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a b s t r a c t

Therapeutic protein, represented by antibodies, is of increasing interest in human medicine. However, 
clinical translation of therapeutic protein is still largely hindered by different aspects of developability, 
including affinity and selectivity, stability and aggregation prevention, solubility and viscosity reduction, 
and deimmunization. Conventional optimization of the developability with widely used methods, like 
display technologies and library screening approaches, is a time and cost-intensive endeavor, and the ef
ficiency in finding suitable solutions is still not enough to meet clinical needs. In recent years, the ac
celerated advancement of computational methodologies has ushered in a transformative era in the field of 
therapeutic protein design. Owing to their remarkable capabilities in feature extraction and modeling, the 
integration of cutting-edge computational strategies with conventional techniques presents a promising 
avenue to accelerate the progression of therapeutic protein design and optimization toward clinical im
plementation. Here, we compared the differences between therapeutic protein and small molecules in 
developability and provided an overview of the computational approaches applicable to the design or 
optimization of therapeutic protein in several developability issues.

© 2023 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The advancement of molecular biology and bioengineering in the 
past three decades has led to the success of protein-based drugs, 
resulting in their widespread popularity and significant clinical ef
fectiveness in the expanding global market [1,2]. The shift in drug 
discovery has led to an increased prevalence of protein-based ther
apeutics, with their proportion rising significantly since the 1980 s 
[3]. FDA-approved protein-based drugs for cancer, autoimmune 
diseases, and wet macular degeneration now exceed 200 [4,5]. Four 
of the top 10 global drugs sold in 2021 are protein-based, including 
Humira®, Keytruda®, Eylea®, Stelara®, and Opdivo®, all of which are 
antibodies [6]. Protein-based therapeutics offer a myriad of ad
vantages over conventional small molecules drug, such as high 

affinity, specificity, and potency, as well as low toxicity and minimal 
adverse effects, and these advantages allow the protein-based drugs 
against undruggable targets for previously unresponsive small mo
lecules [7].

Considerable efforts are being directed toward the development 
of protein-based therapeutics, however, the rate of new protein- 
based therapeutic approvals has reached a plateau, and there is a 
possibility of deceleration [4]. The primary cause of protein-based 
therapeutic development failure can be attributed to the inadequate 
developability of these therapeutics [8–11], which encompasses 
factors such as affinity and selectivity [12], inherent physical and/or 
chemical stability [9], aggregation tendency [13], solubility and 
concentration, viscosity [14], manufacturability, and im
munogenicity [15]. Inadequate developability will be the major 
cause of failures in preclinical models and clinical trials. Therefore, 
the development of protein-based therapeutics is essentially a 
multi-objective optimization process, involving the optimization of 
the properties mentioned above [16].
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To increase the success rate and reduce costs, it is crucial to 
evaluate and improve the developability profile in the early stages of 
the drug discovery [3,17–19], it is imperative to gain a comprehen
sive understanding of the physicochemical and biological attributes 
that govern their developability. Nevertheless, the complex nature of 
protein-based therapeutics, which encompasses structural and for
mulation intricacies, presents obstacles in elucidating their physi
cochemical and biological properties pertinent to drug development. 
The elaborate architecture of proteins renders them susceptible to 
numerous factors throughout the drug development process, sub
sequently leading to an array of downstream complications in the 
formulation of protein-based therapeutics for clinical application 
[20]. Slight modifications, such as single amino acid substitutions, 
can lead to unpredictable changes in the characteristics of protein 
drugs and formulations [21]. It is difficult to assess the develop
ability of protein drug formulations in the early stages using existing 
knowledge, such as stability and aggregation kinetics [19,22,23]. 
Therefore, there is still a lack of widely recognized guidelines based 
on the understanding of drug entities in protein-based therapeutics 
to accelerate the development of protein-based therapeutics, like 
Lipinski’s rules and the biopharmaceutics classification system exist 
for the small molecule formulations [24,25].

Given the considerably larger search space of protein drugs and 
the complexity of protein entities, advanced methods are necessary 
to facilitate the development of protein-based therapeutics and 
optimization of the developability [26]. Experiencing rapid devel
opment, computational approaches possess strong feature extrac
tion and modeling abilities that enable them to comprehend the 
complex rules governing protein properties, provide a multi-scale 
view for pharmaceutical scientists [27–30], accelerate the develop
ment of protein-based therapeutics, and reduce costs compared to 
traditional experimental methods [28,30]. Therefore, utilizing com
putational approaches offers great potential for changing the current 
paradigm of protein-based therapeutic development, and the low 
costs and high speed of computational approaches hold promise to 
accelerate the development process of protein drugs toward clinical 
trials.

Briefly, the computational methods in drug discovery fall into 
two categories: physics-based multi-scale modeling methods [31]
(e.g. Rosetta [32], molecular dynamics simulation [33,34], molecular 
docking [35]) and data-driven methods based on big data and data- 
mining (e.g. artificial intelligence, deep learning, machine learning) 
[36–39]. These two methods have different characteristics and ap
plicable scenarios, and a comparison of them is shown in Table 1. 
Aggrescan3D developed by Aleksander Kuriata et al. is an example of 
physics-based multi-scale modeling techniques [40]. Aggrescan3D is 
a structure-based computational approach to predict aggregation 
properties that can precisely detect protein aggregation-prone areas, 
surpassing conventional sequence-based method, and offer the 
ability to mutate predictive aggregation-prone regions to diminish 
aggregation tendency and improve solubility, which is an effective 
strategy for rational protein-based therapeutic design towards clin
ical applications. ProteinMPNN from David Baker’s lab is a re
presentative of data-driven methods used in the protein drug 
optimization [41]. ProteinMPNN demonstrated the ability to salvage 

previously unsuccessful protein designs, highlighting the potential 
of computational methods in protein-based therapeutic develop
ment and can improve protein design efficiency with outstanding 
performance [41]. Apart from optimizing protein design and devel
opment, computational techniques also hold tremendous potential 
for biopharmaceutical process optimization and bioprocess scale-up 
control [42,43].

In the present review, we consider protein-based therapeutics, 
which include protein drugs like monoclonal antibodies, fusion 
proteins, interferons, interleukins, enzymes, and hormones [44], as 
well as protein-based drug delivery systems like albumin-bound 
paclitaxel [45–48], antibody-drug conjugates [49,50], and protein- 
based nanotherapeutics [51]. Additionally, novel protein formula
tions such as nanodiscs [52], nanoparticles (NPs) preincubated with 
serum [53,54], and those decorated or modified with protein will 
also be discussed as protein-based therapeutics [55–57]. This article 
primarily examines the utilization of computational techniques in 
the development of protein-based therapeutics, starting with a 
comparison of small molecules and protein-based therapeutics with 
differing attributes and considerations for clinical viability, followed 
by an exploration of the applications of computational approaches in 
various aspects of protein-based therapeutic development, including 
affinity and selectivity, stability and aggregation prevention, solu
bility and viscosity reduction, and deimmunization, ultimately con
cluding with a discussion of the future direction of computational 
methods in the clinical application of protein-based therapeutics.

2. Comparison of developability between small molecules and 
protein-based therapeutics

Small molecule-based therapies have played a significant role in 
advancing medicine and enhancing patients’ quality of life for many 
centuries [6,58]. Considerable resources and endeavors have been 
dedicated to the advancement of small-molecule drugs, culminating 
in the establishment of guidelines for optimizing development and 
facilitating translation to clinical applications. Notable examples of 
such guidance include Lipinski’s rules and the Biopharmaceutics 
Classification System (BCS) [24,25]. These principles have linked the 
physicochemical and biopharmacological properties of small mole
cules to their developability, including solubility, hydrophobicity, 
penetration, stability, and crystallization properties [59]. Due to their 
ease of use and conceptual simplicity, these principles have become 
the primary indicators of developability in small molecule discovery, 
leading to a reduction in drug discovery and development attrition 
[59]. Small molecule drugs have properties such as high stability, the 
ability to diffuse through biological barriers, and the capability to 
interact with various biological targets [60–63], making oral delivery 
possible. Therefore, the primary challenge for small molecules is to 
improve oral bioavailability since oral administration is the most 
common and preferred route due to its safety, cost-effectiveness, 
and ease of use [64].

The emergence of protein-based therapeutics has fundamentally 
changed administration routes and developability properties due to 
their complex structure [65]. Although they offer high therapeutic 
efficacy and minimal side effects, their stability in biological 

Table 1 
Comparison of physics-based multi-scale modeling methods and data-driven methods based on big data and data-mining. 

Physics-based methods Data-driven methods

Basis Laws of physics and chemistry Big data
Accuracy High Highly data dependent
Efficiency Low, requiring high computational resources High, requiring relatively low computational resources in most cases
Scale Low High
Applicability Target structure is necessary Target structure is unnecessary
Interpretability High, termed as “white-box” tool Low, termed as “black-box” tool
Transferability Low, requiring customization and calibration in a new system High
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environments is low, resulting in poor oral bioavailability [60]. 
Consequently, protein drugs require invasive injection or infusion 
routes in the clinical practice [66]. Owing to the disparities in phy
sicochemical and biopharmaceutical properties, as well as admin
istration routes, substantial variations exist in the developability of 
protein-based therapeutics compared to small molecules. Conse
quently, the developability principles governing small molecule 
drugs cannot be directly extrapolated to protein-based ther
apeutics [9].

Different administration routes and formulation types have 
specific requirements for the developability of the protein-based 
therapeutics [67]. Liquid preparations are the most common for
mulation type, including redissolution formulations prepared 
through advanced industrial processes such as freeze-drying and 
spray-drying [68,69]. The primary objective in developing protein 
drugs and formulations is to identify suitable solution conditions 
that maintain their activity and injectability while undergoing var
ious processes before clinical use. The main consideration in for
mulation design is that proteins are sensitive to heat, pH, shear 
stress, organic solvents, and agitation [44]. Intravenous injection is 
the predominant administration route for protein drugs due to its 
high bioavailability. However, it has significant drawbacks, including 
inconvenience, medical burdens, and the risk of adverse reactions. 
Subcutaneous injection is a promising alternative with benefits such 
as improved patient convenience and acceptance, self-administra
tion at home, and reduced healthcare costs [66,70]. Nonetheless, it 
has specific developability requirements, such as low injection vo
lume and high concentration, which may lead to aggregation, poor 
solubility, opalescence, and high viscosity [44,71]. Similar require
ments are needed for intramuscular injection and other specialized 
administration routes [14,72], such as intravitreal injection, which 
also requires high-concentration formulations due to limited volume 
[73]. Small molecules and protein drugs require different formula
tion approaches due to their distinct physicochemical and bio
pharmaceutical properties [74]. Unlike small molecules, developing 
high-concentration formulations for proteins is challenging due to 
their vulnerable structures, diverse surface properties, and pro
pensity for unpredictable solution behavior, resulting in several de
velopability issues, such as high viscosity, poor stability, and 
aggregation.

As protein-based therapeutics become more widely investigated 
in preclinical and clinical studies, the optimization of their devel
opability comes at a significant cost in terms of time and resources. 
Consequently, there is a growing need for strategies that can predict 
and enhance the developability of these therapeutics at an early 
stage. In the upcoming section, we will explore the diverse devel
opability of protein-based therapeutics and the utilization of com
putational methods for this purpose.

3. Computational methods for the rational design of protein- 
based therapeutics toward the clinical stage

A myriad of computational methods has been applied to design 
and optimize protein-based therapeutics toward the clinical stage, 
and recent methods have been summarized in Table 2. In this sec
tion, we will introduce these methods with different aspects of de
velopability in protein-based therapeutics, including affinity and 
selectivity, stability and aggregation prevention, solubility, viscosity 
reduction, and deimmunization.

3.1. Affinity and selectivity

In protein-based therapeutics, the high affinity between biolo
gical targets and protein drugs is the fundamental requirement. 
Most of the development processes in protein-based therapeutics 
mainly focus on the improvement and optimization of affinity. For 

instance, many processes of antibody development are centered on 
affinity optimization, including animal immunization, hybridoma 
development, affinity maturation, directed evolution [163], and a 
variety of display methods or selection platforms [164,165]. These 
powerful and effective methods for affinity optimization in protein 
drug development are able to produce protein drugs with nanomolar 
and even picomolar affinity [166,167] or other desirable biological 
effects [168]. However, these technologies usually require multiple 
mutations of the starting protein for screening all possibilities as 
much as possible, which is time and cost-consuming [166,169].

There are several studies combining the computational methods 
with these widely used processes for efficiency improvement and 
cost-saving in protein drug development or optimization. In the 
research of Emily K. Makowski and co-workers, they combine yeast 
display and machine learning for the improvement of antibody af
finity without undesirable specificity (Fig. 1) [12]. The machine 
learning method used in this research is a powerful complementary 
to yeast display methods for antibody optimization. They found that 
the machine learning model trained by the data from yeast display 
can generalize to novel mutational space, meaning that researchers 
can firstly screen the ultra-large library of antibodies variants by 
time-saving machine learning method with high efficiency, and then 
select the candidates for subsequent processes like display screening 
and evaluation of other developability properties. The computational 
method, machine learning in this research, can explore a large range 
of possibilities of antibody variants, because of its time and cost- 
effectiveness. Similar research was finished by Derek M. Mason et al. 
[102]. They leveraged the deep learning model to screen a compu
tational library of approximately 1 × 108 trastuzumab variants for 
high affinity against human epidermal growth factor receptor 2 and 
conducted multi-parameter optimization of other developability, 
which will be discussed later. The purpose of introducing compu
tational methods in this research is also for time-saving and 
screening a large range of possibilities. Similarly, Xun Chen et al. 
combined the computational methods with the display method [79]. 
They utilized computational methods to aid the selection of the 
candidates of 1011 randomized sequences from ribosome display. 
Through a clustering algorithm based on sequence similarity, they 
grouped the result from ribosome display into several clusters. They 
assumed that each cluster represents a unique binding family, which 
means they can take one representative sequence in each cluster to 
characterize their specific downstream applications as a proof of 
concept and this screening mode will be efficient and provide a more 
comprehensive view of the landscape of binder potential. Joseph 
M.Taft et al. also utilized the data from display, the yeast surface 
display in their research, to construct a deep learning model for 
protein drug evaluation and optimization [170]. Unlike the previous 
three examples, they conduct combinatorial mutations on the re
ceptor-binding domain (RBD, the target against SARS-CoV-2), but 
not on protein drug, to interrogate the impact of RBD mutations on 
ACE2 binding and escape from a panel of antibodies. This deep 
learning model can accurately predict antibody robustness to pro
spective SARS-CoV-2 variants and will be suitable for the evaluation 
of the antibody therapeutics for clinical translation. In addition to 
leveraging the data from display technology, computational 
methods can also aid the construction of the library for screening 
through a display or other methods [165]. GuyNimrod et al. utilized 
computational methods to guide the library design and conduct in 
vitro selection of these libraries, to design a functional antibody 
against the cytokine interleukin-17A (IL-17A) [171]. Through the 
structure of epitopes and paratopes, molecular docking, molecular 
dynamics simulation, and analysis of structural and energy, they 
rationally designed an antibody variants library, attempting to im
prove the complementarity with the desired epitope and enhance 
efficiency. There are also works using computational methods to 
conduct directed evolution [172], to avoid or accelerate the processes 
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of expensive and time-consuming screening or selection of large 
mutational sequence space in traditional directed evolution [81]. In 
the study of Surojit Biswas and co-workers, they combine several 
computational methods, including unsupervised learning for pre- 
training and transfer learning with data from a few dozen mutants, 
to conduct the in silico directed evolution with a metropolis–hast
ings Markov Chain Monte Carlo algorithm to screen protein variants 
with improved affinity and function relative to wide type [80]. 
Zachary Wu et al. also introduced machine learning into the directed 
evolution workflow, to increase throughput with in silico modeling, 
reduce the expense of experimentally screening numerous candi
dates and improve the screening quality [173].

Apart from improving the efficiency of traditional protein de
velopment processes, computational methods also revolutionize de 
novo protein design with high affinity, which can create novel pro
tein drugs with the desired developability. The natural evolutionary 
process only sampled an infinitesimal subset of the hypothetical 
space of protein sequence and structure. More than 95% of protein 
optimization and engineering is still taking natural proteins, like an 
antibody from animal immunization, as starting points to mutate, 
modify and optimize, which can only explore the naturally occurring 
protein fold space and cannot fully explore the whole protein space 
for drug discovery [174,175]. De novo protein design tries to explore 
the whole protein space and generate the proteins not found in 
nature, adopt desired structures, and perform novel and intriguing 
functions, like binding to the target with high affinity or acting as an 
enzyme [175]. The main goal of de novo protein design is finding a 
sequence folding to the desired structure satisfying the structural 
geometry, performing intended biological effects, and having sui
table developability properties. High affinity is the primary con
sideration in the processes of de novo protein design and the main 
goal and criterion of design methods and protocols [176]. The vast 
search space of protein largely hinders the design of functional 
protein with empirical approaches or intuition, which should rely on 
other methods, like computational approaches [177]. In general, de 
novo protein design can be divided into four steps, including to
pology construction, backbone generation, sequence design or side 
chain optimization, and sequence-structure compatibility, and all of 
them are now performed mainly by advanced computational 
methods and the laws of physics and chemistry [178,179]. Many 
excellent reviews summarized the computational methods used in 
different aspects of the de novo design [174, 178–184].

There are also some unconventional protein-based therapeutics 
having the requirement for high affinity, and the formulation of 
nanoparticles (NPs) with protein corona on the surface is one of 
them. A current assumption is that the formulation of NPs will in
fluence the protein composition on NPs’ surface under the biological 
environment, which has a different affinity toward different re
ceptors on cells, and therefore, the NPs with different formulations 
will be untaken by distinct cells and have disparate biodistribution 
[185]. Predicting the protein composition on the NPs’ surface or the 
NPs’ biological effect and biodistribution with computational 
methods is of significance to NP design. Leveraging a machine 
learning model, Zhan Ban et al. completed the prediction with a 
random forest model from various physicochemical parameters of 
NPs and environmental factors to protein composition on the NPs’ 
surface [186]. This model can further predict the cellular recognition 
of protein composition on NPs’ surfaces. James Lazarovits and co- 
workers developed a machine learning model to predict the biolo
gical fates of NPs in vivo (half-life, spleen accumulation, and liver 
accumulation) [187]. The input is the mass spectrometry protein 
library from the NPs isolated in multiple time points from circula
tion, which can predict the in vivo behaviors of NPs and dictate NPs’ 
interactions with cells and tissues in the body. Protein-based artifi
cial nanosystem is another novel protein-based therapeutic with the 
requirement of high affinity. Yazan Haddad and co-workers Ta
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developed an ellipticine-loaded ferritin with surface modification of 
the norepinephrine transporter (hNET) targeting peptides for tumor- 
targeting ability [188]. With computational methods, homology 
modeling, molecular docking, and molecular dynamics in this re
search, they found that these peptides showed an intriguing binding 
affinity with hNET. The hNET targeting ability of these peptides 
enabled rapid endocytosis of this protein-based nanosystem into 
neuroblastoma cells in a selective fashion, leading to apoptosis, cy
totoxicity, and oncotherapy. Meiru Song et al. leveraged computa
tional methods to study the drug vehicle of Doxorubicin (DOX), and 
human serum albumin (HSA) [189]. Molecular dynamics simulation 
elucidated the structural basis of DOX bound to HAS at different pH, 
providing new structural insights into pH-dependent interactions of 
HAS and DOX, which is useful in designing new microenvironment- 
responsive drug delivery systems.

In addition to affinity, the developability of protein-based ther
apeutics is also significantly influenced by selectivity or specificity, 
which serve as crucial attributes. These factors are vital indicators 
for achieving success in clinical trials [8,10]. The progression of 
protein-based therapeutics toward the clinical phase necessitates a 
delicate balance between elevated target selectivity and target 
binding affinity [12]. However, selectivity tends to be under
emphasized in comparison to the affinity [190]. Screening out 

nonspecific protein drugs typically occurs late in the drug discovery 
process, which will lead to a waste of time and cost [100]. A prior 
investigation has demonstrated that selectivity serves as the most 
effective biophysical descriptor for predicting the successful trans
lation of antibodies into clinical applications [10]. Selectivity refers 
to the relative propensity of protein drugs to interact with molecules 
other than their antigens or receptors, and the ideal selectivity 
mainly contains two aspects, low levels of antibody non-specific and 
self-interactions (Fig. 2) [190]. Both of them will largely influence the 
efficiency, safety, and other developability aspects (like viscosity and 
aggregation) of protein-based therapeutics toward the clinical stage 
[190]. For instance, the non-specific protein drug will cause off- 
target binding and result in limited therapeutic efficacy and safety 
problems or poor physicochemical properties like fast antibody 
clearance; the self-interactions of protein drug will lead to high 
viscosity, aggregation tendency, and low solubility, which will lar
gely hinder the clinical translation and will be discussed later.

In the study conducted by Sachit Dinesh Saksena and colleagues, 
they employed machine learning models to facilitate computational 
counterselection, thereby pinpointing non-specificity sequences 
[100]. The computational counterselection in this research refers to a 
method taking sequencing data from affinity-selection experiments 
as data for machine learning training of nonspecific binding. 

Fig. 1. Overview of antibody library sorting, deep sequencing, and machine learning methods used to co-optimize the affinity and specificity of a therapeutic antibody [12]. 
Copyright 2022, Springer Nature.
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Through training to jointly predict affinity to on and off-targets, the 
model can then be used to identify sequences that bind to the off- 
target molecule and remove these sequences. The efficacy of com
putational counterselection still needs to be validated in clinical 
trials in the future. In one of the previously mentioned examples in 
the part of affinity, Emily K. Makowski et al. not only applied ma
chine learning to predict antibody affinity but also predict specificity 
(Fig. 1) [12]. To be specific, they treated the affinity between the 
antibody and soluble membrane proteins or ovalbumin as the index 
of non-specificity, because both of them are not the targets of these 
antibodies. Like predicting the affinity, they also acquired the data 
through yeast display and predicted the specificity through machine 
learning. Predicting both affinity and specificity enable authors to 
select the novel antibody with both low non-specificity and high 
affinity. Through the database of over 1000 polyreactive and non- 
polyreactive antibody sequences and bioinformatics-based analysis, 
Christopher T Boughter et al. successfully isolated key biophysical 
properties of polyreactivity, which is useful to guide the develop
ment and optimization of protein drugs [101]. They subsequently 
utilized these properties to design a generalizable machine learning- 
based classification software, which can take sequences as input and 
output the non-specificity property.

3.2. Stability and aggregation prevention

A prevailing tendency in the advancement of protein-based 
therapeutics involves low-volume and high-concentration formula
tions, which hold considerable significance in the biopharmaceutical 
sector [74]. There are numerous advantages of developing high- 
concentration formulation, including but not limited to the avail
ability of subcutaneous delivery with syringes or autoinjectors, in
creased patient comfort, improved patient compliance, at-home 
delivery, and reduced healthcare costs. Even with intriguing prop
erties, there are many severe problems in developing high-con
centration formulations, such as poor stability, forming reversible or 

irreversible aggregates, limited solubility, and high viscosity, both of 
them will pose challenges in the manufacturing and delivery of 
protein-based therapeutics.

Proteins are complicated molecules and have a fine three-di
mensional structure. This structure endows protein with many bio
logical functions and pharmaceutical effects but makes the protein 
inherently unstable and sensitive to environmental conditions 
[9,191]. Therefore, stability is one of the major and considerable 
factors in protein-based therapeutics development [192]. The basic 
requirement of protein drugs is highly stable so that they can tol
erate the extreme conditions of manufacturing processes, like fil
tration and filling, and remain stable and active during 
transportation, storage, and administration [193]. In addition, the 
stability of protein will be the prerequisite for high yield in protein 
production and manufacture. Stability is the fundamental factor for 
other developability properties, and the instability will cause several 
issues, not only the ineffective efficacy of therapeutics but also some 
safety problem like immunogenic responses. Instability will also 
cause increased health charges, like the demand for cold chain 
maintenance, and therefore increase the cost per dose. Prediction, 
detection, mechanistic understanding of protein instabilities, and 
optimization of protein drug stability with relative cost and time- 
friendly methods in the early stage will make a difference in the drug 
discovery [194,195].

Since most protein-based therapeutics are liquid pharmaceutical 
preparations, the stability of the protein drugs involves colloidal 
stability and conformational stability (Fig. 3) [196]. Fig. 3 sum
marizes the equilibrium process of protein, including colloidal sta
bility (red) and conformational stability (blue) [196]. In general, the 
stability of protein refers to conformational stability, in other words, 
conformational integrity. The protein conformation is complicated, 
multi-level, and inhomogeneous. Maintained by covalent bonds 
ionic bonding, hydrogen bonding, and Van der Waals forces, the 
protein conformation is sensitive and can be affected by several 
factors, including protein molecule, formulation gradients, compo
sition, temperature, pH, and ionic strength [197]. Colloidal stability is 
the other aspect of stability in protein-based therapeutics, especially 
liquid pharmaceutical preparations. The colloidal stability is related 
to the colloidal property of proteins as simple particles, which have 
attractive and repulsive interactions. Even though there are some 
theories to describe colloidal stability, such as DLVO (Derjaguin- 
Landau-Verwey-Overbeek) theory [198] and electric double layer 
theory [199], and there are some parameters to reflect the colloidal 
stability, like the second virial coefficient (B22) or protein interaction 
parameter (kD) [200], the colloidal stability of protein drug for
mulation is as complicated as conformational stability and still a 
thorny issue in protein-based therapeutics development. Both con
formational stability and colloidal stability will have considerable 
influences on the stability of protein-based therapeutics during 
manufacturing processes and long-term storage. However, it is still 
difficult to rational design or modifies protein-based formulation for 
better stability by intuition and experience, since the high com
plexity of protein stability. For instance, making a very subtle ad
justment to the sequence or structure of a protein might have a 
significant effect on protein stability. There is an array of interactions 
controlling protein stability, making understanding the molecular 
mechanisms and improvement of protein stability challenging. 
Therefore, advanced methods are needed to predict and increase the 
stability in protein-based therapeutics development, and the com
putational method is one of the most promising approaches.

Shuyu Wang et al. developed a computational method called 
BayeStab, which can be utilized to predict protein thermostability 
change upon mutation (Fig. 4) [201]. This method combines graph 
neural networks and Bayesian neural networks and takes the protein 
data as input to predict protein mutations’ ΔΔG with considerably 
high performance. The high generalization and symmetry 

Fig. 2. Drug-like protein drugs with high specificity have low levels of non-specific 
and self-interactions, which endow protein drugs with several properties including 
low non-specific FcRn binding, slow antibody clearance, low off-target binding, low 
viscosity and low aggregation, and high solubility [190]. Copyright 2019, Elsevier.
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performance was certified in four datasets. Huali Cao and co- 
workers developed a computational method called DeepDDG, a 
machine learning-based tool to predict the stability change of pro
tein point mutations [109]. They trained the machine learning model 
with 5700 manually curated experimental data, and the perfor
mance is better than 11 other methods. In the research of Ethan C. 
Alley and co-workers, they carry out a pattern of unsupervised 
learning, next token prediction, with a recurrent neural network 
trained by the UniRef50 dataset with 24 million amino acid se
quences [104]. This trained model is called UniRep, which is in
dependent of structural or evolutionary data and can summarize the 
information in every protein sequence and convert them into fixed- 
length vectors. These vectors are endowed with rich information and 
excellent generalization ability, which can be the suitable re
presentation of input protein sequences for downstream tasks, such 
as protein stability prediction. Alex Nisthal et al. combined the au
tomated method they developed and three stability-prediction al
gorithms, PoPMuSiC, FoldX, and Rosetta, to obtain the most stable 
variants in the single-mutant landscape [202]. Hongwei Tu et al. 
developed a structure-independent protocol to predict the protein 
mutations’ ΔΔG [203]. This protocol leveraged the information in 
sequence, physicochemical and evolutionary features, and in
tegrated supervised (boosted tree regression) and unsupervised 
learning (K-means algorithm), successfully achieving high accuracy 
with an average PCC of 0.83. GuidoScarabelli and co-workers 

described a physical-based computational method to predict the 
thermodynamic stability of protein and compared the prediction 
with the actual result from diverse experiments at different pH 
conditions [120]. They compared the performance of several phy
sical-based techniques, including Free Energy Perturbation (FEP), 
Molecular Mechanics-Generalized Born Surface Area (MM/GBSA), 
and the combination of MM/GBSA and molecular dynamics. The FEP 
got the best result, and there was a good correlation between pre
dicted results by the FEP method and experimental results (R2 

= 0.65).
The issue of instability is present in some innovative and atypical 

protein-based therapeutics, with computational methods proving 
valuable for their analysis and optimization. Nanodiscs (NDs), as an 
example of unconventional protein-based therapeutics, consists of 
phospholipids and apolipoprotein A1 (ApoA1)-mimetic peptides 
[204,205]. NDs offer numerous benefits, including cost-effective
ness, ease of large-scale production, an extended half-life, and pas
sive targeting, rendering them an appealing drug delivery system. 
[206,207]. Despite the potential of nanodiscs (NDs) as a drug de
livery system, stability continues to pose a challenge to their clinical 
translation, due to their self-assembling nature. In one of our in
vestigations, molecular dynamics simulations were employed to 
examine the correlation between nanodisc formulation and the 
conformational stability [52]. The findings indicated that both the 
molecular flexibility and the form of prodrug play crucial roles in 

Fig. 3. Schematic representation of the states accessible to a polypeptide chain, involving colloidal stability (red part) and conformational stability (blue part). 
Adapted from ref [196].
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determining conformational stability. In addition to exploring the 
mechanism of stability, molecular dynamics can also be used to 
design protein therapeutics with improved stability [208]. In our 
latest work, we developed a consensus-based normalization ap
proach for designing reconfigurable apoA-I peptide analogs (APAs) to 
create tunable ND assemblies, with potential implications for 
structural biology and therapeutics [209]. We generated 15 di
vergent APAs and demonstrated that APA design influences ND 
diameter and stability through factors such as tandem repeats, se
quence composition, and lipid-to-APA ratio. The findings reveal a 
strong correlation between DMPC-to-APA ratios and ND diameters, 
with longer APAs yielding more homogeneous particle sizes. Proline- 
rich substitutions contribute to both smaller and larger ND forma
tion, while proline-tryptophan residues play a key role in forming 
larger NDs. Molecular simulations also indicate that basic and acidic 
residues in APAs enhance structural stability through hydrogen- 
bond and salt bridge networks. These insights advance our under
standing of APA-ND assembly and offer a foundation for the com
putational design of APAs with desired functional and structural 
properties. Another novel protein-based therapeutic is Antibody- 
drug conjugates (ADCs). ADCs combine the selectivity and affinity of 
antibodies with the cytotoxicity of highly toxic small molecules and 
have now become intriguing protein-based therapeutics in clinical 
applications [49]. Nevertheless, the unstable or heterogeneous pro
ducts of current production strategies of ADCs seriously hinder their 
clinical application. Nimish Gupta and co-workers leveraged com
putational methods, molecular docking, and molecular dynamics 
simulations to design a new ADC [210]. This new ADC will self-as
semble through the non-covalent binding with active payloads 
without the need for modifications to the antibody structure. This 

method will yield homogenous ADCs with excellent stability within 
a short time.

Among the different stability problems affecting protein drugs, 
aggregation is undoubtedly the most prevalent and long-lasting one 
during the development of protein-based therapeutics. Aggregation 
may jeopardize the viability of the complete biotechnological pro
cess and is one of the major bottlenecks for the clinical translation 
[211]. Protein aggregation happens under a variety of physico
chemical diverse supramolecular assemblies and occurs through a 
series of stages shown in Fig. 3, which is often initiated by the in
teraction between unfolded, non-native, or the native state of pro
tein [212,213]. Aggregation is a generic property of protein, which 
has strong interaction between themselves or between protein and 
other molecules [214]. The formation of aggregation of protein drugs 
may result in reduced production yields, loss of protein activities, 
poor solubility, and high viscosity, and cause safety issues like im
mune response during the production, storage, and administration 
of protein-based therapeutics [69,215]. Therefore, it is necessary to 
understand the mechanism of protein aggregation and control it. 
However, since the complexity of aggregation formation, current 
empirical methods used in aggregation prediction and prevention 
are usually time and cost-consuming and ineffective. There are lots 
of factors determining the aggregation with diverse mechanisms, 
and under the circumstances, the computational methods will make 
a difference in stability improvement and aggregation prevention 
[27,212].

There are growing numbers of computational methods to predict 
protein aggregation and some of them take sequences as input, and 
the other take 3D structure or both of them. Some reviews have 
summarized a wide diversity of computational methods for the 

Fig. 4. The process of the BayeStab model to predict protein thermostability change upon mutation [201]. Copyright 2022 Wiley-VCH. 
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protein aggregation prediction [30, 132, 212, 213, 215, 216]. Apart 
from methods proposed in academic papers, there are many routine 
methods used in the pharmaceutical industry, including SAP (Spatial 
aggregation propensity) [217], AggScore in Schrodinger [218], and 
some modules in MOE software (eg. Protein property patches). In the 
study of R Prabakaran and co-workers, they systematically compared 
nine different computational aggregation prediction methods using 
six diverse datasets, a variety of assessments, and providing rigorous 
performance analysis [219]. This analysis revealed that different 
methods have advantages for different prediction tasks, like solu
bility prediction, amyloid fibril formation prediction, etc., and the 
performance of computational aggregation prediction methods re
lies on the model architecture and training and validation datasets. 
This analysis will provide crucial guidance to develop aggregation 
prediction methods in the future.

To improve the stability or prevent the aggregation of protein- 
based therapeutics, the formulation method is also powerful and 
widely used in protein-based therapeutics development toward 
clinical. In the formulation of protein drugs, additives such as salts 
(e.g. citrates, sulfates), sugars (e.g. sorbitol, sucrose, trehalose), 
polymers [220], surfactants, and amino acids (e.g. glycine, arginine) 
are typical stabilizers in clinical [72,221]. There are different me
chanisms of these stabilizers, including directly binding with protein 
drugs and some complicated mechanisms involving the indirect 
interactions between protein drugs and stabilizers or stabilizers and 
stabilizers [222]. The mechanisms of the stabilization effect are 
complicated and still not fully understood, and the selection of 
stabilizers still relies on intuition, experience, and trial-and-error 
methods. For high stability of protein formulation, there is currently 
no efficient way but trying lots of pharmaceutical excipients like 
sugars, salt, and amino acids, until obtaining the formulation with 
suitable and acceptable properties. Advanced computational 
methods should be explored for formulation design in protein-based 
therapeutics.

Matthew J. Tamasi et al. reported a computational method based 
on active machine learning and automated polymer chemistry to 
design protein-stabilizing copolymers [223]. Polymer–protein hy
brids are novel materials to bolster protein stability, which may be a 
powerful strategy in medicine. The rational design of polymer is still 
a big challenge because of the vast chemical and composition space. 
The computational method invented by the authors successfully 
identified the copolymers preserving or enhancing the activity of 
three different enzymes under the thermal denaturing conditions, 
which certificated the considerable generalization performance and 
robustness. Sunhwan Jo and co-workers applied the computational 
methods called SILCS (site-identification by ligand competitive sa
turation) to assist the rational excipient selection [224]. This method 
takes protein 3D structure as input and performs excipient docking 
and protein docking. Some results of SILCS are good indicators of 
experimental results, for example, the low number of the predicted 
binding site of excipients will be the indicator of high viscosity and 
poor stability. Sowmya Indrakumar et al. designed an excipients 
screening method integrating the microscale thermophoresis titra
tion assays and molecular dynamics simulations, which can rank the 
excipients with respect to binding affinity and analyze the hotspots 
in proteins or peptides. The result was consistent with 1H–13C HSQC 
NMR titration experiments, showing its ability as a fast-screening 
method to rank and optimize excipients in protein or peptide for
mulation for stability improvement. Instead of screening excipients, 
Suman Saurabh et al. leveraged all-atom molecular dynamics si
mulations and contact-based free energy calculations to study the 
molecular interactions between histidine and antibodies [121]. Un
derstanding the molecular interactions and stabilizing mechanisms 
of histidine or other excipients will help us screen and design protein 
formulation for improved protein stability and reduced protein ag
gregation propensity.

3.3. Solubility and viscosity reduction

Protein solubility is one of the most considerable prerequisites 
for the clinical translation of protein-based therapeutics, especially 
the highly concentrated formulations with increased demand. Some 
administration methods need higher requirements in protein solu
bility, for instance, subcutaneous injection and intramuscular in
jection with limited injection volume (< 2/5 mL) and high dose 
requirement (∼500 mg) [71]. In addition, similar to stability, solu
bility is a critical factor of manufacturability, and poor solubility will 
also cause low product yield and capacity [225,226]. Poor solubility 
will also cause other developability problems, especially the ag
gregation discussed above, and it will pose a challenge to the 
transportation, storage, and in vivo pharmacokinetics properties of 
protein drugs [214]. Measuring protein solubility is very challenging, 
often using surrogate parameters [167]. Traditional solubility im
provement methods are also in a trial-and-error manner [227], 
taking lots of processes and spending a lot of time and money 
[228,229]. It is still challenging to obtain a protein with high solu
bility efficiently in experimental methods, mainly because of the 
conflict between the limited preparation quality available and a large 
number of protein variants and formulations [230]. Like other de
velopability, having a full understanding of protein solubility me
chanism is still inaccessible, because the protein has a complicated 
structure and physicochemical properties, and environmental fac
tors like pH and temperature will also influence the solubility.

JiangyanFeng et al. designed a solubility prediction method called 
solPredict, which can predict the proteins’ apparent solubility in a 
histidine (pH 6.0) buffer [131]. This method is characterized by rapid, 
high-throughput, and cost-saving, and it only needs protein se
quences as input. To overcome the limited data of solubility, they 
combined the pre-training and transfer learning strategy. The pre- 
trained model was trained on 250 million unlabeled protein se
quences in an unsupervised manner, and the learned representa
tions from this pre-trained model will contain rich and important 
information on protein sequences, which will be useful for pre
dicting protein solubility. To avoid decreasing the catalytic activity 
when trying to increase the solubility and address the trade-off 
between enzyme solubility and activity, Justin R. Klesmith and co- 
workers developed a hybrid classification model, which can re
cognize the solubility-enhancing mutations that will not disrupt the 
wild-type function with high accuracy and without the need for 
high-resolution protein structure [231]. Lisanna Paladin and co- 
workers presented a method called SODA to predict the sequence 
influence on the protein solubility [140]. SODA is based on lots of 
physicochemical properties of proteins, including the disorder and 
aggregation propensities, predicted secondary structure compo
nents, and hydrophobic profile. SODA can acquire results quickly, 
which is an intriguing tool in protein drug development. Xuan Hana 
et al. proposed a strategy to estimate antibody solubility through 
machine learning [141]. They first constructed the data by their 
previously developed experimental high-throughput mAb solubility 
screening assay, obtaining 111 antibodies solubilities in a histidine 
buffer, pH 6.0. Then they acquired 3D homology models of the an
tibodies and calculated numerous available molecular descriptors. 
These descriptors were treated as the input of the machine learning 
model, and the solubility was the output and acquired a high ac
curacy for solubility prediction.

Viscosity is also a key aspect of developability, especially in the 
high-concentration formulation of protein drugs [232]. As men
tioned earlier, most protein-based therapeutics should be adminis
tered with injection, and low viscosity is the fundamental 
requirement of the syringeability [233]. For injectable solutions, the 
upper limit of viscosity is about 50 mPa/S-1 for most situations [234]. 
The high viscosity will increase the force needed to deliver a solution 
with needles, extend the required time of injection, and sometimes 
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make the fine needles unavailable, all of which will cause more in
jection pain and medical risk [74,235]. The high viscosity will also 
present big challenges in production processes, including filtration, 
purification, mixing, and vial filling, which will not only cause the 
loss of raw material and high cost but also bring the risk of non- 
uniform products because of insufficient mixing or inaccurate filling 
[74,236]. It is still difficult to understand the mechanism of the 
complicated viscosity behavior of protein solution, and sometimes, 
even a single mutation will cause different viscosity behavior 
[237,238]. Numerous molecular interaction types, protein-protein 
interactions, and protein-excipient interactions will affect the visc
osity of protein solutions [239]. Furthermore, the measurement of 
the viscosity of protein solution is labor-intensive and cost-con
suming, requiring a large amount of protein solution (∼150 mg/mL) 
[12,237]. The experimental method for viscosity measurement will 
hinder the high-thought and fast screening of a large amount of 
candidate protein drugs. Therefore, exploring computational 
methods with low costs and high efficacy will assist viscosity opti
mization in the early stage of drug discovery.

Neeraj J Agrawal and co-workers developed a novel computa
tional method called spatial charge map (SCM), which can accurately 
identify highly viscous antibodies from their sequence alone [240]. 
The 3D structure of the protein was constructed with homology 
modeling, and this structure was the input of SCM. The SCM per
forms molecular dynamics simulation and calculated the SCM score 
to evaluate the viscosity performance of antibodies according to the 
understanding of viscosity and 3D structure. The SCM score is a good 
index to perform high throughput screening for protein drugs with 
low viscosity in the early stage. One of the disadvantages of the SCM 
method is time-consuming and requires computational resources 
since each evaluation requires molecular dynamics simulation. 
Based on this, Pin-Kuang Lai presented a convolutional neural net
work surrogate model, DeepSCM, to substitute the SCM with high 
efficacy without the loss of accuracy [144]. The data to train the 
DeepSCM model is a high-throughput MD simulation result from the 
original SCM, and DeepSCM can screen hundreds of protein drug 
candidates with only sequences as input within a few seconds. The 
addition of pharmaceutical excipients is a widely used method to 
control the viscosity of protein formulation in industry, and there are 
also lots of studies using computational methods to investigate ex
cipients for viscosity reduction. In Niels Banik et al.’ study, excipient 
parameters calculated by in-silico methods can be treated as a 
screening tool for protein formulation development and viscosity 
reduction together with dynamic light scattering [241]. MaticProj 
and co-workers leveraged two computational chemistry methods to 
screen new viscosity-reducing agents: fingerprint similarity 
searching, and physicochemical property filtering. With these 
methods, they successfully selected 33 new agents from 94 com
pounds that can reduce the viscosity of two model mAbs [242].

3.4. Deimmunization and humanization

As exogenous large molecules, the potential immunogenicity is a 
significant problem in protein-based therapeutics development. 
Immunogenicity refers to the degree of host immune system can 
recognize and react to external agents, which include the ther
apeutical protein drug [243]. Immunogenicity is a considerable 
concern during protein drug development, which should be avoided 
for most therapeutic proteins apart from vaccines. The uncontrolled 
immune response stimulated by protein drugs will neutralize ther
apeutic agents, cause the loss of therapeutic efficacy, and even cause 
serious medical consequences like severe anaphylactic reactions or 
hypersensitivity reactions which can be life-threatening [243]. 
Therefore, there is an urgent need to develop deimmunization 
methods for protein drugs toward the clinical stage. Lots of deim
munization methods have been proposed in protein-based 

therapeutics development, aiming at mitigating immunogenicity, 
reducing immune-related side effects, and improving therapeutical 
efficacy. Among deimmunization methods, the widely used methods 
include shielding approaches such as PEGylation [244], XTENylation 
[245] or PASylation [246], humanization [247], and prediction/de
letion of T cell and B cell epitopes [248]. The latter two methods are 
the fundamental solutions for deimmunization because the anti
genic motifs in protein molecules will be modified or removed by 
protein engineering methods [249]. The strategies to deimmunize 
protein drugs, both humanization and prediction/deletion of T cell 
and B cell epitopes rely on the detailed understanding of the mo
lecular and cellular mechanisms of the immune response toward 
protein drugs [250]. Similar to the developability problem discussed 
above, the current experimental methods for deimmunization are 
time and cost-consuming, and labor-intensive, and the computa
tional methods will facilitate humanization and T/B cell epitope 
identification and deletion.

For antibody development, one of the most common generation 
methods of protein currently relies on the immunization of mice or 
another model animal (for example, Camelidae produce nano
bodies). There are lots of advantages to producing protein by the 
model animal, including good availability, low cost, and high-effi
ciency [164]. For example, the antibodies developed by the model 
animal will experience evolution with in vivo mechanisms, like hy
permutation in germinal centers, and these mechanisms will guar
antee the high affinity of produced antibodies [247]. However, the 
products derived from non-human sources may result in severe 
immune response, safety problems, and reduced efficiency, which 
came from the anti-drug antibodies (ADAs). To avoid the formation 
of ADAs and subsequent immune response, the antibodies derived 
from non-human sources should undergo a subsequent process 
called humanization. The main purpose of humanization is to reduce 
immunogenicity and increase safety without the partial or complete 
loss of affinity, and during humanization, the complementarity de
termining regions (CDRs) of antibodies from non-human sources 
will be grafted onto human frameworks or the antibodies from non- 
human sources will be engineered to resemble human antibodies 
[28]. The humanized antibodies have improved clinical tolerance, 
accelerating the development of protein-based therapeutics. How
ever, current traditional humanization methods are mainly based on 
germline sequences or natural sequence libraries of limited size, 
which lack enough diversity and systematicness, and may fall into a 
locally optimal solution for the clinical translation [151], and these 
methods highly rely on expensive and time-consuming experiments. 
There is an urgent need for advanced methods like computational 
methods for humanization in protein-based therapeutics devel
opment.

Claire Marks and co-workers developed a computational method 
called Hu-mAb, which can guide researchers to mutate the input 
sequences for immunogenicity reduction and humanization [154]. 
The construction of Hu-mAb is based on the Observed Antibody 
Space (OAS) database and the random forest model, and it can hu
manize the sequence in an optimal manner with the lowest possible 
number of mutations to avoid the influence of protein activity. Hu- 
mAb is a competitive substitute for humanization for traditional 
experimental methods, getting similar mutation results with ex
perimental therapeutic humanization without the time and cost- 
consuming processes. David Prihoda et al. designed a computational 
platform called BioPhi, containing novel humanization methods 
(Sapiens) and humanness evaluation methods (OASis) [151]. Sapiens 
is an attention-based deep learning model trained on human vari
able region antibody sequences from the OAS database, which can 
produce similar results with expert methods. OASis is an accurate 
humanness score based on the OAS database. The high efficiency and 
automated humanization workflow of BioPhi make it possible to 
bulk process numerous sequences. In the research of Pier Paolo 

Z. Chen, X. Wang, X. Chen et al. Computational and Structural Biotechnology Journal 21 (2023) 2909–2926

2920



Olimpieri et al., they showed a web server for antibody server, which 
can guide the researcher to perform all the critical steps of the hu
manization experiment protocol, including human template selec
tion, grafting, back-mutation evaluation, antibody modeling, and 
structural analysis.

The identification, prediction, and deletion of T cell and B cell 
epitopes are also practical methods for the deimmunization of 
protein-based therapeutics because they can avoid the reorganiza
tion and devitalization of immune cells or antidrug antibodies 
[248,251]. In addition, epitope reorganization and removal will not 
only reduce the immunogenicity of protein drug but also increase 
the half-life, and efficacy and improve the pharmacodynamics and 
-kinetics properties [249]. For antibody drugs, it is also significant to 
recognize the epitopes, which is useful for understanding and pre
dicting the possible cross-reactivity [252]. Lots of strategies have 
been applied to recognize and delete epitopes in protein drugs, in
cluding random mutagenesis and high throughput screening [253], 
more precise mapping using panels of antidrug antibodies [254], and 
structure-based design with co-crystals of antibody-antigen [255]. 
Both of these methods still rely on a trial-and-error process, re
quiring much time and cost, and computational methods are desir
able and time-saving alternatives for high efficiency. There have 
been lots of computational methods developed to perform the 
identification, prediction, and deletion of T cell and B cell epitopes 
with high efficiency, which have been introduced in detail in other 
reviews [248, 249, 252, 256].

4. Future perspective

The use of computational methods to predict and optimize the 
developability of protein-based therapeutics has gained significant 
attention. In this review, we highlight recent advances in this area 
with regard to various aspects of developability. However, there is 
still much work to be done to fully harness the potential of these 
methods and to translate them into tangible improvements in pro
tein-based therapeutic developability. Several obstacles must be 
overcome in this field.

Data-driven methods, such as ML and DL, are dependent on the 
quality, diversity, and quantity of datasets, especially for complex 
learning tasks [257]. In the discovery of protein-based therapeutics, 
obtaining large amounts of high-quality data is challenging [258]. 
For example, measuring viscosity is a time-consuming and labor- 
intensive process, making it difficult to gather enough data for an 
artificial intelligence model. Additionally, publicly available data and 
databases are often heterogeneous in format and structure [30,36], 
resulting in non-comparable data that can impact the accuracy of 
predictive models and hinder data sharing [259]. High-throughput 
methods can also sacrifice data accuracy and relevance for increased 
throughput, leading to errors that can distort results [260]. There
fore, detecting anomalies in datasets is also a critical concern [36]. 
With the growth of AI models, the number of internal parameters 
increases, posing challenges to the size of datasets required for ef
fective learning.

Multi-scale modeling techniques, such as molecular dynamics 
simulation, require a balance between accuracy and speed, often 
sacrificing one for the other. The all-atom molecular dynamics si
mulation offers high accuracy and detailed knowledge for mechan
istic insights in protein engineering and drug discovery, but it is 
limited due to its high computational cost and limited speed. Coarse- 
Grained molecular dynamics simulation is a preferred method in 
high-throughput screening due to its acceptable computing re
sources, but it results in less accuracy and loss of detail [261]. 
However, it enables the simulation of multiple molecules, which is 
necessary for studying some in silico developability factors, such as 
viscosity and self-aggregation [148]. Another challenge in molecular 

dynamics simulation is the validity of the results, as there are as
sumptions and approximations made that can cause deviation from 
experimental results. To achieve the same thermodynamic and ki
netic observables as experiments, optimization of simulation 
methods, including more precise force fields and topology [262], 
enhanced sampling methods [263], a deeper understanding of 
physical rules and modeling parameters, more efficient simulation 
methods [264], and better computational technology and speed, is 
necessary [265].

In developing protein-based therapeutics, the integration of 
multiple computational and experimental methods is necessary for 
optimal results [30]. Utilizing only one method can result in limited 
information, and no single technique can fully address all challenges 
in development. Integration of various computing methods and data 
sources is a growing trend, such as combining molecular dynamics 
simulation and artificial intelligence to construct prediction models 
in several aspects of the developability [30]. Additionally, high-effi
ciency computational methods can be used to accelerate or optimize 
high-accuracy methods [266,267], like utilizing machine learning to 
accelerate the multi-scale simulation processes [263,268] and mo
lecular docking [269]. Besides, the integration of computational and 
experimental methods is an effective pattern in protein drug dis
covery, like the examples mentioned above using AI and experi
mental phase display methods to explore large protein space and 
optimize the protein [12,102]. Furthermore, the incorporation of 
computational modeling and laboratory experiments will help re
searchers to get a further understanding of the drug discovery pro
cess, like drug formulation mechanisms and protein interactions 
with other substances [67].

Effective collaboration between computational scientists and 
protein drug developers is essential for significant progress in pro
tein drug therapy with computational methods [30]. The gap be
tween these two fields should be bridged, with computational 
scientists developing methods suited for protein-based therapeutics 
and user-friendly algorithms, while protein drug developers re
cognize the potential benefits of computational methods [30,36]. 
Overcoming computational and skillset limitations requires co
operation between pharmaceutical and computational experts or 
the cultivation of interdisciplinary talent [27,270]. Overall, compu
tational techniques in protein-based therapeutics hold great promise 
for accelerating the discovery process, achieving optimal therapeutic 
outcomes, and reducing costs.
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