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Machine learning assisted rational 
design of antimicrobial peptides 
based on human endogenous 
proteins and their applications 
for cosmetic preservative system 
optimization
Lizhi Yue 1,2, Liya Song 1, Siyu Zhu 3,4, Xiaolei Fu 3,4, Xuhui Li 3,5, Congfen He  1* & 
Junxiang Li 3,4*

Preservatives are essential components in cosmetic products, but their safety issues have attracted 
widespread attention. There is an urgent need for safe and effective alternatives. Antimicrobial 
peptides (AMPs) are part of the innate immune system and have potent antimicrobial properties. 
Using machine learning-assisted rational design, we obtained a novel antibacterial peptide, IK-16-1, 
with significant antibacterial activity and maintaining safety based on β-defensins. IK-16-1 has broad-
spectrum antimicrobial properties against Escherichia coli, Staphylococcus aureus, Pseudomonas 
aeruginosa, and Candida albicans, and has no haemolytic activity. The use of IK-16-1 holds promise 
in the cosmetics industry, since it can serve as a preservative synergist to reduce the amount of other 
preservatives in cosmetics. This study verified the feasibility of combining computational design with 
artificial intelligence prediction to design AMPs, achieving rapid screening and reducing development 
costs.

The cosmetics industry is one of the most rapidly developing sectors worldwide1. Preservatives are essential 
ingredients in cosmetic products that inhibit microbial growth and prevent spoilage2. Common preservatives 
include parabens, formaldehyde releasers, isothiazolinones, phenoxyethanol, and organic acids3. However, pre-
servatives are among the most common allergens in cosmetics4. Some preservatives can cause cosmetic contact 
dermatitis5, such as methylisothiazolinone (MI)6, methylchloroisothiazolinone/methylisothiazolinone (MCI/
MI)7, parabens8, and formaldehyde releasers9. Furthermore, certain preservatives in leave-on cosmetics may 
disrupt skin microbiota balance10. Cosmetic products with low or no preservatives have gained popularity. While 
combinations of various preservatives represents a current method of improvement11, it cannot fundamentally 
solve this problem. Therefore, there is an urgent need for safe, potent, broad-spectrum antimicrobial agents.

Other substances present in cosmetic products that also have antibacterial effects are known as ‘preservative 
synergists’8. Mixing preservatives and preservative synergists effectively decreases the concentration of allergenic 
preservatives. Certain antibacterial substances, such as glycolipids12 and new antimicrobial nanomaterials13–15, 
may be used as preservative synergists. However, there are few reports on the development of biomimetic anti-
microbial peptide derived from human endogenous proteins for use as cosmetic preservatives.

Antimicrobial peptides (AMPs) are oligopeptides with varying numbers of amino acids (from 5 units to > 100 
units)16. AMPs are important components of the innate immune system in many organisms and provide the 
first line of defense against various pathogens17. AMPs exhibit various activities against Gram-negative and 
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Gram-positive bacteria, fungi, mycobacteria, and some enveloped viruses18,19. Most AMPs can be classified into 
four groups according to their secondary structure: α-helical, β-sheet, loop, and extended peptides16. Among 
these structural groups, α-helix and β-sheet structures are more common20. α-helical peptides are the most stud-
ied AMPs to date. In α-helix structures, the distance between two adjacent amino acids is around 0.15 nm, and 
the angle between them with respect to the centre is around 100° from the top view21. Human β defensin type 3 
(hBD-3) is a cysteine-rich small antibacterial peptide with broad-spectrum antimicrobial activity and may play 
an important role in innate epithelial defense. Because hBD-3 kills bacteria by disrupting the cell membrane, 
which is relatively stable in chemical composition, its antibacterial activity will not cause drug resistance22. 
Thus, hBD-3 could serve as a potential AMP for designing novel preservatives. However, natural AMPs are large 
protein molecules that are unstable in various in vitro environments, which limits their applications. Therefore, 
developing biomimetic AMPs with improved efficacy, greater stability, and lower costs is challenging. Machine 
learning (ML) is described as the capacity of a system to learn from problem-specific training data to automate 
the process of analytical model building and solving associated tasks23. ML greatly improves work efficiency and 
accuracy. Driven by increasing computer power and algorithmic advances, ML has become a powerful tool for 
finding data patterns24, and it is widely applied in various fields, such as biology25,26, medicine27,28, healthcare29, 
environment30, fuel cells31 and energy32. ML methods can also be used to develop new AMPs. As more insights 
are gained into the antimicrobial mechanism, sequence, and structure, ML can gather information to expedite 
AMP screening and design33–35.

The primary objective of this study was to develop safe and potent broad-spectrum antimicrobial agents to 
reduce the use of preservatives in cosmetics. In this study, the artificial antibacterial peptide was designed based 
on hBDs through computational simulation and artificial intelligence (AI) based ML tools, and their antibacte-
rial and haemolytic properties were predicted.

Methods
Designing antimicrobial peptides
AI deep learning based on prediction algorithms and rational molecular design has been used to develop new 
biomimetic AMPs based on endogenous human proteins36–38. Specifically, short analogues of β-defensin were 
used as template peptides and helical wheel projection was conducted. Negatively charged amino acid residues, 
including Asp (D) and Glu (E), were substituted with positively charged amino acid residues, including Lys (K) 
and Arg (R), to increase the net positive charge. Several residues were adjusted such that the hydrophobic and 
hydrophilic residues were located on opposite sides of the helical surface to improve the pore-forming ability 
of the microbial membrane33. The ab-initio three-dimensional structures of peptides were studied to support 
the α-helical conformations. Peptides were predicted for their antimicrobial ability by some AI programs39–42. 
For safety reasons, the haemolytic activity was also predicted using an available AI algorithm43. Antimicrobial 
activity was predicted using the Antimicrobial Peptide Scanner version 2 (https://​www.​dvelt​ri.​com/​ascan/​v2/​
ascan.​html), and haemolytic activity was predicted using HAPPENN (http://​resea​rch.​timmo​ns.​eu/​happe​nn). All 
the new top-scoring biomimetic peptides were synthesised and screened for their microbial inhibitory activity.

Disk diffusion test
Four types of bacteria and fungi, namely, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and 
Candida albicans (ATCC, Manassas, VA, USA), were cultured under standard conditions. Candida albicans 
was cultured with Sabouraud glucose broth medium (Solarbio Life Science, Beijing, China) at 30 °C and 200 
rpm; Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa were cultured with Luria Broth (LB) 
liquid medium (Solarbio Life Science, Beijing, China) at 37 °C and 200 rpm. The paper disks containing 30 μg 
Kanamycin (Beyotime Biotechnology, Shanghai, China) and 30 μg Amphotericin (Beyotime Biotechnology) 
were assigned as the positive control, and the medium was assigned as the negative control. The paper disks 
incorporated with 30 μg of AMP were deposited on the surface of the agar plates pre-inoculated with the bacte-
rial strain to be tested. Specifically, 60 μg AMPs were used to test against Candida albicans. The agar plates were 
incubated for 24 h under appropriate conditions. Candida albicans was cultured in Sabouraud glucose agar 
medium in an inverted incubator at 30 °C for 12 h, and the remainder was cultured in LB solid medium in an 
inverted incubator at 37 °C for 12 h. The diameter of the inhibition zone was measured for statistical analysis. 
Each test was performed in triplicates.

Minimum inhibitory concentration
Four types of bacteria and fungi–Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida 
albicans–were cultured under standard conditions. Candida albicans was cultured in Sabouraud glucose broth 
medium (Solarbio Life Science, Beijing, China) in a static incubator at 30 °C for 12 h, and the remainder were 
cultured with LB liquid medium (Solarbio Life Science, Beijing, China) in a static incubator at 37 °C for 12 h. 
The bacterial order of magnitude was 104/mL–105/mL. A series of two-fold dilutions were performed from the 
stock solution to obtain different concentrations of peptides from 250 to 1.95 μg/mL, with a total volume of 200 
μL per well in a 96-well plate, and then assayed for absorbance at 540 nm. This medium was used as the solvent 
and was designated as the negative control. Approximately 1 × 104 cells were incubated in a medium containing 
peptides. After incubating the cells at the appropriate temperature for 24 h, the minimum inhibitory concentra-
tion was the lowest peptide concentration that limited visible microbial growth.

Hemolytic activity
For the haemolysis studies, rabbit erythrocytes (Fenghui Biology, Hunan, China) were obtained from healthy 
blood donors. Blood samples mixed with 0.25% potassium oxalate were immediately separated by centrifugation 
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at 1500 rpm for 10 min. Subsequently, the cells were washed three times with phosphate buffered saline (PBS, 
Yuanpei Biology, Shanghai, China) and diluted to a 5% suspension with PBS. 250 μL of erythrocyte stock disper-
sion was mixed with 250 μL of PBS containing different concentrations of AMPs and incubated at 37 °C for 1 
h. Intact erythrocytes were removed by centrifugation at 10,000 rpm for 5 min. The absorbance of the resulting 
supernatant was measured at 540 nm. PBS was used as a negative control (0% lysis), and 0.1% SDS (Solarbio 
Life Sciences) was used as a positive control (100% lysis). The haemolysis rate was determined using Eq. (1).

where Dtest, Dnc, and Dpc are the 540 nm absorbance of the tested sample, negative control, and positive control, 
respectively.

Cytotoxicity
HaCaT cells (Fenghui Biology, Hunan, China), a long-lived, spontaneously immortalised human keratinocyte 
line, was grown in Dulbecco’s Modified Eagle Medium (Wisent Bioproducts, Quebec, Canada) supplemented 
with 10% heat-inactivated foetal bovine serum (FBS, Invitrogen, Carlsbad, CA, USA) and 1% penicillin–strep-
tomycin (Langke Biology, Suzhou, China) at 37 ℃ and 5% CO2 until 80–90% of fusion was measured. The 
experiments were performed in 96-well plates with a final volume of 100 μL of medium per well. HaCaT cell 
proliferation was tested using the cell counting kit-8 assay (Dojindo Laboratories, Tokyo, Japan). The cells were 
seeded at a density of 0.5 × 105–1.0 × 105 cells/mL and grown at 37 ℃ until 80–90% fusion was measured. Sub-
sequently, samples at specific concentrations were added to the medium. After incubating the cells for 24 h, all 
media were removed, and the cells were washed three times with PBS. Next, the cells were incubated for 4 h 
with fresh medium (100 µL/well) containing 10 µL of the probe. The absorbance was read at 450 nm using a 
microplate reader.

Antimicrobial assay in products
The basic preservation system contained 1.8% 1,3-propanediol, 0.09% 1,2-Hexanediol, and 0.036% capryl 
hydroxamic acid. In the synergy test, the 5 μg/mL antimicrobial peptide was mixed with the preservative sys-
tem and compared with the preservative system without antimicrobial peptide. Four types of bacteria and 
fungi–Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans–were cultured 
under standard conditions. Candida albicans was cultured with Sabouraud glucose broth medium (Solarbio 
Life Science, Beijing, China) at 30 °C and 200 rpm; Staphylococcus aureus, Escherichia coli, and Pseudomonas 
aeruginosa were cultured with LB liquid medium (Solarbio Life Science, Beijing, China) at 37 °C and 200 rpm. 
Following culturing, 1.0 × 106 CFU/mL was added to the cosmetic products and mixed thoroughly. At hour 2 
(day 0), day 3, day 7, day 14, and day 22, 1.0 mL of the product was collected and neutralised for 30 min using a 
9 mL neutraliser. The 1.0 mL of the neutralised product was centrifuged at 12,000 rpm for 5 min to remove the 
suspension. The product was resuspended in 0.2 mL of fresh medium, and the CFUs were calculated using the 
spreading plate method. CFU refers to the number of individual colonies of any microorganism that can grow 
on a plate of media. The standard unit of measure for CFU is the number of culturable microorganisms present 
per 1 mL of culture (CFU/mL). The colony forming units per mL (CFU/mL) was determined using Eq. (2).

where N is the number of colonies on the counting plate; d is the sampling volume (mL); V is the dilution 
multiple.

Results
The design of antimicrobial peptides
The AMP was selected from the mesenchymal stem cell secretome and used as a template. Figure 1 illustrates 
the design process of the antibacterial peptides. We selected the amino acid sequences from the 30th to 45th 
position of beta-defensin 103 as the template and optimised it to determine the amino acid sequence of the target 
AMP IGKVLTRVKLLRRIK, named IK-16-1. As depicted in Fig. 2, the predicted structure was an α-helix. The 
probability score for AMPs was 1, indicating that IK-16-1 is highly likely to become an AMP. The probability of 
haemolysis was 0.006, indicating that IK-16-1 was less likely to be haemolytic.

The activities of peptides
To test the inhibitory activity of the peptides, a disk diffusion test and the minimum inhibitory concentration 
assay was performed. As shown in Table 1, The results showed that IK-16-1 influenced the growth of the four 
types of microbes. The minimum inhibitory concentration was determined to further test the effects of IK-16-
1. As shown in Table 2, IK-16-1 exhibited a broad-spectrum inhibitory effect, although its antifungal activity 
was not as high as that of antibacterial. Based on the zone of inhibition and minimum inhibitory concentration 
values, IK-16-1 was found to have broad-spectrum antimicrobial properties against Escherichia coli, Staphylococ-
cus aureus, Pseudomonas aeruginosa, and Candida albicans, which are common microbes that cause cosmetic 
spoilage.

(1)Haemolysis Rate (%) =
Dtest − Dnc

Dpc − Dnc
× 100%

(2)Colony Forming Units per mL (CFU/mL) =
N

d
× V
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Figure 1.   Workflow of antimicrobial peptide design.

Figure 2.   Results of Helical Wheel Projection and predicted structures of beta-defensin analogs.

Table 1.   Zone of inhibition of antimicrobial peptides (AMPs) against different species. SD standard deviation.

Species Samples Diameter (mm) Mean ± SD (mm)

Staphylococcus aureus (18 h, 30 μg)
Kanamycin 26.4 25.5 26.1 26.0 ± 0.4

IK-16-1 12.3 11.2 12.0 11.8 ± 0.5

Escherichia coli (18 h, 30 μg)
Kanamycin 14.6 15.6 15.0 15.1 ± 0.4

IK-16-1 11.2 11.3 11.5 11.3 ± 0.1

Pseudomonas aeruginosa (18 h, 30 μg)
Kanamycin 16.3 15.1 16.0 15.8 ± 0.5

IK-16-1 11.5 10.7 10.6 10.9 ± 0.4

Candida albicans (24 h)
Amphotericin (30 μg) 15.0 15.4 15.2 15.2 ± 0.2

IK-16-1 (60 μg) 9.6 10.3 8.7 9.5 ± 0.7
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The safety of peptides
The cytotoxicity and haemolytic activity of IK-16-1 were evaluated to determine its safety. Compared to the 
blank group, 10 ppm IK-16-1, a common concentration used in cell models, was found to be non-cytotoxic to 
keratinocytes. As depicted in Fig. 3, no haemolytic activity was observed even at the highest concentration of 
the peptide solution used.

The application of peptides in cosmetic products
To validate the use of IK-16-1 as a synergistic preservative in cosmetics, a common preservative formulation 
was used in combination with IK-16-1. As shown in Table 3, IK-16-1 significantly inhibited microbial growth 
at an early stage.

Discussion
In the present study, we obtained a novel antibacterial peptide IK-16-1 designed based on β-defensin 103 with 
significant antibacterial activity and maintaining safety by using machine learning. These results confirmed our 
hypothesis and verified that the workflow for designing AMPs is feasible. Based on the zone of inhibition and 
minimum inhibitory concentration values, IK-16-1 was found to have broad-spectrum antimicrobial properties 
against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans, which are com-
mon microbes that cause cosmetic spoilage. IK-16-1 has a higher antibacterial activity than that of antifungal. 
IK-16-1 shows good safety, has no cytotoxic to keratinocytes and no haemolytic activity. Notably, the number of 
preservatives added to cosmetics in the market may exceed the actual requirements. As shown in Table 3, only 
30% of the preservatives were used in this study; however, the anticorrosion effect was comparable to that of the 

Table 2.   Minimum inhibitory concentration (MIC) of IK-16-1 against different species.

Species MIC (μg/mL, 18 h) Mean ± SD (μg/mL, 18 h)

Candida albicans 125.0 125.0 125.0 125.0 ± 0.0

Escherichia coli 125.0 125.0 62.5 104.2 ± 36.1

Pseudomonas aeruginosa 125.0 62.5 62.5 83.3 ± 36.1

Staphylococcus aureus 125.0 62.5 62.5 83.3 ± 36.1

Figure 3.   The hemolytic results of IK-16-1 at a concentration of 250 μg/mL (positive control: 0.1% SDS, 
negative control: PBS).

Table 3.   The colony forming unit (CFU) calculation in cosmetic products at different time.

Species Day 0 (CFU/mL) Day3 (CFU/mL) Day 7 (CFU/mL) Day 14 (CFU/mL) Day 22 (CFU/mL)

Escherichia coli < 10 < 10 < 10 < 10 < 10

Staphylococcus aureus < 10 < 10 < 10 < 10 < 10

Pseudomonas aeruginosa < 10 < 10 < 10 < 10 < 10

Candida albicans 1.95 × 10 < 10 < 10 < 10 < 10
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normal formulation. The results showed that IK-16-1 effectively killed the microbes in cosmetic products at low 
concentrations. Therefore, IK-16-1 can be used as a synergistic preservative to reduce the use of preservatives 
in cosmetics.

AMPs are characterised by both hydrophobic and hydrophilic domains. Most are cationic, and their positive 
net charge allows them to interact with negatively charged bacterial membranes44. Gram-negative and Gram-
positive bacteria have molecules on their outer membranes that confer a negative net charge, allowing electro-
static interactions with cationic peptides45. AMPs can cause bacterial cell death through both membranolytic and 
non-membranolytic mechanisms by interacting with intracellular targets such as DNA, RNA, and proteins19,46–52. 
Most AMPs have broad-spectrum antimicrobial activity and are less prone to trigger resistance, which has a good 
prospect. In this study, peptides with helical structures were adjusted to separate hydrophobic and hydrophilic 
residues on the surface. Theoretically, the ability of AMPs to form pores could be improved.

ML uses mathematical, statistical, and computational processes to learn from data53. Developing new AMPs 
through ML is an emerging topic. Lee et al. developed a support vector machine (SVM) based classifier to inves-
tigate ⍺-helical AMPs and the interrelated nature of their functional commonality and sequence homology54. 
Capecchi et al. trained recurrent neural networks (RNN) using data from the Database of Antimicrobial Activ-
ity and Structure of Peptides to design short non-haemolytic AMPs55. A recent study used in silico methods to 
investigate potential AMPs against predatory myxobacteria56. The sources of AMPs are diverse. In this study, we 
designed AMPs based on endogenous human proteins. Leon et al. used computer-aided tools to identify multi-
functional peptides with antimicrobial, antibiofilm, and antioxidant potential from plant peptides57. Tachapuri-
punya et al. used biochemical, mass spectrometric, and bioinformatics approaches to comprehensively identify 
putative bioactive peptides from the mucus proteomes of gastropods58. Besides,Ng et al. reported biosurfactants 
also show antimicrobial properties59, which can be considered for cosmetic applications.

Due to the lack of fundamental knowledge of antibacterial mechanisms, the characteristics generated by 
different ML programs cannot fully characterise the properties of AMPs. However, with the rapid development 
of screening methods60 and the continuous updating of calculation algorithms61, challenges in discovering, 
classifying, and designing AMPs will gradually be solved to provide more alternatives for preventing accidental 
overgrowth and drug resistance of microorganisms. Notably, wet experiments are the only way to determine 
the antimicrobial activity of peptides. Integrating ML with targeted experimentation can guide both AMP dis-
covery and design and provide a new understanding of the properties and mechanisms underlying their modes 
of action62.

This study has some limitations. The exact mechanism by which IK-16-1 combines with preservatives to 
inhibit bacterial growth was not elucidated, and the mechanism through which IK-16-1 interacts with bacteria 
and other compounds in emulsions remains unclear. Furthermore, whether IK-16-1 has a synergistic effect with 
other preservatives, such as phenoxyethanol, requires further investigation. Because the performance of IK-16-1 
was tested only under emulsion conditions to form its theoretical helical structure, the effects of other dosage 
forms should be considered in future applications. In future research, we intend to investigate the synergistic 
effects of IK-16-1 in relation to other preservatives.

Notwithstanding these limitations, this study verified the feasibility of combining computational design with 
artificial intelligence prediction to design AMPs derived from human endogenous proteins. IK-16-1 inhibits 
the growth of common spoilage-causing bacteria. Therefore, it can be used synergistically to effectively preserve 
cosmetics while containing lower concentrations of allergenic preservatives.

Conclusion
Preservatives, essential ingredients in cosmetic products, are one of the most common allergens. The irritation 
caused by preservatives has underscore an urgent need for the development of safe and effective broad-spectrum 
antimicrobial agents. Using machine learning-assisted rational design, we obtained a novel antibacterial peptide 
IK-16-1 with significant antibacterial activity and maintaining safety based on β-defensins, which could be a 
promising preservative synergist to reduce the use of allergenic preservatives in cosmetics. This study dem-
onstrated that ML can significantly improve antibacterial activity and safety, shorten development cycles, and 
reduce development costs.

Data availability
All data generated or analyzed during this study are available from the corresponding author (Junxiang Li: 
lijunxiang@acrdc.cn) on reasonable request.
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References
	 1.	 Ratajczak, P. et al. The growing market for natural cosmetics in Poland: Consumer preferences and industry trends. Clin. Cosmet. 

Investig. Dermatol. 16, 1877–1892 (2023).
	 2.	 Glaz, P. et al. Effect of commonly used cosmetic preservatives on healthy human skin cells. Cells 12, 1076 (2023).
	 3.	 Halla, N. et al. Cosmetics preservation: A review on present strategies. Molecules 23, 1571 (2018).
	 4.	 Bruusgaard-Mouritsen, M. A., Garvey, L. H. & Johansen, J. D. Facial contact dermatitis caused by cosmetic-relevant allergens. 

Contact Dermat. 85, 650–659 (2021).
	 5.	 Uter, W., Yazar, K., Kratz, E. M., Mildau, G. & Lidén, C. Coupled exposure to ingredients of cosmetic products: II. Preservatives. 

Contact Dermat. 70, 219–226 (2014).
	 6.	 Burnett, C. L. et al. Amended safety assessment of methylisothiazolinone as used in cosmetics. Int. J. Toxicol. 40, 5S-19S (2021).
	 7.	 Qin, O. et al. Patch test in Chinese in Shanghai with cosmetic allergy to cosmetic series and products. J. Cosmet. Dermatol. 19, 

2086–2092 (2020).



7

Vol.:(0123456789)

Scientific Reports |          (2024) 14:947  | https://doi.org/10.1038/s41598-023-50832-8

www.nature.com/scientificreports/

	 8.	 Nowak, K., Jabłońska, E. & Ratajczak-Wrona, W. Controversy around parabens: Alternative strategies for preservative use in 
cosmetics and personal care products. Environ. Res. 198, 110488 (2021).

	 9.	 Goossens, A. & Aerts, O. Contact allergy to and allergic contact dermatitis from formaldehyde and formaldehyde releasers: A 
clinical review and update. Contact Dermat. 87, 20–27 (2022).

	10.	 Zhang, W. et al. Effect of leave-on cosmetic antimicrobial preservatives on healthy skin resident Staphylococcus epidermidis. J. 
Cosmet. Dermatol. 22, 2115–2121 (2023).

	11.	 Lundov, M. D., Johansen, J. D., Zachariae, C. & Moesby, L. Low-level efficacy of cosmetic preservatives. Int. J. Cosmet. Sci. 33, 
190–196 (2011).

	12.	 Ng, Y. J. et al. Recent advances and discoveries of microbial-based glycolipids: Prospective alternative for remediation activities. 
Biotechnol. Adv. 68, 108198 (2023).

	13.	 Meftahi, A. et al. Nanocelluloses as skin biocompatible materials for skincare, cosmetics, and healthcare: Formulations, regulations, 
and emerging applications. Carbohydr. Polym. 278, 118956 (2022).

	14.	 Moradi, N. et al. Synthesis of mesoporous antimicrobial herbal nanomaterial-carrier for silver nanoparticles and antimicrobial 
sensing. Food Chem. Toxicol. 165, 113077 (2022).

	15.	 Bindhu, M. R., Umadevi, M., Esmail, G. A., Al-Dhabi, N. A. & Arasu, M. V. Green synthesis and characterization of silver nano-
particles from Moringa oleifera flower and assessment of antimicrobial and sensing properties. J. Photochem. Photobiol. B 205, 
111836 (2020).

	16.	 Bahar, A. A. & Ren, D. Antimicrobial peptides. Pharmaceuticals (Basel) 6, 1543–1575 (2013).
	17.	 Wu, Q. H., Patočka, J. & Kuča, K. Insect antimicrobial peptides, a mini review. Toxins 10, 461 (2018).
	18.	 Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 415, 389–395 (2002).
	19.	 Di Somma, A., Moretta, A., Canè, C., Cirillo, A. & Duilio, A. Antimicrobial and antibiofilm peptides. Biomolecules 10, 652 (2020).
	20.	 Powers, J. P. & Hancock, R. E. The relationship between peptide structure and antibacterial activity. Peptides 24, 1681–1691 (2003).
	21.	 Bulet, P., Stöcklin, R. & Menin, L. Anti-microbial peptides: From invertebrates to vertebrates. Immunol. Rev. 198, 169–184 (2004).
	22.	 Zhang, L. Interaction of human beta defensin type 3 (hBD-3) with different PIP2-containing membranes, a molecular dynamics 

simulation study. J. Chem. Inf. Model. 61, 4670–4686 (2021).
	23.	 Janiesch, C., Zschech, P. & Heinrich, K. Machine learning and deep learning. Electron. Mark. 31, 685–695 (2021).
	24.	 Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202 (2017).
	25.	 Crampon, K., Giorkallos, A., Deldossi, M., Baud, S. & Steffenel, L. A. Machine-learning methods for ligand-protein molecular 

docking. Drug Discov. Today 27, 151–164 (2022).
	26.	 Greener, J. G., Kandathil, S. M., Moffat, L. & Jones, D. T. A guide to machine learning for biologists. Nat. Rev. Mol. Cell Biol. 23, 

40–55 (2022).
	27.	 Kang, J., Ullah, Z., Gwak, J. & Brain, M.-B. Tumor classification using ensemble of deep features and machine learning classifiers. 

Sensors 21, 2222 (2021).
	28.	 Dehkharghanian, T., Mu, Y. Q., Tizhoosh, H. R. & Campbell, C. J. V. Applied machine learning in hematopathology. Int. J. Lab. 

Hematol. 45(Supplement 2), 87–94 (2023).
	29.	 An, Q., Rahman, S., Zhou, J. W. & Kang, J. J. A comprehensive review on machine learning in healthcare industry: Classification, 

restrictions, opportunities and challenges. Sensors (Basel) 23, 4178 (2023).
	30.	 Ahmad Sobri, M. Z. et al. Kinetic model derived from machine learning for accurate prediction of microalgal hydrogen production 

via conversion from low thermally pre-treated palm kernel expeller waste. Chemosphere 338, 139526 (2023).
	31.	 Su, D. Q. et al. Application of machine learning in fuel cell research. Energies 16, 4390 (2023).
	32.	 Wang, Z. et al. The role of machine learning to boost the bioenergy and biofuels conversion. Bioresour. Technol. 343, 126099 (2022).
	33.	 Torres, M. D. T., Sothiselvam, S., Lu, T. K. & de la Fuente-Nunez, C. Peptide design principles for antimicrobial applications. J. 

Mol. Biol. 431, 3547–3567 (2019).
	34.	 Baindara, P., Korpole, S. & Grover, V. Bacteriocins: Perspective for the development of novel anticancer drugs. Appl. Microbiol. 

Biotechnol. 102, 10393–10408 (2018).
	35.	 Wang, G. The antimicrobial peptide database provides a platform for decoding the design principles of naturally occurring anti-

microbial peptides. Protein Sci. 29, 8–18 (2020).
	36.	 Yang, M., Zhang, C., Zhang, M. Z. & Zhang, S. Beta-defensin derived cationic antimicrobial peptides with potent killing activity 

against gram negative and gram positive bacteria. BMC Microbiol. 18, 54 (2018).
	37.	 Gunasekera, S., Muhammad, T., Strömstedt, A. A., Rosengren, K. J. & Göransson, U. Alanine and lysine scans of the LL-37-Derived 

peptide fragment KR-12 reveal key residues for antimicrobial activity. ChemBioChem 19, 931–939 (2018).
	38.	 Esfandiyari, R. et al. Performance evaluation of antimicrobial peptide ll-37 and hepcidin and beta-defensin-2 secreted by mesen-

chymal stem cells. Heliyon. 5, e02652 (2019).
	39.	 Veltri, D., Kamath, U. & Shehu, A. Deep learning improves antimicrobial peptide recognition. Bioinformatics 34, 2740–2747 (2018).
	40.	 Yan, J. et al. Deep-AmPEP30: Improve short antimicrobial peptides prediction with deep learning. Mol. Ther. Nucleic Acids 20, 

882–894 (2020).
	41.	 Xiao, X., Wang, P., Lin, W. Z., Jia, J. H. & Chou, K. C. iAMP-2L: A two-level multi-label classifier for identifying antimicrobial 

peptides and their functional types. Anal. Biochem. 436, 168–177 (2013).
	42.	 Thomas, S., Karnik, S., Barai, R. S., Jayaraman, V. K. & Idicula-Thomas, S. CAMP: A useful resource for research on antimicrobial 

peptides. Nucleic Acids Res. 38, D774–D780 (2010).
	43.	 Plisson, F., Ramírez-Sánchez, O. & Martínez-Hernández, C. Machine learning-guided discovery and design of non-hemolytic 

peptides. Sci. Rep. 10, 16581 (2020).
	44.	 Wieprecht, T., Apostolov, O. & Seelig, J. Binding of the antibacterial peptide magainin 2 amide to small and large unilamellar 

vesicles. Biophys. Chem. 85, 187–198 (2000).
	45.	 Pasupuleti, M., Schmidtchen, A. & Malmsten, M. Antimicrobial peptides: Key components of the innate immune system. Crit. 

Rev. Biotechnol. 32, 143–171 (2012).
	46.	 Haney, E. F., Straus, S. K. & Hancock, R. E. W. Reassessing the host defense peptide landscape. Front. Chem. 7, 43 (2019).
	47.	 Mankoci, S. et al. Bacterial membrane selective antimicrobial peptide-mimetic polyurethanes: Structure-property correlations 

and mechanisms of action. Biomacromolecules 20, 4096–4106 (2019).
	48.	 Alghalayini, A., Garcia, A., Berry, T. & Cranfield, C. G. The use of tethered bilayer lipid membranes to identify the mechanisms 

of antimicrobial peptide interactions with lipid bilayers. Antibiotics (Basel) 8, 12 (2019).
	49.	 Brogden, K. A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria?. Nat. Rev. Microbiol. 3, 238–250 (2005).
	50.	 Cassone, M., Frith, N., Vogiatzi, P., Wade, J. D. & Otvos, L. Induced resistance to the designer proline-rich antimicrobial peptide 

A3-APO does not involve changes in the intracellular target DnaK. Int. J. Pept. Res. Ther. 15, 121–128 (2009).
	51.	 Shah, P., Hsiao, F. S., Ho, Y. H. & Chen, C. S. The proteome targets of intracellular targeting antimicrobial peptides. Proteomics 16, 

1225–1237 (2016).
	52.	 Graf, M. & Wilson, D. N. Intracellular antimicrobial peptides targeting the protein synthesis machinery. Adv. Exp. Med. Biol. 1117, 

73–89 (2019).
	53.	 Lee, E. Y., Lee, M. W., Fulan, B. M., Ferguson, A. L. & Wong, G. C. L. What can machine learning do for antimicrobial peptides, 

and what can antimicrobial peptides do for machine learning?. Interface Focus 7, 20160153 (2017).



8

Vol:.(1234567890)

Scientific Reports |          (2024) 14:947  | https://doi.org/10.1038/s41598-023-50832-8

www.nature.com/scientificreports/

	54.	 Lee, E. Y., Fulan, B. M., Wong, G. C. & Ferguson, A. L. Mapping membrane activity in undiscovered peptide sequence space using 
machine learning. Proc. Natl Acad. Sci. USA 113, 13588–13593 (2016).

	55.	 Capecchi, A. et al. Machine learning designs non-hemolytic antimicrobial peptides. Chem. Sci. 12, 9221–9232 (2021).
	56.	 Arakal, B. S. et al. In silico and in vitro analyses reveal promising antimicrobial peptides from myxobacteria. Probiotics Antimicrob. 

Proteins 15, 202–214 (2023).
	57.	 León Madrazo, A. & Segura Campos, M. R. In silico prediction of peptide variants from chia (S. hispanica L.) with antimicrobial, 

antibiofilm, and antioxidant potential. Comput. Biol. Chem. 98, 107695 (2022).
	58.	 Tachapuripunya, V., Roytrakul, S., Chumnanpuen, P. & E-Kobon, T. Unveiling putative functions of mucus proteins and their 

tryptic peptides in seven gastropod species using comparative proteomics and machine learning-based bioinformatics predictions. 
Molecules 26, 3475 (2021).

	59.	 Ng, Y. J. et al. Recent advances of biosurfactant for waste and pollution bioremediation: Substitutions of petroleum-based sur-
factants. Environ. Res. 212, 113126 (2022).

	60.	 Tucker, A. T. et al. Discovery of next-generation antimicrobials through bacterial self-screening of surface-displayed peptide 
libraries. Cell 172, 618-628.e13 e613 (2018).

	61.	 Das, P. et al. Accelerated antimicrobial discovery via deep generative models and molecular dynamics simulations. Nat. Biomed. 
Eng. 5, 613–623 (2021).

	62.	 Lee, E. Y., Wong, G. C. L. & Ferguson, A. L. Machine learning-enabled discovery and design of membrane-active peptides. Bioorg. 
Med. Chem. 26, 2708–2718 (2018).

Acknowledgements
This work was supported by China National Light Industry, Beijing Technology and Business University (Grant 
Number KLC-2021-YB3). Any opinions, findings, and conclusions are those of the authors and do not necessar-
ily reflect the views of the above agency. We would like to thank Editage (www.​edita​ge.​cn) for English language 
editing.

Author contributions
L.Y. wrote the main manuscript text. L.S. and X.F. conducted antibacterial experiments. S.Z. designed artificial 
AMPs. X.L. reviewed the manuscript. C.H. proposed the framework for this study. J.L. supervised and guided 
the study. All the authors contributed to the manuscript and approved the submitted version.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to C.H. or J.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

http://www.editage.cn
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Machine learning assisted rational design of antimicrobial peptides based on human endogenous proteins and their applications for cosmetic preservative system optimization
	Methods
	Designing antimicrobial peptides
	Disk diffusion test
	Minimum inhibitory concentration
	Hemolytic activity
	Cytotoxicity
	Antimicrobial assay in products

	Results
	The design of antimicrobial peptides
	The activities of peptides
	The safety of peptides
	The application of peptides in cosmetic products

	Discussion
	Conclusion
	References
	Acknowledgements


