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a b s t r a c t

Advances in transcriptomic technologies have deepened our understanding of the cellular gene expression 
programs of multicellular organisms and provided a theoretical basis for disease diagnosis and therapy. 
However, both bulk and single-cell RNA sequencing approaches lose the spatial context of cells within the 
tissue microenvironment, and the development of spatial transcriptomics has made overall bias-free access 
to both transcriptional information and spatial information possible. Here, we elaborate development of 
spatial transcriptomic technologies to help researchers select the best-suited technology for their goals and 
integrate the vast amounts of data to facilitate data accessibility and availability. Then, we marshal various 
computational approaches to analyze spatial transcriptomic data for various purposes and describe the 
spatial multimodal omics and its potential for application in tumor tissue. Finally, we provide a detailed 
discussion and outlook of the spatial transcriptomic technologies, data resources and analysis approaches to 
guide current and future research on spatial transcriptomics.
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1. Introduction

Multicellular organisms, including human beings, are composed 
of tissues and organs, which are all specialized in a single biological 
process and are composed of a large diversity of cells. Although 
hundreds of types of cells that comprise multicellular organisms all 
share the same genome, their gene expression patterns can be quite 
distinct. This difference is caused not only by internal gene regula
tion but also by signals from the external tissue microenvironment. 
The development of transcriptomic technologies from bulk RNA 
sequencing to single-cell RNA sequencing (scRNA-seq) [1,2] ad
vances knowledge of cellular gene expression to the single-cell level. 
These transcriptomic sequencing techniques have accumulated a 
wealth of information on cell type-specific gene regulation, but the 
original tissue structure is inevitably destroyed. Hence, the single 
cells in the suspension lose the spatial location information of tissue, 
which leads to changes in gene expression profiles of some single 
cells during the enzymatic hydrolysis process or after leaving the 
specific microenvironment. Additionally, certain cells of special 
morphology, such as neurons and glial cells with complex structures 
in the brain, are difficult to access by tissue enzymolysis [3,4]. The 
connection between individual cells is still broken, which is difficult 
to restore the real sample state and leads to a limited understanding 
of the interactions between cells and the external environment. 
Therefore, a series of spatial transcriptomic technologies have been 
developed to profile the expression of genes in tissues more com
prehensively and intuitively, which were chosen as the most valu
able annual method of 2020 by Nature Methods [5].

Spatial transcriptomic technology is used to parse RNA-seq data 
at the spatial level, which can simultaneously obtain the spatial 
context and transcriptional pattern of cells to improve our under
standing of tissue architecture. As the basic units of an organism, 
cells interact with the microenvironment at a specific spatial loca
tion to play their specific biological functions, so spatial location 
information is particularly important for studying and 

understanding the genesis mechanism of cell biology [6], tumor 
biology [7], developmental biology [8] and other disciplines [9]. The 
development of microscopy (including super-resolution and single- 
molecule imaging), multiplex fluorescence in situ hybridization and 
other techniques have deepened our understanding of the structure 
and function of cells and tissues. Sequencing technologies have en
abled us to perform a quantitative and qualitative analysis of the 
expression landscape of genes in unknown cells or tissues. Spatial 
transcriptomes can combine microscopic imaging and sequencing 
technologies to obtain gene expression data while preserving the 
spatial location information of samples to the greatest extent, en
abling researchers to find more valuable results. It is the basis of 
biological research to reveal the function and heterogeneity of spa
tial organization structure. This demand has driven the development 
of many spatial transcriptomic technologies.

Thanks to the reduction in sequencing costs, the improvement in 
microscopy and imaging and the increase in computing power, the 
spatial transcriptome is rapidly evolving and improving. Spatial 
transcriptomic technologies based on different approaches have 
been developed and improved, which have been generating and 
accumulating massive amounts of unstructured data containing 
spatial information and gene expression information. Meanwhile, a 
lot of computational methods for analyzing spatial transcriptomic 
data are also emerging. However, the variety and complexity of 
spatial transcriptomic technologies, data resources and analysis 
approaches all make researchers unfamiliar with the field dizzy and 
unable to get started quickly. Thus, we put effort to compile a simple 
atlas of spatial transcriptomics, which could serve as a guidance of 
spatial transcriptomic technologies, data resources and analysis 
approaches for researchers. Specifically, we firstly classified 22 di
verse spatial transcriptomic technologies into four categories based 
on their technical foundations and detailed each of them to help 
researchers choose the best-suited technology in terms of aims. 
Secondly, we manually collected 791 spatial transcriptomic datasets 
in 479 articles and integrated these available data to facilitate data 

L. Yue, F. Liu, J. Hu et al. Computational and Structural Biotechnology Journal 21 (2023) 940–955

941



accessibility and subsequent analysis. Thirdly, we marshaled 70 
computational approaches for analyzing spatial transcriptomic data 
together in total, and carefully arranged them for a variety of re
search purposes, such as dimensionality reduction, clustering and 
cell-cell interaction. Fourthly, we discussed the significance of spa
tial transcriptomics in the context of molecular biology and the 
trend towards spatial multimodal omics and described the value of 
future applications of spatial multimodal omics in tumor tissue. 
Finally, we summarized and provided an outlook of the spatial 
transcriptomic technologies, data resources and analysis approaches 
to guide current and future spatial transcriptomics research.

2. Spatial transcriptomic technologies

Spatial transcriptomic technologies have evolved in different 
technological trajectories, with each route of approach reflecting the 
characteristics of their respective technologies. The choice of spatial 
transcriptomic technology requires a trade-off between gene 
throughput, sequence information, sensitivity, resolution, area size 
and feasibility [10]. Here, we classified the spatial transcriptomic 
technologies into four categories based on basic types of technolo
gies: in situ hybridization (ISH)-based technologies, in situ sequen
cing (ISS)-based technologies, next generation sequencing (NGS)- 
based technologies and the spatial information reconstruction 
technologies [11,12]. A summary of these technologies for spatial 
transcriptomics is shown in Fig. 1 and Table 1.

2.1. In situ hybridization (ISH)-based technologies

ISH-based spatial transcriptomic techniques are a category of 
techniques that can profile transcriptomes while preserving the 
spatial locations of transcripts by hybridizing labeled com
plementary probes to mRNAs of interest. The technical basis for ISH 
emerged when Gall et al. [13] achieved the visualization of gene 
expression in oocytes of the toad Xenopus using ribosomal RNA 
probes labeled with radioactive tritium. Non-radioactive fluorescent 
ISH was developed for fluorescence microscopical localization of 
specific DNA sequences based on the covalent binding of fluor
ochromes to the 3′-terminus of RNA [14]. A highly multiplexed ap
proach termed single-molecule fluorescence in situ hybridization 
(smFISH) was developed to simultaneously measure transcripts with 
high resolution of subcellular spatial localization in healthy mouse 
kidney cells, and was regarded as the “gold standard” in terms of 
sensitivity [15]. Lubeck et al. [16] extended smFISH and adopted a 
sequential barcoding strategy, called sequential fluorescence in situ 
hybridization (seqFISH), to uniquely identify mRNAs with a drastic 
increase in the detection capacity for multiplex genes. Another 
smFISH-based technique, namely multiplexed error-robust fluores
cence in situ hybridization (MERFISH) [17], was designed and de
veloped to overcome detection errors and achieve a dramatic 
increase in the detection of RNA species and quantity in individual 
cells (Fig. 1). MERFISH combines combinatorial markers and a well- 
conceived encoding scheme to upgrade the FISH method, making it 
necessary to read at least four bits for a single code word to be read 
in error [17]. SeqFISH+ was proposed to be an upgraded version of 
seqFISH, and barcodes in seqFISH+ were encoded with up to 60 
channels. Allowing for more coded samples in sequential hy
bridization with standard confocal microscopy imaging, seqFISH 
+ shorten imaging times [18]. GeoMx Digital Spatial Profiling (DSP) 
was proposed to address the problems encountered in proteomic 
and RNA transcriptomics. DSP is a commercially available platform 
in which detection relies in part on unique indexing oligonucleotides 
with UV linkers assigned to specific target regions [19]. Split-FISH 
was presented to use a split probe (Fig. 1). This method is another 
brilliant idea for probe design after MERFISH. Instead of directly 
pairing with the target base, the probe with a fluorescent marker can 

specifically bind to a designed bridge probe. A bridge probe is sen
sitive to the target base and can bind to it efficiently. This design 
option allows for the accurate detection of the target without tissue 
removal [20]. Enhanced Electric Fluorescence in situ Hybridization 
(EEL FISH) uses electrophoresis to transfer negatively charged RNA to 
the tissue surface and achieves a median gene detection efficiency of 
13.2% [21]. This method also has the merits of reduced tissue back
ground noise, less lateral spread and lower experimental costs. Na
noString has released the CosMx spatial molecular imager (SMI), a 
commercially available multimodal omics technology platform [22]. 
The probe design for RNA detection is based on the MERFISH design 
approach, which results in low RNA decoding errors. For achieving 
high signal-to-noise ratios, CosMx SMI uses UV lysis of PC joints as 
applied in DSP technology.

ISH-based techniques are typically efficient in terms of detection 
but costly in terms of experimentation [11]. The upgrade of ISH- 
based technologies has been a process of improvement in probe 
design and hybridization read methods. The unique design of the 
probe for MERFISH was a peak in the uniqueness of the probe design 
scheme for this type of technology, followed by a similar coding 
scheme for seqFISH+ .

2.2. In situ sequencing (ISS)-based technologies

Sequencing RNA molecules directly in tissues is the technical task 
of the spatial transcriptome, and ISS-based approaches yield spatial 
localization of the transcriptome by sequencing. ISS was based on 
padlock probes and rolling circle amplification (RCA) [23], which 
preserves spatial information. In fluorescence in situ RNA sequen
cing (FISSEQ), the amplicons of cDNA are generated inside the cells 
[24]. Roughly, the single cycle of the experimental process is firstly 
reverse transcription of RNA, followed by cyclization of cDNA, 
rolling-circle amplification (RCA), introduction of fluorescence for 
labeling when appropriate, and finally reading the imaging data 
(Fig. 1). An RNA sequencing technique applied to intact tissues is 
called Spatially-resolved Transcript Amplicon Readout Mapping 
(STARmap) [25] (Fig. 1). This approach proposes two new ways to 
complete the two key steps in the entire sequencing process, 
namely, Specific Amplification of Nucleic Acids via Intramolecular 
Ligation (SNAIL) and Sequencing with Error-reduction by Dynamic 
Annealing and Ligation (SEDAL) [25]. The ISS method was modified 
to a new version called Hybridization-based In Situ Sequencing 
(HybISS). The upgrade of probes allows the new method to be ap
plied to a wide range of tissues. The most intuitive manifestation of 
HybISS is in sequencing, which abandons the original sequence-by- 
ligation (SBL) [26] methods and improves a barcode system for 
probe readout. Both Split-FISH and the HybISS technique of the same 
period used bridge probes to enhance detection accuracy. In 2021, an 
expansion sequencing (ExSeq) method combining FISSEQ and ex
pansion microscopy (ExM) [27] allowed for a clearer viewing field 
[28]. Another method named barcoded oligonucleotides ligated on 
RNA amplified for multiplexed and parallel in situ analyses (BOLO
RAMIS) [29] discards the reverse transcription step, which is present 
in all previous methods (Fig. 1). The probes were directly hybridized 
with RNA molecules without reverse transcription to form cDNA, 
and cDNA is looped by SplintR Ligase and further amplified to form 
amplicons, which are later immobilized in the cell to maintain 
spatial location. 10X Genomics has launched Xenium, a commercial 
in situ sequencing-based technology [23] that uses roll-for-amplifi
cation to amplify RNA signals within tissues and maintain tissue 
integrity, enabling subsequent detection of RNA and protein on the 
same slice [30].

ISS-based techniques are designed to detect minute amounts of 
transcriptomic signals by cycling and amplifying them. ISS-based 
experiments were upgraded to include roll-loop generation and 
signal reading, with STARmap minimizing background interference 

L. Yue, F. Liu, J. Hu et al. Computational and Structural Biotechnology Journal 21 (2023) 940–955

942



Fig. 1. Map of spatial transcriptomics and related technological developments. The dates marked are referenced to the date of acceptance of the paper, whereas preprint articles 
are referenced to the date of online publication. Visium is referenced to the press release on the official 10X Geonomics website. The ten technologies selected are representative 
of the development of spatial transcriptomic technologies, and together with the explanations in the text, they provide an accurate picture of the evolution of spatial tran
scriptomes.
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and BOLORAMIS reducing errors by reducing the number of reverse 
transcription steps.

2.3. Next generation sequencing (NGS)-based technologies

The spatial information in the tissue can also be localized by 
precise pre-selection, and then the tissue to be sequenced can be 
obtained by sectioning. Tissue sections are placed on a specially 
designed slide capable of capturing RNA and then sequenced for 
analysis. The process of Spatial Transcriptomics (ST) [31] involves 
placing the section on a slide containing 1007 captured sites and 
then permeabilize the section to capture mRNA and perform reverse 
transcription and fluorescent labeling (Fig. 1). This technology was 
later upgraded to Visium [32]. Slide-seq used a different strategy to 
capture RNA in tissues. The biggest change is the adoption of DNA- 
barcoded beads [33] that characterize the location rather than spe
cially designed probes to capture RNA information in tissues. Each 
bead has a diameter of 10 µm, thus enabling a large throughput and 
high resolution of detection (Fig. 1). During the same period, another 
high-resolution method was developed under the name of High- 
Definition Spatial Transcriptomics (HDST) [34]. In this method, each 
bead is placed in a 2 µm well, and a higher definition than Slide-seq 
is achieved by capturing and decoding millions of beads.

A method called deterministic barcoding in tissue for spatial 
omics sequencing (DBiT-seq) extends the measurement of biological 
macromolecules to proteins, allowing simultaneous observation of 
RNA and proteins [35] (Fig. 1). The principle of this method is similar 

to creating a Cartesian coordinate system on a thin tissue section to 
form a 50 × 50 grid, and obtain spatial location information by ma
trix-like positioning of each small grid. After spatial labeling of the 
tissue, the tissue is disassembled to extract the base information. 
Slide-seqV2 is an upgraded version of Slide-seq [36]. The improve
ments are focused on three aspects: first, the barcoded bead 
synthesis, second, the array sequencing pipeline, and third, the en
zymatic processing of cDNA [36]. Improvements in these areas have 
led to improvements in the sensitivity and capture efficiency of this 
method. Seq-Scope achieves an ultra-high resolution comparable to 
the resolution of optical microscopy [37]. It does not directly mea
sure mRNA in tissues, but does so by indirect means. Specifically, the 
first sequencing achieves capture and spatial localization of the 
target transcripts, and the second achieves decoding and reverse 
transcription of the first sequencing information to read the in
formation from the cDNA. A method for handling large-scale tissue 
(13.2 cm × 13.2 cm), called spatial enhanced resolution omics-se
quencing (Stereo-seq) [38] was developed based on DNA nanoball 
(DNB) and in situ RNA capture in the same period (Fig. 1). The dia
meter of the capture point has reached 500 nm, and this method has 
a trend of commercialization.

The NGS-based methods have transcriptome-wide capture cap
ability, but are not as efficient as the FISH-based methods [11]. The 
methods differ in the size and resolution of the sections they can 
hold. From ST in 2016 to Stereo-seq, the resolution has been in
creased from 100 µm to 500 nm [31,38]. The implementation paths 
of Slide-seq and DBiT-seq represent different resolution 

Table 1 
Technical highlights of four technical routes in spatial transcriptomics. 

In situ hybridization (ISH)-based technologies

Method Application Detection efficiency Features Refs
seqFISH Fresh-frozen 84 % Targeted, expensive experiments [9,42]
MERFISH Fresh-frozen 80 % Targeted, high robustness of probe design method, expensive 

experiments
[9,17]

seqFISH+ Fresh-frozen 49 % Targeted, expensive experiments [9,18]
DSP Fresh-frozen or FFPE NA Targeted, commercially available [19]
Split-FISH Fresh-frozen NA Targeted, no tissue clearance required，expensive experiments [9,20]
EEL FISH Fresh-frozen 13.2 % Targeted, transferring RNA using electrophoresis, low-cost 

experiments
[21]

SMI Fresh-frozen or FFPE One or two copies per cell Targeted, high signal to noise ratio detection, commercially 
available

[22]

In situ sequencing (ISS)-based technologies
Method Application Detection efficiency Features Refs
ISS Fresh-frozen or FFPE <  1 % Targeted, low throughput, commercially available [42,103]
FISSEQ Fresh-frozen or FFPE <  0.005 % Unbiased, whole transcriptome, low capture efficiency， 

commercially available
[42,103,187]

STARmap Fresh-frozen higher than single-cell RNA 
sequencing

Targeted, reverse transcription-free [25]

HybISS Fresh-frozen or FFPE higher than ISS Targeted, higher throughput than ISS [26]
BOLORAMIS Cell lines 10–30 % Targeted, reverse transcription-free [29]
Next generation sequencing (NGS)-based technologies
Method Application Resolution Features Refs
ST/Visium Fresh-frozen/Fresh-frozen 

or FFPE
100/55 µm Unbiased, whole transcriptome, low capture efficiency, 

commercially available
[31,188,189]

slide-seq Fresh-frozen 10 µm Unbiased, whole transcriptome, low capture efficiency [33]
HDST Fresh-frozen 2 µm Unbiased, whole transcriptome, low capture efficiency [34]
DBiT-seq Fresh-frozen or FFPE 10 µm Unbiased, whole transcriptome, low capture efficiency [35]
slide-seqV2 Fresh-frozen 10 µm Unbiased, whole transcriptome, higher capture efficiency than 

slide-seq
[36]

Seq-Scope Fresh-frozen 0.5–0.8 µm Unbiased, whole transcriptome, low capture efficiency [37]
stereo-seq Fresh-frozen 500/715 nm Unbiased, whole transcriptome, low capture efficiency, largest 

detection area
[38]

Spatial information reconstruction technologies
Method Application Algorithm Features Refs
tomo-seq Fresh-frozen Iterative Proportional Fitting (IPF) Unbiased, imaging-free, whole transcriptome, low capture 

efficiency
[40]

STRP-seq Fresh-frozen Tomographer Unbiased, imaging-free, whole transcriptome, low capture 
efficiency

[41]
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enhancement methods, while Beijing Genomics Institute has used 
lithography to build capture arrays on silicon chips to achieve the 
highest resolution.

2.4. Spatial information reconstruction technologies

The idea of "whole-part-whole" is reflected in revealing the 
spatial characteristics of gene expression. A method called voxela
tion [39] was published to reconstruct the entire gene expression of 
the mouse brain using a method similar to medical imaging. The 
tomo-seq [40], a new technique combining RNA sequencing and 
digital image reconstruction, was applied to zebrafish embryos 
during development and established a spatial 3D map of gene ex
pression. An iterative proportional fitting (IPF) algorithm was used to 
construct the relationship between zebrafish gene expression and 
the spatial location of embryo slices [40]. In the STRP-seq, cellular 
gene expression in the brain was regarded as a regionally continuous 
non-mutational pattern so that adjacent slices can be considered to 
have the same spatial gene expression pattern when the tissue is 
finely sectioned (14 µm per slice) (Fig. 1). The authors' team named 
this method Spatial Transcriptomics by Reoriented Projections and 
sequencing (STRP-seq) [41]. Inspired by computed tomography al
gorithms, STRP-seq reconstructs sequencing results from different 
angle slices in three dimensions to derive spatial information. Its 
algorithm is superior to tomo-seq in establishing the spatial pattern 
of a given gene [41]. STRP-seq is a further development of the tomo- 
seq method where the spatial information of the transcriptome in 
the tissue is lost after tissue dissociation using a computational 
approach to reconstruct the transcriptome.

In summary, spatial transcriptomic technologies have different 
advantages depending on their principles. ISH-based technologies 
offer subcellular resolution [43] and are more efficient than others, 
for example the detection efficiency of seqFISH [42] and MERFISH 
[17] is 84 % and 80 %, respectively. NanoString has released two 
commercial platforms that support both RNA and protein detection, 
but both technologies do not support simultaneous detection of RNA 
and protein on the same slice currently. The probe design of the SMI 
is inspired by the MERFISH idea, so the robustness of the detection is 
higher than that of the DSP [22]. These techniques are generally 
characterized by being expensive, time-consuming and difficult to 
perform, but this has changed with the advent of EEL FISH. Not only 
does EEL FISH cost much less for a single experiment than sequen
cing-based methods, but it is also able to detect 10 cm2 in 61 h. 
Electrophoresis reduces lateral diffusion and allows for more accu
rate RNA localization [21]. ISS-based techniques are generally less 
efficient in terms of detection due to the uncertainty in the reverse 
transcription step [29]. The commercial ISS platform Xenium em
bodies cellular resolution coupled with a non-destructive approach 
to tissue, enabling the detection of RNA and protein on the same 
slice [30]. NGS-based technologies are less efficient in detection but 
are transcriptome-wide. Visium is currently the most successful 
technology in commercial use, driving third-party packages for 
downstream data analysis into dominant adaptation [44–46]. 
Stereo-seq has the largest detection area of 13.2 cm2 [38], thus en
abling the analysis of animal embryos to be completed [8,38,47]. The 
spatial information reconstruction technologies offer another way of 
thinking about obtaining spatial positions. Although the techniques 
in question are not used on a wide scale, probably because of the low 
resolution, this still provides a practical solution to a real problem by 
providing a useful idea of an indirect way to restore information. 
There is no perfect technique for solving all spatial transcriptomic 
problems yet, and a good strategy when exploring tissue space is to 
combine, for example, single-cell techniques with spatial tran
scriptomic techniques and a combination of multiple spatial tran
scriptomic techniques [30].

3. Spatial transcriptomic data resources

With the development and application of spatial transcriptomic 
technologies in diverse studies, a large amount of spatial tran
scriptomic data have been generated. However, the generated data 
resources are usually scattered worldwide, and are not efficiently 
organized and utilized in real time.

We manually collected 791 datasets in 479 articles spanning 22 
countries from 2013 to the present, and carefully identified and 
classified the attributes of the collected data to demonstrate the 
development of spatial transcriptomics (Supplementary Table 1). We 
collected data from PubMed and bioRxiv as well as other databases 
[11,48,49] and used Publish or Perish [50] in the selection process. 
The spatial transcriptomic data comprehensively compiled from 
multiple sources will facilitate the accessibility, availability and in
tegration of spatial data. According to the mechanics of these tech
nologies, we further classified current spatial transcriptomic 
technologies into two broad categories: image-based methods in
cluding ISH-based and ISS-based technologies, and sequencing- 
based methods involving NGS-based technologies and spatially in
formative reconstruction techniques [32,51,52]. A total of 192 image- 
based datasets and 599 sequencing-based datasets were included in 
the data collection. Various degrees of spatial transcriptomic re
search have been conducted worldwide with large datasets being 
generated in the United States, China and Europe (Fig. 2a). In the last 
decade, research into sequencing-based and image-based technol
ogies has been on the rise, with sequencing-based datasets growing 
faster (Fig. 2b). Especially, sequencing-based ST and Visium and 
image-based DSP methods have been developing rapidly, and these 
methods will be the focus of attention of spatial transcriptomic re
searchers in the future. Furthermore, we counted the kind of sources 
of experimental material, including embryos, cell lines and tissue 
slices from 34 species. As a result, spatial transcriptomic research is 
widely applied to various species and organs, with most current 
studies focusing mainly on Homo sapiens and Mus musculus (Fig. 2c, 
Supplementary Fig). Additionally, we tailed the human and mouse 
tissue sections that were used in the spatial transcriptomic studies 
by the researchers and found that the brain tissue is the most ex
tensively studied in both human and mouse (Fig. 2d, e). Due to the 
Corona Virus Disease 2019 (COVID-19) pandemic, image-based 
techniques have been more widely used in the human lung [11]
during the last three years (Fig. 2d). Overall, the statistics of the data 
provide an overall picture of the applications of spatial tran
scriptomics, so that researchers can make use of some of these ex
periences. Although our data resource is a relatively comprehensive 
collection of spatial transcriptomic data generated before December 
31, 2022, it is able to reflect the overall evolution and trend of spatial 
transcriptomic technologies over time.

4. Spatial transcriptomic data analysis

Despite technological differences, the key goal of the spatial 
transcriptomic analysis is to integrate information of gene expres
sion and spatial locations to allow the mining of useful biological 
information from experimentally obtained data. The whole process 
of data analysis can be usually divided into pre-processing and 
downstream data analysis [11,53]. A series of available third-party 
software packages have been developed to facilitate the data ana
lysis process, which is usually goal-oriented [11,32,45,51]. Several 
reviews have recently demonstrated the process of spatial tran
scriptomics data analysis and the capabilities of related software 
packages in data analysis [10,32,45,51,54–56]. Here, we present the 
workflow of spatial transcriptomic data analysis including a specific 
data analysis process (Supplementary File), and collected the cor
responding computational tools for a variety of research purposes 
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Fig. 2. Statistics of spatial transcriptomic datasets. a, Differences in the distribution of papers in the database across countries. b, Trend graphs of the number of articles issued in 
both technical lines. Data are available until 31 December, 2022. c, Categories of experimental material used in spatial transcriptomic experiments. d, Percentage of human and 
mouse organs or tissues used in imaging-based technologies. e, Percentage of human and mouse organs or tissues used in sequencing-based technologies.
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(Supplementary Table 2) to facilitate the subsequent optimization of 
the data analysis process and algorithm development.

4.1. Pre-processing

Pre-processing of the image-based data typically involves image 
registration, transcript spot identification and cell segmentation [11]
(Fig. 3a). The detection, counting and localization of fluorescence 
signals constitute fundamental steps in the pre-processing of data 
derived from image-based spatial transcriptomic techniques. Be
cause of variations in background brightness and spot quality of 
images, accurate, high-throughput signal detection and localization 
remain the main objectives of current image data analysis methods. 
Several software packages, such as DeepBlink [57], BarDensr [58], 
graph-ISS [184], and ISTDECO [59], have been developed to address 
these challenges. They identify the location, type and expression of 
RNA in the image, and generate the related location index matrix 
and gene expression matrix. To generate spatial single-cell data, the 
image needs to be segmented to group the detected RNA into in
dividual cells, and the following packages can be used to achieve cell 
segmentation: Sparcle [60], Spage2vec [61], JSTA [62], Baysor [151], 
SSAM [152], etc.

The pre-processing of sequencing-based spatial transcriptomic 
data revolves around the processing and integration of sequencing 
results and tissue images [23–31]. Pre-processing can be largely 
divided into three steps: tissue image processing, gene expression 
processing and relating gene expression to tissue images. Tissue 
image processing requires image registration, and then divides the 
entire tissue area into different spots to generate a location index 
matrix corresponding to each spot region. For gene expression pro
cessing, sequenced reads are aligned to the reference genome to 
generate a gene expression matrix. The coding information of the 
two matrices is matched to combine gene expression information 
with the corresponding spatial locations. For 10X Visium technology, 
SpaceRanger [63] is designed to accomplish these missions (Fig. 3b).

Finally, the pre-processing yields a well-prepared gene expres
sion matrix and location index matrix, which served as the starting 
point for the downstream analysis (Fig. 3c).

4.2. Downstream analysis

The downstream analysis can be divided into the following parts: 
batch-effect correction (Fig. 3d), dimensionality reduction and 
(spatial) clustering (Fig. 3e), spatial cell-type annotation (Fig. 3g) 
with scRNA-seq data (Fig. 3f), spatially variable genes (Fig. 3h), gene 
pattern (Fig. 3i), spatial region (Fig. 3j), cell-cell interaction (Fig. 3k), 
gene-gene interaction (Fig. 3l), spatial trajectory (Fig. 3m) and three- 
dimensionality model (Fig. 3n). New methods and tools for the 
downstream analysis of spatial transcriptomic data have exploded 
recently. Here, we summarize and give an introduction of the tools 
for each analysis, and Table 2 shows some of the easy-to-use tools.

4.2.1. Batch-effect correction
Because we may obtain more than one slice by sequencing or 

want to combine our slices with data from the database, we need to 

merge the expression data of multiple slices before the formal 
analysis (Fig. 3d). The advantage of multi-slice data integration 
analysis is that the experimental effect can be found by analyzing the 
differences between slices. However, the data of different slices may 
have batch effect, and simple merging will cause the experimental 
effect to be masked by batch effect. We need to use specialized in
tegration tools to correct the batch effect and make the data fusion 
better so that the experimental effects can be displayed more clearly. 
Seurat [64] provides the downstream analysis process as well as the 
batch correct method, which is very convenient for researchers 
using the seurat process for analysis. The harmony [65] is developed 
using the R language, which is also easy to integrate into seurat's 
analysis process. For researchers using python to analyze data, batch 
effect correction tools such as scanorama [66], LIGER [185], scGen 
[186], and scVI [67] are also available. Dozens of batch effect cor
rection tools have been developed. Some researchers have tested 
these tools and made recommendations for different situa
tions [68,69].

4.2.2. Dimensionality reduction and clustering
Dimensionality reduction and (spatial) clustering are two key 

analytical steps that underpin all downstream analyses (Fig. 3e). 
Dimensionality reduction usually precedes clustering and is de
signed to eliminate data noise to allow for more accurate clustering. 
There are already many mature methods for dimensionality reduc
tion such as weighted PCA [70], PCA, t-SNE [71], and UMAP [72], 
which are widely used in various software packages. Recently, some 
advanced methods of dimensionality reduction have also been 
proposed, such as Scanpy [153], STUtility [98], SpatialPCA [73], 
Spaniel [155], SpatialCPie [156], lisaClust [157] and Squidpy [183]. 
These methods can extract a low-dimensional low dimensional re
presentation of the spatial transcriptomic data with enriched bio
logical signals and preserved spatial correlation structure. Spatial 
clustering in spatial transcriptomics is designed to use spatial tran
scriptomic information to cluster tissue locations into multiple 
spatial clusters, effectively splitting the entire tissue into multiple 
tissue domains. In addition to traditional machine learning clus
tering methods such as Louvain clustering [74], Leiden clustering 
[75], k-means clustering [76], hierarchical clustering, spectral clus
tering [77] and Gaussian mixture models [78], more sophisticated 
algorithms, and neural networks have been suggested recently. 
These advanced methods include SC-MEB [79] using the hidden 
Markov random field based on Empirical Bayes, BayesSpace [80]
based on a fully Bayesian statistical method, the graph convolutional 
network (GCN) based approach SpaGCN [81], DR-SC [82] leveraging 
low dimensional embeddings with spatial information to perform 
spatial clustering using an HMRF, etc.

4.2.3. Spatially cell-type annotation
Spatial transcriptomic methods alone cannot generate deep 

single-cell-level resolution transcriptomics. Successful integration of 
scRNA-seq data (Fig. 3 f) and spatial transcriptomic data is essential 
to understand the architecture of the cell-type distribution and to 
analyse the putative mechanisms of intercellular communication 
that underlie this architecture (Fig. 3g). There are two primary 

Fig. 3. Workflow of data analysis. a, Pre-processing processes of imaging-based technologies. b, Pre-processing processes based on NGS based data, using Visium data as an 
example. c, The gene location matrix and the gene expression matrix are gotten after pre-processing. d, Combination of different data sources and batch effect correction. e, The 
data is dimensioned down to reduce the number of metrics to be analyzed while retaining as much information as possible. Spots with similar expression patterns are then 
clustered, and the clustering results are visualized by non-linear dimensionality reduction (t-SNE or UMAP). f, Prediction of cell types by combining spatial transcriptomic data 
with single-cell sequencing data from the same sample. g, Prediction of cell types from spatial transcriptomic data by deconvolution or integration in combination with annotated 
homologous single-cell data. h, Calculation of spatially variable genes using spatial dimensional information. i, Co-expression analysis of gene expression information is performed 
to mine the correlation patterns of different gene expression. j, Defining spatial regions and recognizing possible tissue sub-regions by combining gene expression patterns with a 
cell type annotation. k, Analysis of intercellular interactions through spatial dimensional information of spatial transcriptomic data. l, Analysis of gene interactions using spatial 
information from gene expression. m, Reshaping the trajectory of cells in space over time and inferring the evolution and differentiation processes between cells using spatial 
dimensional information. n, Aligning and integrating spatial transcriptomic data and visualizing 3D models using gene expression similarities and spatial distances between loci 
in sequential or paired slices.
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approaches for integrating scRNA-seq and spatial data: mapping and 
deconvolution [83]. Mapping is a method of assigning scRNA-seq- 
based cell types to each cell by migrating the annotations already 
established in scRNA-seq to the spatial transcriptomic data. The 
Mapping method have the potential to assign cells from scRNA-seq 
data to spatial locations in histological sections [46]. This approach is 
more commonly used for data generated via image-based technol
ogies. There are some approaches to executing mapping strategies, 
some of which integrate single-cell data and spatial transcriptomic 
data by anchoring the integration workflow, such as Seurat [44]. For 
spatial transcriptomic data that do not reach a single-cell resolution, 
there are also frameworks such as CellTrek [84]. These approaches 
map individual cells directly back to spatial coordinates in tissue 
slices using machine learning methods such as co-embedding and 
random forest to combine single-cell data and spatial barcoding 
data. The deconvolution strategy is most often used by sequencing- 
based techniques that produce spatial barcoding data and do not 
reach a single-cell resolution. This strategy disentangles discrete 
cellular subtypes from a single capture spot by using traditional 
machine learning, deep learning and statistical models to predict the 
proportion of each cell type in the slice data points, the proportion of 
each cell type and the gene expression level of each cell. Many ad
vanced approaches of this strategy have also been proposed recently. 
Cell2location [85] established a trained Bayesian model to accurately 
map cell types, and DSTG [86] used semi-supervised graphical 
convolutional neural networks to train the exact composition of 
predictive spatial transcriptomic data.Many other packages can also 
be applied to spatially cell-type annotation, such as stereoscope 
[158], DestVI [159], AdRoit [160], RCTD [161], SpatialDecon [162], 
SpaceFlow [163], SPOTlight [164], FICT [165], SpatialDWLS [166], 
STRIDE [167], STdeconvolve [168], Tangram [169] and 
smfishHmrf [170].

4.2.4. Spatially variable genes
In spatial transcriptomics, the traditional method for identifying 

SVGs (spatially variable genes) is to perform a differential expression 
analysis on different presentations directly (Fig. 3h). Recently, a 
series of new computational approaches using statistics and ma
chine learning including deep learning has been proposed to solve 
this problem, such as SpatialIDE [87], SPARK [88], SpaGCN [81], 
Giotto [89], GPcounts [171], BOOST-GP [172], SOMDE [173], Ray
leighSelection [174], trendsceek [175], singleCellHaystack [176], 
scGCO [177], SPARK-X [178], sepal [179], etc. In these advanced ap
proaches, SpatialIDE [87] is based on Gaussian process regression 
and SPARK [88] is based on a spatial generalized linear mixed model 
with multiple spatial kernels. Besides, the more representative 
methods using deep learning are SpaGCN [81] based on the graph 
convolutional network approach and Giotto [89] based on spatial 
dependence modeling using HMRF (hidden Markov random field 
model).

4.2.5. Gene patterns
After identifying SVGs, researchers need to use spatial visuali

zation and existing single-cell processes and data mining methods to 
analyze gene expression patterns to infer gene functions (Fig. 3i). 
These methods can not only identify gene modules by calculating 
spatially weighted gene co-expression matrix or weighted network 
analysis, which are relatively mature methods in the single-cell 
analysis process, such as CellTrek [84], but also build mathematical 
models and other data mining methods to calculate gene expression 
patterns, such as MERINGUE [90].

4.2.6. Spatial regions
The location of cells in the tissue microenvironment influences 

gene expression, and the spatial transcriptome provides excellent 
conditions for exploring tissue regions (Fig. 3j). MULTILAYER [91]Ta
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compares spatial localization to infer the degree of co-expression 
after all patterns of overexpressed genes have been detected. The 
degree of co-expression reveals functionally relevant spatial gene 
co-expression and divides the initial spatial transcriptome slice into 
functionally relevant spatial community regions. The spatial tran
scriptomic data contain a variety of information about space. Critical 
spatial location matrices, corresponding to the staining of HE regions 
of sections, and relative distances between individual cells are im
plicit in the gene expression data. All of this information can be used 
to delineate spatial regions. To make full use of the spatial dimen
sional information, RESEPT [92] accurately infers and visualizes the 
organizational structure by mapping transcriptomic data to RGB 
images and using a supervised convolutional neural network model 
for spatial region segmentation. Alternatively, HE-stained images 
can be combined in stLearn [93] to assist in optimizing the clustering 
process. On the basis of traditional clustering, stLearn divides clus
ters into subclusters based on the location of each cluster. SpaGCN 
[81] merges the HE staining information provided by ST data into a 
spatial neighborhood map, which can be combined with gene ex
pression from Spot via a graph convolutional network. CellTrek [84]
reclassifies cell type regions by comparing gene expression differ
ences between co-expressed gene modules calculated according to 
gene pattern.

4.2.7. Cell-cell interaction
Cells in tissue interact with each other all the time, and even 

more so when they are spatially close to each other. Gene relation
ship databases and methods for studying cellular communication in 
scRNA-seq have been developed in sufficient abundance (Fig. 3k). 
The spatial information provided by the spatial transcriptome makes 
it possible to analyze cell-cell interactions based on the location of 
the cells. SpaOTsc [94] combines the two by developing a map be
tween the spatial transcriptomic and single-cell transcriptomic da
tasets, thus using the spatial data to reconstruct spatial metrics of 
single-cell data in scRNA-seq data. Multiple cells interact with each 
other to maintain the homeostasis of the tissue microenvironment. 
DIALOGUE [95] treats coordinated cells within a region as higher- 
order functional units at the tissue level. From the perspective of 
functional multicellular populations, DIALOGUE [95] identifies 
multicellular programs associated with different phenotypes 
through co-regulatory gene sets across cell types. SVCA [96] based 
on the Gaussian process assesses the impact of cellular interactions 
on the expression of individual molecules by disentangling the ef
fects that affect gene expression.

4.2.8. Gene-gene interaction
Gene interactions are divided into intracellular gene interactions 

and intercellular gene interactions (Fig. 3l). Cells communicate with 
each other through a variety of signal transduction mechanisms, 
which are essential interactions between genes. The advent of spa
tial transcriptomic technologies has provided information not only 
on intracellular gene expression but also on the spatial relationships 
between cells, providing a basis for the analysis of large-scale ex
tracellular interactions. By integrating and reconstructing informa
tion from gene expression and positional matrices, greater insight 
can be gained into the molecular mechanisms behind cellular in
teractions. There are many advanced methods proposed to solve this 
problem, such as GCNG [180], which represents data from spatial 
transcriptomics as graphs of relationships between cells and infers 
the gene interactions involved in cellular communication from 
spatial single-cell data. The regulatory mechanisms behind gene 
expression are complex. ScHOT [97] seeks to examine higher-order 
structural changes in gene expression, such as correlations between 
genes in differentiation pseudotimes, between discrete populations 
and across spatial regions. MISTy [181] uses views from different 

spatial contexts to model expressed intercellular interactions. MESSI 
[182] utilises signaling to predict gene expression in cells.

4.2.9. Spatial trajectory
Cell trajectory analysis can help infer the evolution and differ

entiation process between cells by analysing the dynamic changes in 
gene expression between cells (Fig. 3m). Based on the spatial loca
tion information provided by the spatial transcriptome, cell trajec
tories can be visualized in the tissue slice. StLearn [93] offers an 
algorithm called pseudo-space-time (PST) trajectory analysis that 
infers biological process from gradients in the transcriptional state 
across tissues. SPATA [154] analyzes dynamic changes by using 
monocle3, a package that implies pseudo-time inference.

4.2.10. 3D model construction
All the current technological approaches are focused on cap

turing two-dimensional spatial information. With the development 
of spatial transcriptomics, 3D structures are constructed based on 
the alignment and integration of serial sections of tissue from a 
single sample, providing opportunities to explore tissue structure 
(Fig. 3n). The growth of traditional machine learning methods and 
deep learning frameworks provides many advanced computational 
approaches to address this problem. The most common is the uti
lization of machine learning and statistical methods. For example, 
STUtility [98] aligns slices with ICP (iterative nearest point algo
rithm) to visualize them on a 3D model; PASTE [99] uses Wasserstein 
Optimal Transport (FGW-OT) [100] based on Optimal Transport 
theory to construct 3D alignment. Certainly, there are other ap
proaches, such as STAGATE [101] using neural networks. By using 
graph attention autoencoders, STAGATE [101] integrates spatial in
formation and gene expression profiles to learn low-dimensional 
latent embeddings, accurately identify spatial domains and extract 
3D expression domains.

The practicability in data analysis depends on the researcher's 
biological literacy (especially in cell biology and molecular biology), 
familiarity with programming languages (the widely used Python 
and R), choice of software package algorithms and the hardware 
facilities in the laboratory. The actual analysis process may not in
volve practising all of the data analysis covered in this article, but 
rather a selection of items depending on the experiment purpose. 
We have collated 70 software packages (Supplementary Table 2) 
according to the purpose of the downstream analysis and have se
lected those that we consider easy to use or learn. We have chosen 
13 easy-to-use packages in Table 2, which cover the whole range of 
data analysis steps in this article. It is relatively easy to complete the 
data analysis tasks successfully, but understanding and grasping the 
context and meaning implied by them precisely requires a long 
period of practice. The widespread use of the same technology will 
contribute to the choice of developers to join the technology-led 
spatial transcriptomics ecosystem. Competition between technolo
gies and software packages for downstream analysis will foster the 
development of more universal and easy-to-use spatial tran
scriptomic data analysis, which will benefit the future participation 
of spatial transcriptomics in clinical applications.

5. Coming of spatial multimodal omics

Spatial multimodal omics will be the next hot spot in the aca
demic community [102–105]. This is already well known, but a 
longer-term perspective is more insightful in understanding such 
developments. The double helix structure of DNA and the estab
lishment of the genetic central dogma initiated the era of molecular 
biology. The Polymerase Chain Reaction (PCR) enables the rapid 
amplification of DNA, which deeply influences the progress of the 
life sciences. Under the genetic central dogma, RNA and protein 
detection techniques are now becoming more sophisticated, 
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contributing to the development and flourishing of spatial multi
modal omics [103,104,106]. As they become commercially available, 
these technologies will become increasingly common in basic re
search, allowing researchers to explore the mechanisms of change in 
biological tissues from a more microscopic and holistic perspective.

Spatial transcriptomics is the basis of multimodal omics [10]. 
Spatial transcriptomic techniques, which now have unique ad
vantages in revealing cell fate regulation and tissue microenviron
ment interactions, may become as fundamental as PCR in the future 
to be able to perform in every laboratory. On the other hand, on the 
grounds of spatial transcriptomics, spatial multimodal omics is 
crying out to emerge. Spatial multimodal omics is an instantaneous 
demonstration of the genetic central dogma in the regulation of life, 
as it enables the simultaneous detection of RNA and proteins in 
tissues as well as the analysis of linkage processes in different pro
cesses in the regulation of life processes. The genetic central dogma 
stops at proteins, but proteins need to be modified to assume their 
functions [107], and the development of spatial multimodal omics 
will extend the content of the genetic central dogma.

Biochemical changes within tissues can be detected by single-cell 
techniques. Spatial transcriptomic techniques can accurately locate the 
regions where such changes occur and infer the cell-cell interactions 
within the tissue [52]. Spatial proteomics assays can provide further 
insights into the regulatory transitions revealed by the spatial tran
scriptome. DISCO-MS, an automated spatial proteomics technology, 
has made a mark in the detection of cellular heterogeneity in tissues 
[108]. Multimodal omics technologies can combine the strengths of 
each technique to provide a snapshot of the valid biological informa
tion within a tissue, thus interpreting the information at the data 
processing stage. In fact, protein post-translational modifications are 
very complex and the linkage of their regulatory processes with genes 
is yet to be further discovered. Among the commercially available 
technologies to detect both RNAs and proteins, protein detection is 
inferior to that of RNA, but there is no doubt that this situation will 
improve significantly in the coming years.

In the detection of tumor tissue, multimodal omics technologies 
can better characterize tumor heterogeneity [109] and the tumor 
microenvironment [110] than previous single-cell sequencing and 
spatial transcriptomic technologies, so that we can understand the 
function mechanism of tumors at a deeper level. The understanding 
of tumors is constantly evolving, and the current understanding of 
tumors is focused on the interpretation of tumor heterogeneity and 
the tumor microenvironment [111–115]. A tumor can be regarded as 
a special, vital organ [116]. The production of a tumor implies a se
vere failure of the immune system. Aggressive malignant tumors 
change the microenvironment in which they exist during their de
velopmental phase, thus making it more favorable for them to pro
liferate [115,117]. The determination of the border between tumor 
cells and normal cells is important in the diagnosis of tumors, and 
metastasis is one of the main reasons why tumors are difficult to kill. 
The proliferation of tumors causes changes in the entire body's in
ternal environment, for example, changes in the enzyme activity in 
blood tests. Exploring tumor interactions with its microenvironment 
is not possible with conventional stained pathology, but this is 
possible with the support of spatial multimodal omics techniques. 
The combination of single-cell sequencing technology and Visium 
can reveal the molecular mechanisms of immune concordance in 
breast cancer, the cellular basis of intratumoral heterogeneity and 
the influence of the microenvironment on cell subtypes [118]. New 
hormone receptors and signaling regulators in breast cancer devel
opment were identified in the work of A. Janesick et al. [30].

6. Summary and outlook

Spatial transcriptomic technologies can help understand tissue 
architecture and biological mechanisms not available with 

traditional techniques, such as bulk RNA-seq and scRNA-seq. We 
summarized spatial transcriptomic technologies to help researchers 
understand the technical characteristics and choose the best-suited 
technology in terms of research tasks. Spatial transcriptomic tech
nology is undoubtedly a powerful tool in the study of the true gene 
expression of cells in situ in tissues and provides important research 
means for many fields, such as oncology [119], immunology [120], 
developmental biology [121,122], reproductive biology [123] and 
neurobiology [3,124]. Nonetheless, spatial transcriptomics is a 
thriving discipline, where there is still a lot of room for the devel
opment of technologies. Firstly, there is no single best solution 
available but often a trade-off in terms of transcriptome-wide pro
filing, high resolution, high throughput and high detection efficiency 
[1,38,40] until now. Therefore, researchers are still seeking to de
velop new ideal technologies to meet all these objectives, and future 
improvements will help explore the detailed cellular and molecular 
interactions in tissue. Furthermore, it is important to standardize the 
way the technology is evaluated, so that key metrics such as the RNA 
capture efficiency and resolution can be assessed in a unified way 
[125]. Secondly, future spatial transcriptomic technologies should 
add the dynamic processes of the organism in the temporal di
mension to the previous two or three-dimensional spatial tran
scriptomics. Spatiotemporal transcriptomics will enable the dynamic 
investigation of development and disease progression, and ZipSeq 
[43] and SPACECAT [126] are good starting points for developing 
methods in the temporal dimension. Thirdly, spatial transcriptomics 
will benefit from the advances in spatial technologies, and spatial 
technologies will be increasingly applied to other multimodal omics, 
such as spatial genomics [127], spatial epigenomics [128] and spatial 
proteomics [129], which can complement spatial transcriptomics. 
Spatial multimodal omics will be the research hot spot in life science 
and be of paramount importance to give researchers a more sys
tematic and comprehensive understanding of the biological process, 
cellular component and molecular function [102,104,105]. Fourthly, 
the plethora of new spatial technologies and the rapidity of tech
nological updates require that researchers undergo constant 
knowledge updates at a high cost of study time. Like the popular
ization of Visium currently, several outstanding spatial technologies 
may outperform other technologies and would become the main
stream technologies in the future. Finally, the current use of spatial 
transcriptomic technologies as a useful and effective tool for ex
ploring life processes is mainly for academic purposes, and there is 
still a long way to go from large-scale clinical applications. Spatial 
transcriptomics has expanded our knowledge of cellular and mole
cular changes in diseases and cancerous heterogeneity. Looking 
forward, we anticipate that spatial multimodal omics combining 
genomics, epigenomics, transcriptomics, proteomics and metabo
nomics will be an up-and-coming solution to provide more detailed 
information on diseases to help improve clinical outcomes effi
ciently, such as disease diagnosis, drug development and medical 
treatment.

Spatial transcriptomic technologies have generated and accu
mulated massive amounts of data with various data structures and 
formats, but these data have not yet been integrated into compre
hensive databases. STOmicsDB proposed a platform standard for 
archiving spatial transcriptomic data, and the data already collected 
can be easily used [49]. However, the data collection on this platform 
is incomplete, and data sharing needs to be made easier. Therefore, 
we manually collected and comprehensively compiled 791 spatial 
transcriptomic datasets from multiple sources to facilitate the ac
cessibility, availability and integration of spatial data. The current 
data mainly focus on Homo sapiens and Mus musculus, and thus 
there is great potential for more investigations of other species in the 
future. The integration of data generated by different spatial tran
scriptomic technologies can leverage their respective advantages to 
better achieve transcriptome-wide coverage, high resolution and 
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high detection efficiency. Besides, single-cell transcriptomic data can 
play a complementary role, and we can get more accurate spatial 
transcriptomic information of the target tissue by integrating data of 
single-cell and spatial transcriptomic. Furthermore, the tran
scriptome is only one aspect of cell function, so spatial transcriptome 
alone can only provide a partial picture of gene regulatory networks. 
Future data integration of single-cell or spatial multimodal omics, 
such as genome, epigenome, proteome, metabolome and 3D chro
matin conformation, which can complement spatial transcriptome, 
will facilitate the subsequent analysis to allow a fuller understanding 
of cell identity and state. In particular, the Human Cell Atlas (HCA) 
[130] and the BRAIN Initiative Cell Census Consortium (BICCC) [131]
are integrating data across diverse modalities to construct a multi
modal atlas for humans or mice, including spatial transcriptomic 
data. The Human Reference Atlas (HRA) [132] contributed by 16 
consortia, including the Human Biomolecular Atlas Program 
(HuBMAP) [133], the Kidney Precision Medicine Project (KPMP) 
[134,135], the Human Tumor Atlas Network (HTAN) [136] and the 
Chan Zuckerberg Initiative (CZI) [130,137,138], the Genotype-Tissue 
Expression project (GTEx) [139] and the GenitoUrinary Develop
mental Molecular Anatomy Project (GUDMAP) [140], aims to create a 
benchmark reference supporting spatial queries to advance biome
dical and clinical research. In the future, the establishment of a 
unified database for integrating, querying, and visualizing multi- 
source data may enable the comprehensive analysis of data re
sources.

It is particularly important and necessary to analyze and inter
pret spatial transcriptomic data and transform it into useful in
formation and knowledge by using computational tools efficiently, 
but the multitude of computational tools for data analysis can be
wilder beginners. Therefore, we detailed the workflow of spatial 
transcriptomic data analysis and marshaled 70 computational tools 
to analyse spatial transcriptomic data for a variety of purposes, fa
cilitating researchers to select appropriate data analysis tools or 
develop new packages. There is much room for improvement in the 
existing computational tools of data analysis. The development of 
algorithms should avoid the limitations inherent in the original 
technology and integrate data from different sources across tech
nologies to complement each other. The massive amounts of existing 
bulk and single-cell RNA sequencing data may also help predict or 
complement spatial transcriptomic data, and there are already al
gorithms for generating a spatially resolved single-cell expression 
profile from bulk RNA-seq data [141] and integration analysis of data 
from 10X Visium with scRNA-seq [83,142,143]. Besides, given tissue 
sections in most spatial transcriptomic technologies, it is of great 
importance to develop powerful and efficient computational tools 
that will integrate and align the spatial transcriptomic data of 
multiple sections from multiple individuals or developmental stages 
to enable a three-dimensional or spatiotemporal analysis of life ac
tivities. The recent proposal of probabilistic alignment of ST ex
periments (PASTE) [99] was a successful attempt at the alignment 
and integration of spatial transcriptomics data. Particularly, there is 
great potential for computational approaches that conduct analyses 
in both spatial and temporal dimensions simultaneously in the fu
ture, and spatiotemporal analysis will be important for spatial de
velopmental trajectory and disease progression and can provide 
novel and dynamic insights into spatial heterogeneity within the 
tissue microenvironment. Several computational tools have recently 
emerged for scRNA-seq-based analysis, such as developmental tra
jectory [144–146] and RNA velocity [147–149], and some spatial 
transcriptomic data have been successfully analyzed using these 
scRNA-seq-based approaches [150]. Further development of algo
rithms for spatiotemporal analysis will allow measurements of cell 
states in four dimensions. Moreover, novel computational tools for 
integrating spatial transcriptomics data with data of single-cell or 
spatial multimodal omics will be a major future direction and have 

an urgent need to be developed. Through spatial multimodal omics 
analysis, tissue structures, gene expression patterns, cellular inter
actions and molecular interactions will be better understood, which 
will be fundamental to giving a fuller picture of cellular function. 
With the rapid development of artificial intelligence (AI) techniques, 
such as deep learning, transfer leaning, reinforcement learning, en
semble learning and meta learning, AI has been applied to more and 
more biomedical researches including spatial transcriptomics. Al
though it is still difficult to systematically apply AI to specific pro
blems in the biomedical field, we believe AI, especially multimodal 
learning [190,191], will play an important role in spatial multimodal 
omics and provide a good solution for computational analysis in the 
future. Finally, an integrated, scalable, multi-compatible and unified 
computational platform for data analysis that supports both easy-to- 
use command line and graphical interfaces will greatly simplify 
spatial transcriptomics data analysis, facilitating researchers to focus 
more on deciphering the code of life for biological discovery.
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