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Abstract

Large language models (LLMs) can generate natural language texts for various domains and 

tasks, but their potential for clinical text mining, a domain with scarce, sensitive, and imbalanced 

medical data, is under-explored. We investigate whether LLMs can augment clinical data for 

detecting Alzheimer’s Disease (AD)-related signs and symptoms from electronic health records 

(EHRs), a challenging task that requires high expertise. We create a novel pragmatic taxonomy 

for AD sign and symptom progression based on expert knowledge and generated three datasets: 

(1) a gold dataset annotated by human experts on longitudinal EHRs of AD patients; (2) a silver 

dataset created by the data-to-label method, which labels sentences from a public EHR collection 

with AD-related signs and symptoms; and (3) a bronze dataset created by the label-to-data method 

which generates sentences with AD-related signs and symptoms based on the label definition. 

We train a system to detect AD-related signs and symptoms from EHRs. We find that the silver 

and bronze datasets improves the system performance, outperforming the system using only the 

gold dataset. This shows that LLMs can generate synthetic clinical data for a complex task by 

incorporating expert knowledge, and our label-to-data method can produce datasets that are free of 

sensitive information, while maintaining acceptable quality.

1 Introduction

Clinical text holds a large amount of valuable information that is not recorded by the 

structured data fields in electronic health records (Wang et al., 2018b). Clinical text mining, 

which aims to extract and analyze information from medical records, such as diagnosis, 

symptoms, treatments, and outcomes, has various applications, such as clinical decision 

support, disease surveillance, patient education, and biomedical research (Murdoch and 

Detsky, 2013). However, clinical text mining faces two major obstacles: the scarcity and 

sensitivity of medical data. Medical data is often limited in quantity and diversity, due to the 

high cost and difficulty of data collection and annotation, which require expert knowledge 

and consent from patients and providers. On the other hand, medical data is highly sensitive 

and confidential, due to the ethical and legal issues of data privacy and security, which 
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impose strict regulations and restrictions on data collection and usage (Berman, 2002). 

These obstacles hinder the development and evaluation of clinical text mining methods, 

especially those based on data-hungry deep learning models.

Recently LLMs have demonstrated impressive performance on many natural language 

processing (NLP) benchmarks,(Wang et al., 2018a, 2019; Rajpurkar et al., 2016), as well 

as in medical domain applications (Singhal et al., 2023, 2022; Nori et al., 2023). However, 

they also face some common problems like hallucination, homogenisation, etc (Azamfirei et 

al., 2023). Hallucination means that LLMs produce factual errors or inconsistencies in their 

outputs that do not match the input or the real world. This can damage the reliability and 

credibility of LLMs, especially for applications in clinical domain that need high accuracy 

and consistency. In addition, data generated by LLMs tends to be highly homogeneous 

and fails to capture the diversity and realism of real data, which are essential for many 

downstream tasks. For example, for clinical text analysis, we need the generated data to 

cover different types of clinical texts, such as patient histories, diagnoses, or treatment plans. 

This presents a huge challenge for LLM. The difference between LLM generated data and 

real data makes people doubt LLMs’ practical application value.

In this paper, we investigated whether the outputs of LLMs can be a valuable data source for 

clinical text mining despite all these aforementioned drawbacks. We focus on Alzheimer’s 

Disease (AD) signs and symptoms detection from electronic health records (EHRs) notes. 

Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder that affects millions 

of people worldwide (Scheltens et al., 2021; Schachter and Davis, 2022). It can cause 

cognitive impairment, behavioral changes, and functional decline. Detecting AD-related 

signs and symptoms from EHR is a crucial task for early diagnosis, treatment, and care 

planning (Leifer, 2003). In addition to the scarcity, sensitivity, and imbalance of clinical 

data, this task is highly challenging due to the high expertise required to interpret the 

complex and diverse manifestations of AD (Dubois et al., 2021).

We propose a novel pragmatic taxonomy for AD sign and symptom progression based on 

expert knowledge, which consists of nine categories that capture the cognitive, behavioral, 

and functional aspects of AD (Bature et al., 2017; Lanctôt et al., 2017). We created 

three datasets following the taxonomy: (1) a gold dataset annotated by human experts on 

longitudinal EHRs of AD patients; (2) a silver dataset created by the data-to-label method 

which labels sentences from a public EHR collection with AD-related signs and symptoms; 

and (3) a bronze dataset created by the label-to-data method which generates sentences 

with AD-related signs and symptoms based on the label definition. The “data-to-label” 

method employs LLMs as annotators and has been widely adopted in many tasks. The 

“label-to-data”, on the other hand, relies on the LLM’s generation ability to produce data 

with labels based on instructions.

We performed experiments of binary classification (whether the sentence is related to 

AD signs and symptoms or not) and multi-class classification (assign one category from 

the nine pre-defined categories of AD signs and symptoms to an input sentence), using 

different data combinations to fine-tune pre-trained language models (PLMs), and we 

compared their performance on the human annotated gold test set. We observed that the 
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system performances can be significantly improved by the silver and bronze datasets. In 

particular, combing the gold and bronze dataset, which is generated by the label-to-data 

method, outperform the model trained only on the gold or gold+silver dataset for some 

categories. The minority classes with much fewer gold data samples benefit more from 

the improvement. We noticed slight degradation of performances for a small proportion of 

categories. But the overall increases in results demonstrates that LLM can be applied to 

medical data annotation, and even its hallucinations can be leveraged to create datasets that 

are free of sensitive information, while preserving acceptable quality.

The contributions of this paper are as follows:

• We create a novel pragmatic taxonomy for AD sign and symptom progression 

based on expert knowledge, and it has shown to be reliably annotated using 

information described in EHR notes.

• We investigate whether LLMs can augment clinical data for detecting AD-related 

signs and symptoms from EHRs, using two different methods: data-to-label and 

label-to-data.

• We train a system to detect AD-related signs and symptoms from EHRs, using 

three datasets: gold, silver, and bronze. And evaluate the quality of the synthetic 

data generated by LLMs using both automatic and human metrics. We show that 

using the synthetic data improves the system performances, outperforming the 

system using only the gold dataset.

2 Related Work

2.1 Large Language Models

Large language models (LLMs) have enabled remarkable advances in many NLP domains 

because of their excellent results and ability to comprehend natural language. Popular LLMs 

including GPT-2 (Radford et al., 2019), GPT-3 (Brown et al., 2020), and GPT-4 (OpenAI, 

2023), LaMDA (Thoppilan et al., 2022), BLOOM (Scao et al., 2022), LLaMA (Touvron et 

al., 2023), etc. vary in their model size, data size, training objective, and generation strategy, 

but they all share the common feature of being able to generate natural language texts across 

various domains and tasks. They have achieved impressive results on many natural language 

processing (NLP) benchmarks by leveraging the large-scale and diverse text data from the 

web.

However, researchers have noticed the drawbacks of LLMs since their debut. Some 

limitations of LLMs have widely acknowledged and have drawn wide attentions from the 

research community like hallucination, homogenisation, etc. (Tamkin et al., 2021)

Hallucination is a well-known and widely-studied problem in natural language generation 

(NLG), which is often defined as “generated content that is nonsensical or unfaithful to the 

provided source content” (Ji et al., 2023). Hallucination has been observed and analyzed 

in various NLG tasks, such as machine translation (MT) (Guerreiro et al., 2023), text 

summarization (Cao et al., 2021), and dialogue generation (Das et al., 2023). Hallucination 

can be caused by various factors, such as data noise, model bias, lack of commonsense 
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knowledge, or insufficient supervision. It can be detected and mitigated by various methods, 

such as data cleaning, model regularization, knowledge injection, or output verification (Ji et 

al., 2023).

In this paper, we explore a different angle on hallucination, and examine whether the 

hallucinations of LLMs can be a valuable data source for clinical text processing, rather 

than a difficulty. We propose that the hallucinations of LLMs can be leveraged to create 

synthetic or augmented datasets that do not expose sensitive information, but still maintain 

the linguistic and semantic features of clinical texts, such as vocabulary, syntax, and domain 

knowledge. Experiments on classification tasks confirmed the validity of the proposal.

Homogenisation is also a potential drawback of using LLMs at a large scale. While it 

ensures the stability of the text quality, it also reduces the diversity of text. This issue 

has been noticed and discussed (Marian, 2023), but there is still a lack of research in this 

direction. In this work, we have observed homogenisation in the “label-to-data” method and 

conducted experiment which help reveal how it impacts the system performances on the 

studied task.

2.2 Clinical Text Mining and synthetic data generation

Clinical text mining faces two main obstacles: the limited availability and the confidentiality 

of health data. Various attempts have been done to overcome the lack of and the privacy 

issues with health data. Public datasets, such as MIMIC (Johnson et al., 2016), i2b2 (Uzuner 

et al., 2011), or BioASQ (Tsatsaronis et al., 2015) etc, are openly available for research 

purposes. Synthetic datasets, such as Synthea (Walonoski et al., 2018) and MedGAN (Choi 

et al., 2017) etc., are constructed based on statistical models, generative models, or rules. 

They can be used to augment or complement real medical data, without violating the 

privacy or confidentiality of the patients or providers. Data augmentation or transfer learning 

techniques are machine learning techniques used to address the data scarcity or imbalance 

issue by generating or utilizing additional or related data, such as synthetic data, noisy data, 

or cross-domain data, to enrich or improve the data representation or diversity (Che et al., 

2017; Gligic et al., 2020; Gupta et al., 2018; Xiao et al., 2018; Amin-Nejad et al., 2020; Li et 

al., 2021).

However, synthetic datasets may not capture the naturalness and realism of human-written 

medical texts, and may introduce errors or biases that can affect the performance and 

validity of clinical text mining methods.

LLMs have also been explored for clinical text processing. Research has demonstrated that 

LLM holds health information (Singhal et al., 2022). Studies has shown that LLMs can 

generate unstructured data from structured inputs and benefit downstream tasks (Tang et 

al., 2023). There are also some work that leveraged LLMs for clincal data augmentation 

(Chintagunta et al., 2021; Guo et al., 2023) In this paper, we propose a novel approach to 

leverage LLMs, especially its hallucination ability via the label-to-data method as a data 

source for clinical text processing, which can mitigate the scarcity and sensitivity of medical 

data.
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2.3 Alzheimer’s disease signs and symptoms detection

Clinical text mining methods have been increasingly applied to detect AD or identify 

AD signs and symptoms from spontaneous speech or electronic health records, which 

could be potentially severed as a natural and non-invasive way of assessing cognitive and 

linguistic functions. (Karlekar et al., 2018) applied neural models to classify and analyze 

the linguistic characteristics of AD patients using the DementiaBank dataset. (Wang et 

al., 2021) developed a deep learning model for earlier detection of cognitive decline from 

clinical notes in EHRs. (Liu and Yuan, 2021) used a novel NLP method based on term 

frequency-inverse document frequency (TF-IDF) to detect AD from the dialogue contents 

of the Predictive Challenge of Alzheimer’s Disease. (Agbavor and Liang, 2022) used large 

language models to predict dementia from spontaneous speech, using the DementiaBank and 

Pitt Corpus datasets. These studies demonstrate the potential of clinical mining methods for 

assisting diagnosis of AD and analyzing lexical performance in clinical settings.

3 Methodology

In this section, we introduce our task of AD signs and symptoms detection, and how we 

leveraged LLMs’s capabilities for medical data annotation and generation. We also present 

the three different datasets (gold, silver and bronze) that we created and used for training and 

evaluating classifiers for AD signs and symptoms detection.

3.1 Task overview

Alzheimer’s disease (AD) is a neurodegenerative disorder that affects memory, thinking, 

reasoning, judgment, communication, and behavior. It is the fifth-leading cause of death 

among Americans age 65 and older (Mucke, 2009). This task aims to identify nine 

categories of AD signs and symptoms from unstructured clinical notes. The categories are: 

Cognitive impairment, Notice/concern by others, Require assistance/functional impairment, 

Physiological changes, Cognitive assessments, Cognitive intervention/therapy, Diagnostic 

tests, Coping strategy, and Neuropsychiatric symptoms. These categories indicate the stages 

and severity of AD. Capturing them in unstructured EHRs can help with early diagnosis 

and intervention, appropriate care and support, disease monitoring and treatment evaluation, 

and quality of life improvement for people with AD and their caregivers. This is very 

challenging a task as the AD-related signs and symptoms can vary in form and severity, 

and it requires a lot of knowledge and experience to capture them from a large amount 

of text. We ask experts to create the annotation guideline by defining each category of 

AD-related signs and symptoms and providing examples and instructions for the annotators 

(See Appendix A for details).

3.2 Datasets

As stated above, we created and utilized three different datasets for our experiments: gold, 

silver and bronze.

3.2.1 Gold data (Human annotation)—We expert annotated 5112 longitudinal EHR 

notes of 76 patients with AD from the U.S. Department of Veterans Affairs Veterans 

Health Administration (VHA). The use of the data has been approved by the Institutional 
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Review Board at the VHA Bedford Healthcare System, which also approved the waiver of 

documentation of informed consent. Under physician supervision, two medical professionals 

annotate the notes for AD signs and symptoms following the annotation guidelines. They 

selected sentences to be annotated and labelled its categories as output, and resolved the 

disagreements by discussion. The inter-annotator agreement was measured by Cohen’s 

kappa as k=0.868, indicating a high level of reliability. This leads to the gold standard 

dataset with 16,194 sentences with a mean (SD) sentence length of 17.60 (12.69) tokens.

3.2.2 Silver data (Data-to-Label)—The silver dataset consisted of 16,069 sentences 

with a mean (SD) sentence length of 19.60 (15.44) tokens extracted from the MIMIC-

III database (Johnson et al., 2016), which is a large collection of de-identified clinical 

notes from intensive care units. We randomly sampled the sentences from the discharge 

summaries, and used the LLM model to annotate them with AD-related symptoms. The 

LLM receives the annotation guidelines and the clinical text as input and produces the 

sentence to be annotated and its categories as output. The outputs are further checked by the 

LLM by asking for a reason to explain why the sentence belongs to the assigned category. 

In this step, the inputs to the LLM are the guidelines and the annotated sentences and the 

outputs are Boolean values and explanations. This chain-of-thoughts style checking has been 

proved to improve LLM performances (Wei et al., 2022). Although many LLMs can be used 

here, we adopt the Llama 65B (Touvron et al., 2023) due to its performances, availability, 

costs and privacy concerns.

3.2.3 Bronze data (Label-to-Data)—We used GPT-4, a state-of-the-art LLM that 

has been shown to generate coherent and diverse texts across various domains and tasks 

(OpenAI, 2023). GPT-4 is a transformer-based model with billions of parameters, trained on 

a large corpus of web texts. We accessed GPT-4 through the Azure OpenAI service1.

In the generation task, GPT-4 takes only the annotation guidelines as input and produces 

a piece of note text and outputs the sentence to be annotated and its categories. This is 

a bronze-level dataset that does not contain any sensitive personal information. It consists 

of 16,047 sentences with an average sentence length of 16.58 words. Figure 1 shows a 

snippet of the generated text and annotations. As shown in the example, the model firstly 

generates a clinical text and then extract sentences of interests for annotation. The generated 

text is rich in AD signs and symptoms and contains no Protected Health Information (PHI) 

or (Personally Identifiable Information) PII. While the text doesn’t completely convey the 

complexity of AD diagnosis, or the follow-up required to arrive at AD diagnosis (e.g. “I 

immediately drove over and took him to the ER. After a series of tests, including an MRI 

and a neuropsychological evaluation, he was diagnosed with Alzheimer’s disease. “ In fact, 

the diagnosis of AD is a challenging task and it’s unlikely to get diagnosed with AD at 

the ER department), it maintains the linguistic and semantic features of clinical texts, i.e., 

vocabulary, syntax, and domain knowledge, and represents high quality annotation.

We processed the datasets by tokenizing, lower-casing, and removing duplicate sentences. 

We split them into train, validation, and test sets (80/10/10 ratio). Table 1 shows the dataset 

1 https://azure.microsoft.com/en-us/products/cognitive-services/openai-service/ 
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statistics. The gold and silver data have similar average length and standard deviation. The 

bronze data has a smaller standard deviation and a more balanced categorical distribution 

than the gold and silver data, which differs from real patient notes. The smaller SD in 

sentence lengths indicates less diversity in the bronze data. We will experiment with these 

datasets to see how the LLM’s output can help clinical text mining.

3.3 Experiments

3.3.1 Classifiers—We use an ensemble method that integrates multiple models and 

relies on voting to produce the final output. This reduces the variance and bias of individual 

models and enhances the accuracy and generalization of the prediction, which is crucial for 

clinical text mining (Mohammed and Kora, 2023).

For the base models, we utilized the power of pre-trained language models (PLMs), which 

are neural networks that have been trained on large amounts of text data and can capture 

general linguistic patterns. Three different PLMs, namely BERT (bert-base-uncased) (Devlin 

et al., 2018), RoBERTa (roberta-base) (Liu et al., 2019) and ClinicalBERT (Huang et al., 

2019) are used in this work. These models have been widely used for clinical text processing 

and achieved good performances (Vakili et al., 2022; Alsentzer et al., 2019).

We fine-tune the PLM models on different combinations of the gold, silver, and bronze 

datasets, as described below. We use cross-entropy loss, Adam optimizer (with a learning 

rate of 1e-4 and a batch size of 32), and 10 epochs for training. We select the best 

checkpoints based on the validation accuracy for testing. The outputs are determined by 

a majority vote strategy.

We use a subset of the gold dataset as the test set. We compare the performances using 

accuracy, precision, recall, and F1-score.

3.3.2 Data Combinations

Gold only We fine-tuned the PLMs only on the training set of the gold data and 

evaluate the performance on the test set of the gold data.

Bronze + Gold, we fine-tuned the PLMs on the bronze data and further fine-tuned 

them on the training set of the gold data and evaluate the performance on the test set 

of the gold data.

Silver + Gold, we fine-tuned the PLMs on the silver data and further fine-tuned them 

on the training set of the gold data and evaluate the performance on the test set of the 

gold data.

Bronze + Silver + Gold, we fine-tuned the PLMs on the combination of the bronze 

data and silver data, and further fine-tuned them on the training set of the gold data 

and evaluate the performance on the test set of the gold data.

For each data setting, we trained the models as a binary classifier and multi-class classifier. 

For the binary classification task, we randomly sampled sentences with no AD signs and 

symptoms from the longitudinal notes of the 76 patients, where our gold data comes from, 

as negative data. The negative/positive data ratio is 5:12. The task is to test whether this 
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sentences is AD signs and symptoms relevant or not. For the multi-class classification task, 

the classifiers need to identify specifically one category that the sentence belongs to among 

our nine categories of AD signs and symptoms.

4 Results and Discussion

4.1 Results

Table 2 and Table 3 show the performance of the system on the test set of the gold data, 

using different combinations of data for fine-tuning PLMs.

The results demonstrate that the system benefits from the silver and bronze data and most 

increases are significant. For binary classification, the highest performance is obtained by 

fine-tuning the system on both the bronze+silver data (overall accuracy=0.94, 4.44% ↑), 

followed by adding bronze data only (overall accuracy=0.93 3.33% ↑). The silver data, 

though derived from MIMIC-III, the real world EHR data, only improves slightly (0.91, 

1.11% ↑).

For multi-class classification, the bronze data alone provides the biggest overall performance 

improvement (7.35%↑). On the contrary the silver data does not improve much (1.47%↑) 

and even reduces the performance when combined with the bronze data (5.88%↑< 7.35%↑). 

For sub-categories, the performance gain is large in minority classes including coping 

strategy (31.82%↑ by adding bronze+silver) and notice/concern by others (21.05%↑ by 

adding bronze+silver).

4.2 Analysis

The performances of machine learning models are largely decided by data quantity and 

quality. To better understand the results, we conducted a series of analysis.

As Table 1 shows, the gold data has an imbalanced distribution of categories. This poses a 

challenge for classification tasks. The bronze+silver data, with a more balanced categorical 

distribution, helps to mitigate this problem. We notice an increase in the performance for 

Coping strategy (31.82%↑) using bronze+silver data. Performance gains are also observed 

for other minority classes including NPS, Requires assistance, Cognitive assessment, etc., by 

adding more training examples.

The amount of data is not the only factor that influences the performance. For the 

physiological changes category, adding silver data 4 times the size of the gold data 

makes no difference, while adding a smaller amount of bronze data results in a significant 

improvement of 21.88% in F-scores. This suggests that the bronze data has a higher quality 

than the silver data for some categories.

We randomly selected 100 samples from both the silver data and the bronze data and asked 

our human experts to check the quality of the annotation. The annotation accuracy on bronze 

data is around 85%, and annotation accuracy on silver data is around 55% indicating the 

2See Appendix for negative data generation.
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complexity and challenge of real world data. Some examples of LLM’s labeling errors are 

shown in Table 4.

Experts identify at least two types of labelling errors by the LLM in the silver data:

1. Over-inference (example 1&2), the LLM tends to make inference based on the 

information that is presented, and goes beyond what is supported by the evidence 

or reasoning.

2. The LLM couldn’t handle negation properly (example 3).

In example 1, the LLM infers that the patient is weak so assistance must be required. Similar 

to example 2, we found that there are some sentences that mentioned son/daughter as nurses 

also get labelled as Concerns by others. The LLM infers that specific medical knowledge of 

children or spouse/children being present at hospital may indicate concern, but this could be 

wrong.

The mis-classified data impacts the two tasks differently. For binary classification, the 

system only needs to distinguish sentences with AD-related signs and symptoms from other 

texts, so the misclassification is less critical. However, for multi-class classification task, the 

system needs to correctly assign the categories of the AD-related signs and symptoms, 

which can be confused by the LLMs outputs. This partially offsets the advantage of 

increasing the amount of data, especially when using the silver dataset, which has a much 

lower accuracy than the bronze dataset. We observe that the silver dataset even harms the 

performance on “Requires Assistance” in multi-class classification task.

On the other hand, when using the bronze dataset, which has a relatively higher quality, we 

see overall performance improvements for both binary and multi-class classification tasks. 

We noticed that in the multi-class classification task, the bronze data causes performance 

degradation on some categories. The bronze data differs from the gold or silver data, which 

are real patient notes. This may cause distribution mismatch with the test dataset and lower 

performance for some categories. Table 1 shows the bronze data has less variation in lengths 

(4.69 vs 12.69,15.44). This suggests that we need to steer LLMs to produce data that 

matches the data encountered in practice.

To sum up, different data combinations affect the results (Table 2&3) by varying the training 

data in amount, quality and distribution. However, the performance generally improves with 

the addition of the bronze and/or silver data, though further analysis is needed for each 

category.

5 Conclusion and Future Work

In this paper, we examined the possibility of using LLMs for medical data generation, and 

assessed the effect of LLMs’ outputs on clinical text mining. We developed three datasets: 

a gold dataset annotated by human experts from a medical dataset, which is the most 

widely used method for clinical data generation, a silver dataset annotated by the LLM from 

MIMIC (data-to-label) and a bronze dataset generated by the LLM from its hallucinations 

(label-to-data). We conducted experiments to train classifiers to detect and categorize 
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Alzheimer’s disease (AD)-related symptoms from medical records. We discovered that using 

a combination of gold data plus bronze and/or silver achieved better performances than 

using gold data only, especially for minority categories, and that the LLM annotations and 

hallucinations were helpful for augmenting the training data, despite some noise and errors.

Our findings suggest that LLM can be a valuable tool for medical data annotation when 

used carefully, especially when the data is scarce, sensitive, or costly to obtain and annotate. 

By using LLM hallucinations, we can create synthetic data that does not contain real 

patient information, and that can capture some aspects of the clinical language and domain 

knowledge. However, our approach also has some ethical and practical challenges, such 

as ensuring the quality, diversity, validity, and reliability of the LLM annotations and 

hallucinations, protecting the privacy and security of the data and the model, and avoiding 

the potential harms and biases of the LLM outputs.

For future work, we will investigate other methods and techniques for enhancing and 

regulating the LLM annotations and hallucinations, such as using prompts, feedback, or 

adversarial learning. And we would also tackle the ethical and practical issues of using LLM 

for medical data annotation, by adhering to the best practices and guidelines for responsible 

and trustworthy AI. We also intend to apply our approach to other clinical text processing 

tasks, such as relation extraction, entity linking, and clinical note generation.

6 Limitations

Despite the promising results, our approach has several limitations that need to be 

acknowledged and addressed in future work. First, our experiments are based on the 

experimented LLMs and a single clinical task (AD-related signs and symptoms detection). 

It is unclear how well our approach can generalize to other LLMs, and other clinical tasks. 

Different LLMs may have different hallucination patterns and biases, and different clinical 

tasks may have different annotation criteria and challenges. Therefore, more comprehensive 

and systematic evaluations are needed to validate the robustness and applicability of our 

approach.

Second, our approach relies on the quality and quantity of the LLMs annotations and 

hallucinations, which are not guaranteed to be consistent or accurate. The LLMs produces 

irrelevant, incorrect, or incomplete annotations or hallucinations, which will introduce noise 

or confusion to the classifier. Moreover, the LLMs may not cover the full spectrum of 

the AD-related signs and symptoms, or may generate some rare or novel symptoms that 

are not in the gold dataset. Therefore, the LLMs’ annotations and hallucinations may not 

fully reflect the true distribution and diversity of the clinical data. To mitigate these issues, 

we suggest using some quality control mechanisms, such as filtering, sampling, or post-

editing, to improve the LLMs’ outputs. Fine tuning on high quality gold data can partially 

address these problems. We also suggest using some data augmentation techniques, such 

as paraphrasing, synonym substitution, or adversarial perturbation, to enhance the LLMs’ 

outputs.
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Third, our approach may raise some ethical and practical concerns regarding the use of 

LLMs for medical data annotation, especially its hallucinations. Although not observed in 

this work, there is still a slight possibility that the LLMs may produce some sensitive or 

personal information that may breach the privacy or consent of the patients or the clinicians. 

The LLMs may also generate some misleading or harmful information that may affect the 

diagnosis or treatment of the patients or the decision making of the clinicians. Therefore, 

the LLM outputs should be used with caution and responsibility, and should be verified 

and validated by human experts before being used for any clinical purposes. We also 

suggest using some anonymization or encryption techniques to protect the confidentiality 

and security of the LLM outputs.
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A Annotation Guideline

The annotation guideline comprises the main part of the prompts used in this work. It is 

created by experts and revised based on LLM outputs. The version used in this work is as 

follows:

|Start of annotation schema|

These classes are as follows:

|Class begin|

Class 1:

|Title begin| Cognitive impairment |Title end|

|Definition begin|

(collect broadly, will not be specific to AD).

    Cognitive impairment is when a person has trouble remembering, learning, 

concentrating, or making decisions that affect their everyday life.

Currently captured by patients subjective statements as well as Dr. 

statements as follows:

    Forgetting appointments and dates.

    Forgetting recent conversations and events.

    Having a hard time understanding directions or instructions.

    Losing your sense of direction.

    Losing the ability to organize tasks.

    Becoming more impulsive.

    Memory loss.
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    Frequently asking the same question or repeating the same story over and 

over (perseveration)

    Not recognizing familiar people and places

    Having trouble exercising judgment, such as knowing what to do in an 

emergency

    Difficulty planning and carrying out tasks, such as following a recipe 

or keeping track of monthly bills

    meaningless repetition of own words, lack of restraint, wandering and 

getting lost

    lose your train of thought or the thread of conversations

    trouble finding your way around familiar environments

    problems with speech or language

    feel increasingly overwhelmed by making decisions, planning steps to 

accomplish a task or understanding instructions

    mental decline, difficulty thinking and understanding, confusion in the 

evening hours, delusion, disorientation, lack of orientation, forgetfulness, 

making things up, mental confusion, difficulty concentrating, inability to 

create new memories, inability to do simple math, or inability to recognize 

common things, poor judgment, impaired communication, poor concentration, 

difficulty remembering recent conversations, names or events

    forget things more often, forget important events such as appointments 

or social engagements, issues with recall,

    changes in abstract reasoning ability attention, cognition, speech, 

orientation, judgment

    AD, dementia, MCI: capture diagnoses relevant to this category.

    STM: short term memory loss

|Definition end|

|Class end|

|Class begin|

Class 2:

|Title begin| Notice/concern by others |Title end|

|Definition begin|

These concerns are about cognition, mood or daily activities, not from 

nurses or doctors or medical care providers, but from friends or family or 

neighbors.

    family complains of something (may be related to any class including 

physiology)

    noticed changes in ability, speed concern expressed by family/friends 

complaints of pt. easily angered some examples:

    Daughter reports that she repeatedly asks the same question…had 

difficulties using her smartphone.

    Daughter reports that she has issues with banking…some decrease in 

personal hygiene, forgets to take meds, forgets where food is in the house, 

etc.
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    Pt. has gone out at 1:30 a.m. without telling anyone; they are 

concerned, but pt. always has a response.

    She (daughter) tells me that her mom has repeatedly changed the 

medications in the pill boxes that she has arranged for her.

|Definition end|

|Class end|

|Class begin|

Class 3:

|Title begin| Requires assistance |Title end|

|Definition begin|

defined as Requires assistance from a person needs help with or loss of 

ability with

    ADLs/iADLs, difficulty with self-care, trouble managing belongings

    ADLs: dressing, eating, toileting, bathing, grooming, mobility

    iADLs: housekeepingrelated activities (cleaning, cooking, and laundry) 

and complex activities (telephone use, medication intake, use of 

transportation/driving, budget/finance management, and shopping)

    some examples:

    The patient will continue to require assistance with all complex 

medical, legal and financial decision making.

    She will need 24-hour supervision for her safety.

    Direct supervision is required for medications using a pillbox.

    Best not to have him use stove.

    If left alone for period of time, will need guardian alert or consider 

camera surveillance.

    He is able to make a meal, to dress himself, to bathe, to shave, but 

continues to need help with finances.

    Wife has to remind him about appointments, in particular.

    Driving should not be permitted, and he will need assistance with IADLs 

and decision making.

    Veteran does need assistance with all IADLs and most ADLs.

    Traveling out of neighborhood, driving, arranging to take buses-limited 

night driving now

    Resides in assisted living facility or nursing home

    Writing checks, paying bills, balancing checkbook-minimal (automatic 

payment) N/A

    Playing a game of skill-no hobbies N/A

|Definition end|

|Class end|

|Class begin|

Class 4:

|Title begin| Physiological changes |Title end|

|Definition begin|

    senses: vision, hearing, smell loss, SNHL: sensorineural hearing loss, 

Li et al. Page 13

Proc Conf Empir Methods Nat Lang Process. Author manuscript; available in PMC 2024 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



HoH

    sleep: Excessive daytime sleepiness, changes in sleep patterns

    speech/swallowing (speech difficulties also in “Cognitive Impairment” 

class)

    movement/gait/balance

    inability to combine muscle movements: jumbled speech, difficulty 

speaking, aphasia, dysphasia, difficulty swallowing, dysphagia, difficulty 

walking, mobility, problems with gait and balance, gait slowing

    Brain (and blood vessel-associated) abnormalities

    stroke, ischemia, blood vessel occlusion/stenosis, infarct, 

encephalomalacia, small vessel changes, vascular/microvascular changes (in 

brain), carotid artery occlusion/disease/atherosclerosis

    loss of appetite, loneliness, general discontent, TBI, skull fracture

|Definition end|

|Class end|

|Class begin|

Class 5:

|Title begin| Cognitive assessment |Title end|

|Definition begin|

memory tests, scores irrelevant; mark all present

    Blessed Orientation Memory and Concentration (BOMC) test: 0–10 out of 

28 is normal to minimally impaired; 11–19 is mild to moderate impairment || 

VAMC BOMC Scoring: score >10 is consistent with the presence of dementia, 

score < 7 are considered normal for the elderly

    BNT: Boston Naming Test

    BVMT-R: Brief Visuospatial Memory Test

    CERAD-NAB: Consortium to Establish a Registry for Alzheimer’s Disease-

Neuropathological Assessment Battery

    Clock in a Box

    CNS VS: Computerized Neurocognitive Assessment Software Vital Signs

    COWAT: Controlled Oral Word Association Test

    CVLT: California Verbal Learning Test

    DRS: Dementia Rating Scale, Mattis Dementia Rating Scale

    D-KEFS: Delis-Kaplan Executive Function System

    FAS: a test measuring phonemic word fluency (using words starting with 

letters F, A, S)

    HVLT-R: Hopkins Verbal Learning Test-Revised

    HVOT: Hooper Visual Organization Test

    Mini Mental State Exam (MMSE; also known as Folstein Test): >=24 and <28 

out of 30 (maybe MCI) no CPT code || VAMC MMSE Guidelines: 25–30 normal, 21–

24 mild dementia, 13–20 moderate dementia, 0–12 severe dementia || Dr. Peter 

Morin’s scoring: 30 normal, 28–29 MCI, 22–27 mild dementia, 14–21 moderate 

dementia, 0–13 severe dementia

    Montreal Cognitive Assessment (MoCA): >=17 and <26 out of 30 (MCI) free, 
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there is also a Blind MoCA with total score of 21, not 30. || VAMC MoCA 

Scoring: 26–30 normal, 20–25 suggestive of mild impairment, 15–19 suggestive 

of moderate impairment, 10–14 suggestive of significant impairment, 0–9 

suggestive of severe impairment || Dr. Peter Morin’s scoring: 30 normal, 23–

26 MCI, 18–22 mild dementia, 10–17 moderate dementia, 0–9 severe dementia

    NAB: Neuropsychological Assessment Battery

    NBSE: Neurobehavioral status exam (clinical assessment of thinking, 

reasoning and judgment, e.g., acquired knowledge, attention, language, 

memory, planning and problem solving, and visual spatial abilities)

    NCSE (Cognistat): Neurobehavioral Cognitive Status Exam

    NPT/Neuropsych test/neuropsych inventory

    PASAT: Paced Auditory Serial Addition Test

    Proverb interpretation (test of abstract reasoning; part of MMSE)

    RBANS: Repeatable Battery for Assessment of Neuropsychological Status

    RCFT: Rey Complex Figure Test (sometimes ROCFT)

    RFFT: Ruff Figural Fluency Test

    RMT: (Warrington) Recognition Memory Test

    Saint Louis University Mental Status Examination (SLUMS): 21–26 out of 

30 (MCI) free || VAMC SLUMS Scoring: high school education 27–30 normal, 

21–26 mild neurocognitive disorder, 1–20 dementia; less than high school 

education 25–30 normal, 20–24 mild neurocognitive disorder, 1–19 dementia

    SDMT: Symbol Digit Modalities Test a measure of processing speed, 

concept formation

    Serial sevens (part of MMSE)

    SILS: Shipley Institute of Living Scale

    Spelling a word forward and backward (part of MMSE)

    TOMM: Test of Memory Malingering

    Trail Making Test

    UFOV: Useful Field of View test

    VF: Verbal Fluency (test)

    WAIS: Wechsler Adult Intelligence Scale

    WCST: Wisconsin Card Sorting Test

    WTAR: Wechsler Test of Adult Reading

|Definition end|

|Class end|

|Class begin|

Class 6:

|Title begin| Cognitive intervention/therapy

    |Title end|

|Definition begin|

This includes mentions of drugs, doesn’t require pt to actually start drug 

or adhere to taking drug

    Aricept being taken

    occupational therapy, cognitive linguistic therapy, cognitive behavioral 
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therapy

    memory group therapy

    informed pt. of memory group and she had possible interest in this

    SmartThink: (regional VA offering) large group available to any Veteran 

who would like to improve memory, attention, or other cognitive function.

    Dementia-related medications, any interventions initiated by provider 

e.g., medications, therapies.

    relevant meds: cholinesterase inhibitors (general term), Aducanumab/

Aduhelm, Memantine/Namenda/Namzaric, Razadyne (galantamine), Exelon 

(rivastigmine), Aricept (donepezil)

    Pimavanserin (for behavior/agitation/psychosis experimental)

    flickering light therapy

    vitamin B12/cyanocobalamin

    vitamin B1/thiamine

    vitamin D/cholecalciferol (in context of memory issues only)

|Definition end|

|Class end|

|Class begin|

Class 7:

|Title begin| Diagnostic tests of the head or brain that are related to 

neurocognitive symptoms. |Title end|

|Definition begin|

    including CT, EEG, EMG, FDG-PET, MRI, PET, PET-CT, MRA, CSF

    MRA=Magnetic resonance angiography radiology study (context: header 

neuroimaging)

    imaging (referring to MRI or PET imaging)

    NOT capturing diagnostic test results in separate sentences from the 

test name

    NOT capturing imaging header if specific info (MRI) follows

    Include distant MRI (e.g., from childhood); concussion/head trauma may 

be relevant to CTE

    genetic testing: APOE4 for sporadic AD, mutations in APP, PSEN1 (PS1 

protein), PSEN2 linked to early onset AD

Note MRI in context of spine or joints or EMG in context of carpal tunnel 

syndrome should not be considered.

|Definition end|

|Class end|

|Class begin|

Class 8:

|Title begin| Coping strategy |Title end|

|Definition begin|

    repetition and written reminders may be a useful tool in therapy

    has been encouraged to keep mentally active to slow the rate of 

cognitive decline
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    requires shopping list when going for groceries otherwise she will 

forget items

    uses a planner for appointments

    reliant on GPS for driving

    memory exercise

    keep mentally active

    uses medication organizer

|Definition end|

|Class end|

|Class begin|

Class 9:

|Title begin| Neuropsychiatric symptoms |Title end|

|Definition begin|

    mood changes: depression, irritability, aggression, anxiety, apathy, 

personality changes, behavioral changes, agitation

    Feeling increasingly overwhelmed by making decisions and plans.

    paranoia, delusions, hallucinations

|Definition end|

|Class end|

|End of annotation schema|

B Prompts

We used 3 prompts in this work.

1. Prompt 1 is to ask LLM to annotate provided text following the above guidelines.

Task: Annotate the text based on the provided annotation guideline.

    |Start of text|

    [text here]

    |End of text|

    |Start of annotation guideline|

    [annotation guideline here]

    |End of annotation guideline|

    Format output as a valid json with the following structure:

    [

    {

    “sentence”:str,\\ The sentence that is annotated.

    “class”:int \\ The class that the sentence belongs to.

    }

    ]

2. Prompt 2 is to ask LLM to check the annotation results and explain the reasons 

for making judgements.
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Task: Check if the annotations of the text based on the provided 

annotation guideline are correct or not and explain why.

    |Start of text|

    [text here]

    |End of text|

    |Start of annotation guideline|

    [annotation guideline here]

    |End of annotation guideline|

    |Start of annotation|

    [annotation here]

    |End of annotation|

    Format output as a valid json with the following structure:

    [

    {

    “sentence”:str,\\ The sentence that is annotated

    “class”:int, \\ The class that the sentence belongs to.

    “decision”:bool, \\ Whether the annotation is correct or not.

    “reason”:str \\ Explain why.

    }

    ]

3. Prompt 3 is to ask LLM to generate a note and conduct annotations based on the 

provided guideline.

Task: Generate a clinical note and annotate the text based on the 

provided annotation guideline.

    |Start of text|

    [text here]

    |End of text|

    |Start of annotation guideline|

    [annotation guideline here]

    |End of annotation guideline|

    Format annotation output as a valid json with the following 

structure:

    [

    {

    “sentence”:str,\\ The sentence that is annotated.

    “class”:int \\ The class that the sentence belongs to.

    }

    ]

These prompts are for reference and are slightly modified to adapt to each LLM for format 

control in practice.
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C Negative Data Generation

The negative data is sampled from the notes annotated by experts. It consists of data 

that are not annotated as having any AD-related symptoms. Also sentences that are too 

short (<5 tokens after removing punctuation and stop words) are removed. Tables/forms/

questionnaires are excluded. The ratio of negative:positive data is decided based on statistics 

from VHA data.

D Model Training

The system contains 3 base models. All models are PLMs that are fine tuned on the training 

data. The models are implemented using Transformers3. The training parameters are:

epoch=10.

optimizer=Adam.

lr=1e-3.

beats=(0.9, 0.999).

eps=1e-6.

warmup_steps=200.

weight_decay=0.01.
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Figure 1: 
Illustration of the text and annotation generated by the GPT-4 based on the annotation 

guideline. (Class names are shown here for better readability.)
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