, 
AUC: 0.73 for Mgs, AUC: 0.82 for Mamico. Our study demonstrated the clinical potential of 18F-DCFPyL PET/CT radiom-
ics in distinguishing malignant from benign prostate tumors, and high-risk tumors, without biopsy sampling. And in vivo 
18F-DCFPyL PET/CT can be considered a noninvasive tool for virtual biopsy for personalized treatment management.

Keywords  Prostate cancer · 18F-DCFPyL positron emission tomography/computerized tomography · Radiomics · Three 
layer-machine learning · High-risk tumor
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SMOTE	� Synthetic minority over-sampling technique
IBSI	� Imaging biomarker standardization initiatives
MC	� Monte Carlo
ML	� Machine learning
GLCM	� Gray-level cooccurrence matrix
GLDZM	� Gray-level distance zone matrix
NGLDM	� Neighboring grey level dependence matrix
NGTDM	� Neighborhood grey tone difference matrix
GLRLM	� Gray-level run-length matrix
BYS	� Bayesian classification
MGWC​	� Multi-Gaussian weighting
RF	� Random forest
SVM	� Support vector machine
WHO	� World Health Organization
ISUP	� International Society of Urological Pathology
UICC	� Union for International Cancer Control
ACC​	� Accuracy
SENS	� Sensitivity
SPEC	� Specificity
PPV	� Positive predictive value
NPV	� Negative predictive value
AUC​	� Area under the receiver operating character-

istic curve
DREs	� Digital rectal examinations
Mm	� Predictive models for malignancy
Mgs	� Predictive models for high path-risk lesions 

(by Gleason score)
Mamico	� Predictive models for high clinical risk dis-

ease (by amico)
ROI	� Region of interest

Introduction

Prostate cancer (PCa) is the second leading lethal cancer in 
men (McGuire 2016). In clinical routine, identification of 
malignant prostate tumors and path-risk stratification of PCa 
patients is of great significance for subsequent management, 
especially in the context of personalized diagnosis and treat-
ment (Bratan et al. 2013; Preisser et al. 2020).

The determination of prostate and clinical aggressive 
phenotypes in PCa remains a clinical challenge. Currently, 
clinical PCa screening relies on the serum level of prostate-
specific antigen (PSA) (D'Amico et al. 1998). The biopsy 
Gleason score (GS) is the most important tissue-based 
marker for prostate cancer patients. However, the major chal-
lenges in biopsy-based pathological stratification of prostate 
cancer includes sampling error (e.g., failing to biopsy the 
area with the highest GS) and variations in biopsy interpreta-
tion. Clinical risk stratification in patients with primary pros-
tate cancer is mainly built on clinical stage, PSA, and GS 

on transrectal biopsy sampling, which might inadequately 
demonstrate the heterogeneity of tumors (Hsieh et al. 2022). 
Biopsy-derived GS drives risk stratification and treatment 
management for PCa patients and the Gleason grading sys-
tem remains the most powerful prognostic predictor for 
patients with prostate cancer. For PCa patients stratifica-
tion, D'Amico classification was developed according to the 
clinical tumor node metastasis (TNM) stage, biopsy GS, and 
preoperative prostate-specific antigen level in clinical prac-
tice (Litwin and Tan 2017; Valdez-Vargas et al. 2021). This 
comprehensive analysis could help clinicians in the treat-
ment management of patients with PCa (Ghezzo et al. 2022).

Despite some advantages in the diagnosis and staging 
of PCa (Tan et al. 2022), conventional imaging techniques, 
such as computed tomography (CT), magnetic resonance 
imaging (MRI), are limited due to their low specificity, 
which usually leads to false-positive results and unneces-
sary biopsies (Borofsky et al. 2018; Le et al. 2015). In this 
scenario, positron emission tomography (PET) has played an 
increasingly vital role via multiple disease-targeting tracers. 
Of note, radionuclide-labeled prostate-specific membrane 
antigen (PSMA) has been widely applied to the localization 
of primary PCa and metastasis. This is because PSMA is 
overexpressed on most PCa epithelial cells and its expres-
sion level strikingly elevates with higher carcinoma grading 
and staging or restaging (Kyriakopoulos et al. 2018; Obek 
et al. 2017; Perera et al. 2016).

Radiomics based on PET images has been well estab-
lished as a promising quantitative approach to indicate the 
heterogeneity within tumors and help classify risk-based 
patients in diverse clinical settings (Chen et  al. 2017a, 
2017b; Lambin et al. 2017; Perandini et al. 2016). Further-
more, radiomics features, which include intensity, shape, 
texture and wavelet, can provide comprehensive information 
such as cancer phenotypes, the tumor microenvironment, 
and so on (Gatenby et al. 2013). Strikingly, with the combi-
nation of the patient-derived data, the imaging-based radi-
omics' capacity will be augmented in the robust improve-
ment of the clinical decision support system (CDSS) (Aerts 
2016). Advances in machine learning modeling as applied to 
clinical challenging may enable the discovery and prediction 
of clinical cancer pathological and biological characteristics.

In this present study, we aim to explore the predictive 
performance of radiomics in the risk stratification of PCa 
patients based on 18F-DCFPyL PET/CT imaging. Through 
machine learning analysis, we seek to screen out the radiom-
ics features to differentiate the malignancy of PCa and strat-
ify the primary lesions by GS, and D'Amico risk into low/
intermediate, vs high-risk of biochemical recurrence after 
surgery based on clinical TNM stage, GS, and PSA level.
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Materials and Methods

Patients Data

Inclusion criteria for this study were: (1) Abnormally 
elevated serum PSA value. (2) Prostate lesions were 
found or not found by other examinations (digital rectal 
examination, ultrasound, CT, MRI, etc.). (3) Before PET 
examinations, the patients had not received chemotherapy, 
radiotherapy, endocrine therapy or other therapies. Sub-
jects who met the above three criteria simultaneously are 
included in our study. The patients without exhibiting rel-
evant radiotracer uptake above background in the prostate 
on 18F-DCFPyL PET/CT imaging were excluded. This 
was a monocentric pilot study approved by the Ethical 
Committee of Qilu Hospital Shandong University. Writ-
ten informed consents were obtained from all the patients.

18F‑DCFPyL PET/CT Imaging

All the patients underwent 18F-DCFPyL PET/CT imaging 
without fasting. All PET/CT examinations were performed 
at a whole-body PET/CT scanner (General Electric, Dis-
covery STE16). 18F-DCFPyL, the PSMA-targeting tracer 
produced by the same PET/CT center, was intravenously 
injected into patients at a standardized dose of 3.7 MBq/
kg. After 18F-DCFPyL administration, the patients rested 
in a quiet room for about 60 min before scanning.

The image acquisition ranged from parietal to femoral. 
Sixteen row helical CT scan row helical CT scan was used 
with the following conditions: tube voltage (120 kv), tube 
current (300 mA), 3.25 mm thick. PET collection time of 
every bed was three minutes, the whole body scanning 
needed six to seven beds. Using the viewpoint method, 
the scan data was reconstructed into CT, PET and PET/CT 
fusion images. PET matrix was 128×128, and CT matrix 
was 512×512. The voxel size was 3.75×3.75×3.75 mm3.

Image Analysis

The image analysis was done by two board-certified physi-
cians with four and six years of experience in reading PET/
CT. After that, they used LIFEx software Version 6.3.0. 
to delineate prostate lesions as volumes of interest (VOIs) 
on PET images, who are blind to each other (Nioche et al. 
2018). The initial lesion delineations were cross-examined 
and corrected manually, the final VOIs were confirmed 
by a senior nuclear medicine specialist together with a 
board-certified urologist. To normalize the standardized 
uptake max value (SUVmax), an extra reference loca-
tion in the gluteus muscle was contoured, and ratio of 

standardized uptake max value (SUVR, lesion SUVmax/
Gluteus SUVmax) was calculated.

The PET/CT images were primarily evaluated by visual 
inspection, we evaluated the images presenting metal arti-
facts and respiratory mobility. Then we analyzed the char-
acteristics of the PET/CT images (such as location, mor-
phology, number, density, and PSMA uptake level) and then 
selected typical images. Subsequently, through quantitative 
analysis, regions of interest (ROIs) of lesions were manually 
placed. Conventional standardized uptake values, includ-
ing standardized uptake max value (SUVmax), standard-
ized uptake mean value (SUVmean), total volume of PSMA 
(PSMA-TV), total lesion of PSMA (TL-PSMA), standard-
ized uptake peak value (SUVpeak), SUVR, were merged with 
the extracted 137 radiomics features to compose a 143 long 
feature vector for each patient.

Radiomics Analysis

Patients

For the malignancy differentiation, the input dataset was 
composed of 138 patients, including 109 prostate cancer 
patients and 29 patients with benign prostate disease. All 
patients were treated according to guideline recommenda-
tions. According to the institution's standard pathologic 
procedures, all the histological samples were processed 
according to the institution's standard pathologic procedures. 
Grading and staging were performed, respectively, accord-
ing to the International Society of Urological Pathology 
of World Health Organization (WHO/ISUP) 2016 system 
and Union for International Cancer Control (UICC) TNM 
classification.

For the risk stratification, 109 prostate cancer patients 
were divided into two subgroups according to the GS. The 
subgroup with GS > 7 included 59 patients, while the sub-
group with GS ≤ 7 included 50 patients, and these prostate 
cancer patients were also divided into another two subgroups 
according to D'Amico Score, including 34 patients with low-
medium and 75 patients with high D'Amico grades.

For the malignancy differentiation analysis and D'Amico 
grading analysis, to avoid class imbalance, the Synthetic 
Minority Over-sampling Technique (SMOTE) was employed 
to synthesize new instances of the minority class between 
preexisting class members (Wang et al. 2021).

Feature Extraction

Following the Imaging Biomarker Standardization Initiatives 
(IBSI) guidelines, radiomics features with “very strong” and 
“strong” consensus values were extracted from each image 
using an in-house pipeline. Radiomics features extracted 
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from primary lesions were used for machine learning (ML) 
modeling. A total of 137 radiomics features were extracted 
from each image (Supplementary figures). Finally, the 137 
radiomics features combined with patient PSA serum level 
and conventional SUV PET (SUVmax, SUVmean, PSMA-TV, 
TL-PSMA, SUVpeak, and SUVR) were merged to form fea-
ture vector.

The image was resampled to 2.0 × 2.0 × 2.0 uniform voxel 
resolution. Following the Imaging Biomarker Standardiza-
tion Initiatives (IBSI) guidelines, radiomics features with 
“very strong” and “strong” consensus values were extracted 
from each image to support biomarker standardization 
and study repeatability. The 137 radiomics features were 
extracted from each image including Gray-level cooccur-
rence matrix (GLCM), Gray-level distance zone matrix 
(GLDZM), Neighboring grey level dependence matrix 
(NGLDM), Neighborhood grey tone difference matrix 
(NGTDM), Gray-level run-length Matrix (GLRLM), inten-
sity and morphology features.

Feature Redundancy Reduction

Features collected from patients were normalized and redun-
dant features were removed using correlation matrix analy-
sis. The features with an absolute value of Pearson correla-
tion coefficient greater than 0.85 are considered redundant, 
and the data after removing redundant features are used for 
the next machine learning modeling (Supplementary files). 
Preprocessing resulted in average 26 features across all 
Monte Carlo (MC) folds in the Mm, and average 19 fea-
tures and 21 features across all MC folds in Mgs and Mamico, 
respectively.

Machine Learning and Cross‑Validation

Preprocessing step algorithms as well as their parameter 
values performed in all Monte Carlo folds before ML. To 
minimize the effect of method bias and improve the predic-
tion performance, Ensemble Learning was used to build the 
model, including the following four algorithms: Bayesian 
classification (BYS), multi-Gaussian weighting (MGWC), 
random forest (RF) and support vector machine (SVM). 
The integrated learning model was divided into three layers. 
Meta-training dataset is generated by evaluating the training 
results of the first layer for the second layer training, and the 
final model decision was obtained by weighted tickets of 
the predicted results of the three models. The importance 
of each feature in the prediction model was estimated by 
calculating an R-squared ranking on each cross-validation.

Each model was cross-validated using 100-fold Monte 
Carlo, using a sample ratio of 80% for the training set and 
20% for the validation set. Each cross-validation was re-
sampled to ensure that the sample labels in the validation 

set were balanced. Confusion Matrix analysis was used to 
estimate model performance, including accuracy (ACC), 
sensitivity (SENS), specificity (SPEC), positive predictive 
value (PPV), negative predictive value (NPV), and area 
under the receiver operating characteristic curve (AUC).

Various machine learning algorithms were established 
in each fold to minimize the effect of algorithm bias. Each 
model was trained by randomly selecting 80% of the pre-
processed training data per MC fold.

Meta-training sets were created by evaluating the sam-
ples of the preprocessed training set in each MC fold by 
the trained models in the first ML layer. To create the 
meta-training set, the prediction results of each trained 
model in the first ML layer were handled as feature values 
of the given training sample. The meta-training set was 
the input for training the second ML layer prediction mod-
els. These models were trained to identify patterns in the 
prediction of the first ML layer models to result in mixed 
super learners.

A combination of the prediction results of the second 
ML layer models was performed by weighted majority vot-
ing to provide the final prediction of the model scheme. 
The weighting of each second ML Layer model was cal-
culated based on training performance. In addition, ML 
Layer second models having less training performance 
than the median of all the second ML layer model training 
performances had a weight zero in the final vote (Figs. 1 
and 2). All detailed ML-methods were described in sup-
plementary files.

Results

Patients

One hundred and thirty-eight patients were enrolled in the 
study; in these patients, PET/CT, PSA values, histopathol-
ogy, GS and D'Amico scores were documented (Table 1).

Cross‑Validation Performance

The cross-validated malignancy differentiation, GS and 
D'Amico risk stratification prediction model performances 
across all MC-folds yielded in average of 96%, 69%, 74% 
sensitivity, 96%, 70%, 86% specificity, 97%, 70%, 84% 
positive predictive value, 97%, 70%, 78% negative pre-
dictive value and 96%, 69%, 80% accuracy, respectively 
(Fig.  3). The area under the receiver operating curve 
(AUC) of the models was 0.97, 0.73, and 0.82, respec-
tively (Fig. 4).
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Fig. 1   Radiomics pipeline depicts the data processing and operations 
to build a radiomics ML model with validation. Firstly, manual seg-
mentation of ROI on PET/CT. Then feature extraction was performed 

after preprocessing. Data analysis was  performed using machine 
learning. A predictive, prognostic and diagnostic model was built and 
validated

Fig. 2   100-fold Monte Carlo 
cross-validation. Each model 
was cross-validated using 
100-fold Monte Carlo, using 
a sample ratio of 80% to 
20% for the training set and 
validation set. BYS, Bayesian 
Classifier; MGWC, Multi-
Gaussian Weighted Classifier; 
RF, Random Forest Classifier; 
SVM, Support Vector Machine 
Classifier
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Feature Importance Ranking

Feature ranking and selection were performed as part of 
the data preprocessing steps of each fold. The final feature 
importance was calculated as the mean of all feature rank-
ings across the MC folds. The three most predictive fea-
tures of Mm were PET.4.05.ivh.V10 (8.41%), PET.4.05. 

cm.inv.diff.norm (7.27%) and PET.4.05.ih.min.grad (7.05%) 
(Fig. 5a). In the Mgs prediction model, three most predic-
tive features were PET.4.05.dzm.zd.entr (9.21%), PET.4.05.
cm.corr (8.74%) and PET.4.05.morph.av (7.76%) (Fig. 5b). 
While in the prediction model of Mamico, the most predic-
tive feature was PET.4.05.dzm.zd.entr (8.48%), followed 
by PET.4.05.ih.entropy (6.09%) and PET.4.05.dzm.zdnu 
(5.15%) (Fig. 5c). Note that the details of the highest-rank-
ing 30 features are shown in the supplemental files. Repre-
sentative three patients with benign prostate hyperplasia and 
low-grade and high-grade prostate cancer were illustrated, 
the corresponding values of the highest important features 
were recorded (Fig. 6).

Discussion

PSMA PET imaging shown promise for patient screening 
and management in metastatic castration-resistant prostate 
cancer prior to radioligand therapy. Although PSMA PET 
imaging is appreciated for playing a vital role in diagnosing 
and grading prostate cancer, but it has been restricted to 
baseline characterization and grading in the primary tumor. 
Furthermore, conventional biopsy-derived Gleason grade 
frequently underestimates the pathological risk. The radi-
omics ML-analysis of PSMA PET imaging is potentially 
feasible for tailoring PCa patients' management strategies 
quantitatively and effectively in our previous findings. In 
this study, we recruited 79% of patients with a diagnosis of 
malignancy and 54.1% patients with GS > 7 disease based on 
conventional TRUS-biopsies we constructed and validated 
the feasibility of machine-learned radiomics models built on 
18F-PSMA PET/CT for predicting prostate lesion-specific 
benign vs malignancy and low vs high risk.

Application of radiomics ML models to patients with 
primary prostate cancer demonstrated model performance 
that may enable the prediction of clinically aggressive dis-
ease, which showed excellent cross-validation performances 
for malignancy differentiation (AUC 0.97), GS (AUC 0.73) 

Table 1   Characteristics of the 138 patients with primary prostate can-
cer involved in this study

Patient characteristics (n = 138) Value

Age (years), median (IQR) 67.4 (64–73)
PSA (ng/mL), median (IQR) 15.8 (8.0–25.2)
Pathologic results, n (ratio%) 138
 Adenocarcinoma 109 (79)
 Hyperplasia 26 (19)
 Inflammation 3 (2)

Pathologic T staging, n (ratio%) 109
 T1c–T2a 25 (23)
 T2b 25 (23)
 ≥ T2c 59 (54)

Primary Gleason pattern, n (ratio%) 109
 3 23 (21)
 4 61 (56)
 5 25 (23)

Secondary Gleason pattern, n (ratio%) 109
 3 35 (32)
 4 53 (50)
 5 21 (18)

Total Gleason Score, n (ratio%) 109
 6 6 (5)
 7 44 (40)
 ≥ 8 59 (55)

Amico Score, n (ratio%) 109
 0 1 (1)
 1–3 33 (29)
 4–12 75 (70)

Fig. 3   The cross-validated performance of a Mm, b Mgs, c Mamico. 
SNS, Sensitivity; SPC, Specificity; PPV, Positive Predictive Value; 
NPV, Negative Predictive Value; ACC, Accuracy; AUC, Area Under 

the Receiver Operating Characteristic Curve. Performance values as 
percentages (%). Detailed values were listed in supplementary files
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and D'Amico risk stratification (AUC 0.82). It resolved that 
radiomics features are of prominent significance in relation 
to the tumor risk in PCa patients, which could be employed 
well as a non-invasive way to predict the aggressiveness for 
the distinguishment of different PCa subgroups with improv-
ing the accuracy of prediction. Our current model potentially 
provides a non-invasive approach for PCa screening that 
may reduce unnecessary prostate biopsies and subsequent 
patients' management.

Conventional diagnostic methods, e.g., serum PSA test, 
digital rectal examinations (DREs), and prostate biopsy, 
inevitably have inherent major deficiencies. The main 

deficiencies are that they may lead to overdiagnosis of pros-
tate cancer and misleading diagnosis of clinically significant 
cancer. 18F-DCFPyL PET, as a novel noninvasive method, 
has been recommended for an examination of prostate cancer 
and proved to be beneficial in the detection of malignancy. 
PSMA PET was helpful for disease staging and risk strati-
fication of prostate cancer, and its combination with several 
biomarkers might reduce unnecessary biopsies. Moreover, 
PSMA PET contains molecular information, which has not 
attracted enough attention in clinical practice. Recently, arti-
ficial intelligence, such as radiomics, has shown great poten-
tial for evaluating the aggressiveness of multiple tumors.

Fig. 4   The cross-validated Receiver Operator Characteristics (ROC) 
curves of a Mm, b Mgs, c Mamico. The thick blue line corresponds to 
the mean ROC curve, while the light blue shaded area represents the 
spread of all 100 ROC curves generated across the validation folds. 

AUC, Area Under the Receiver Operating Characteristics Curve 
(mean of all 100 AUCs); FPR, False Positive Rate; TPR, True Posi-
tive Rate

Fig. 5   The 30 most predictive features of a Mm, b Mgs, c Mamico. Detailed feature values are listed in supplemental files
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For lesional risk assessment, the radiomics features based 
on PET come up significant with superiority in the impor-
tance ranking list, however, conventional uptake values are 
not a significant indicator to differentiate the malignant and 
high-risk tumor (both defined by GS or D'Amico grading) 
from a variety of prostate diseases, even conventional imag-
ing parameters have been widely acknowledged to have the 
potential to evaluate aggressiveness.

Our results indicate that the in-vivo Gleason scoring can 
accurately stratify the PCa patients with discerned risks as 
the alternative to the biopsy-based score. Effective as it is 
on treatment planning and pathology scoring is limited in 
assessing the whole prostate and the characterization of the 
tumor heterogeneity as it is usually sampled from a single 
biopsy site (Hatt et al. 2017). Besides, our published risk 
classification systems have been demonstrated to potentially 
grade prostate cancer patients into the wrong groups (Papp 
et al. 2021). So, the high-throughput non-invasive approach 
could enhance the risk stratification of primary prostate can-
cer based on PET/CT radiomics and machine learning.

Non-prominent value of PSA on GS grading might be 
related to its nonspecific nature and the relatively low PSA 
values in recruited patients. Moreover, the patients with 
high- differentiated prostates and PSMA expression may 
have present PSA levels (Ladjevardi et al. 2013; Sarikaya 
et al. 2014).

There are some limitations to our study. Although this 
automated ML model has shown promise in accurately grad-
ing prostate tumor, which might achieve pathologist-level 
performance. The sample size is relatively small from a 
mono-medical center, which explains our case distribution 
of 80% for training the model and 20% for the validation set. 
Further study with a large sample size will be conducted 
for model validation with the cooperation of other medical 
centers. Secondly, our cohort includes patients with prostate 
adenocarcinoma, benign prostate hyperplasia, and prosta-
titis, which is necessary for malignancy differentiation but 
comparably heterogeneous for modeling. Furthermore, an 
alternative strategy for discriminant analysis using the k-fold 
strategy to split data into training and validation sets was 
warranted in future evaluation (Laudicella et al. 2022).

Conclusion

We developed the ML models based on 18F-DCFPyL PET/
CT radiomics as a noninvasive approach for identifying 
malignant and relative high-risk primary tumors. We also 
demonstrated an independent prognostic model for hormo-
nal therapy, which can be considered a noninvasive tool for 
individual treatment management. Our findings should be 
further validated by future larger multicenter studies.

Fig. 6   Representative 18F-DCF-
PyL PET/CT scans of three 
patients who presented prostate 
hyperplasia, low-medium and 
high Gleason grade tumors
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