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Abstract 

Sleep scoring plays a pivotal role both in sleep research and in clinical practice. Traditionally, this process has relied on manual scor-
ing by human experts, but it is marred by time constraints, and inconsistencies between different scorers. Consequently, the quest for 
more efficient and reliable approaches has sparked a great interest in the realm of automatic sleep-scoring methods. In this article, 
we provide an exploration of the merits and drawbacks of automatic sleep scoring, alongside the pressing challenges and critical 
considerations that demand attention in this evolving field.
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Introduction
Sleep, which occupies approximately one-third of our lives, is a 
complex, and dynamic phenomenon characterized by continuous 
alterations between distinct states, each possessing unique prop-
erties, and distinct electrophysiological signature. These states 
can be visually identified by inspecting electroencephalogram 
(EEG), electromyogram (EMG), and electrooculogram (EOG) data. 
Notably, three major vigilance states can be distinguished: wake 
(desynchronized EEG activity patterns), non-rapid eye movement 
(non-REM) (comprising delta oscillations, spindles, and ripples), 
and rapid eye movement (REM) (wake-like brain activity associ-
ated with muscle atonia) [1]. However, it is crucial to recognize 
that within each of these states, further substates exist, such as 
quiet–active wakefulness, light/deep non-REM sleep, and phasic/
tonic REM sleep [2, 3]. The identification of these states and their 
corresponding substates are critical for advancing our under-
standing of the functional aspects of sleep.

Remarkably, the majority of sleep stage scoring in both human 
and non-human animal sleep research continues to rely on 
manual assessment by expert scorers, a process that demands 
substantial labor and time, but also makes it difficult for new-
comers to the field (Box 1). As a result, since the early years of 
sleep research in 1960s and 1970s, researchers have been striv-
ing to automate sleep scoring process (for a comprehensive over-
view of different methods used in automatic sleep scoring in 
rodents and humans, see Rayan et al. [4], Fiorillo et al. [5], and 

Phan et al. [6]). Despite the transition from hardware-based to 
software-based solutions and ultimately the utilization of vari-
ous machine-learning algorithms, automatic sleep scoring has 
yielded limited contributions to our understanding of sleep archi-
tecture and there has been little progress observed in the accu-
racy of sleep scoring systems. This lack of progress is particularly 
pronounced in the clinical applications of sleep scoring systems, 
where automatic sleep scoring faces a markedly significant chal-
lenge [7]. Consequently, manual sleep scoring remains the preva-
lent method in these contexts.

With the significant efforts involved in the development of 
automatic scoring methods and a lot of time already spent on 
these efforts without producing significant improvement in the 
output, it is crucial to thoroughly examine the potential advan-
tages, disadvantages, and pitfalls associated with such endeavors. 
By examining these aspects, we can gain valuable insights into 
the implications and limitations of automatic scoring systems. 
Furthermore, the discussion addressing automatic sleep scoring 
also highlights the urgent need for a unified and standardized 
approach to sleep scoring in rodents, non-human primates, and 
other species, given their role in elucidating the neural under-
pinnings of sleep. Currently, a lack of consensus exists in this 
area, which hampers comparability and hinders progress of 
sleep research across different species, subsequently affecting 
the extrapolation of the results to clinical studies in humans. 
Addressing this gap by establishing a cohesive framework for 
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sleep scoring methods would enable more reliable and robust 
comparisons facilitating a deeper understanding of sleep archi-
tecture across different species.

Challenges in Standardizing Sleep Scoring
Human sleep states were initially established through the sleep 
scoring manual by Rechtschaffen et al. [1], followed by refine-
ments provided in the sleep scoring manual of the American 
Association for Sleep Research [8]. The presence of well-de-
fined and universally accepted criteria for different sleep states 
allows automatic scoring of human data to demonstrate a rea-
sonable performance, particularly when applied to healthy par-
ticipants (Box 2) [5, 6]. However, the successful implementation 
of such standard criteria and reliable automatic sleep scoring in 
humans requires the usage of large polysomnographic (PSG) set-
ups. These set-ups incorporate measurements of brain activity, 
muscle tone, and eye movement and need to be applied by the 
expert, rendering them less suitable for home recordings, where 
simple wearable devices are preferred. The uncomfortable set of 
wires and the new environment (be it a laboratory or hospital) 
imposed on participants in sleep studies also suggest a potential 
lack of ecological validity to PSG studies, further deepening the 
issue [9].

While human sleep stages have clearly been defined, and a 
consensus has been reached regarding the definition of the cri-
teria used to identify various sleep states from the data obtained 
by PSG, there remains a lack of consensus regarding a standard-
ized manual for sleep scoring in simpler set-ups with less record-
ing parameters in humans, rodents, non-human primates, and 
other species. Indeed, the primary sleep architecture, comprising 

mainly of the two main states NREM and REM has been con-
served on several branches of the evolutionary tree, including 
mammals, birds, cats, and, according to recent findings, poten-
tially some cephalopods [10–15]. However, notable biological 
differences and variations exist in nomenclature across the dif-
ferent species. Particularly, the shorter sleep bouts and faster 
progression between the different sleep states [16] result in dis-
crepancies in identifying the different sleep substates and their 
associated nomenclature (for the comprehensive overview of 
these differences and potential confounding factors in rodents’ 
sleep scoring, see [4, 17]). Addressing these variations and estab-
lishing an accepted framework for sleep scoring across different 
set-ups and species is imperative for achieving a comprehensive 
standardization in the sleep scoring field.

Variations in Sleep Scoring Frameworks: 
Rodent Perspective
In most laboratories, rodent sleep is typically semiautomatically 
scored, with manual curations for any misclassifications or tran-
sitional sleep states. The process begins by setting a threshold 
value for the EMG activity to discriminate between wake and 
sleep periods. The sleep periods are then further classified into 
two primary sleep states non-REM and REM based on the theta–
delta spectral power ratio and applying a corresponding thresh-
old. Subsequently, an experienced sleep scorer visually examines 
the raw signal and reevaluates for any misclassifications, which 
frequently occur during the transition between the two sleep 
states. As a result, the majority of laboratories utilize a three-
stage classification system (wake, non-REM, and REM), while 
employing a semiautomatic scoring system.

Box 1: A Newcomer’s Perspective on Sleep Scoring

When joining the ever-expanding community of preclinical sleep researchers, one has to inevitably face the Tower of Babel of this 
field, as the absence of standardized rodent sleep scoring criteria means every researcher has their own scoring language.

This issue for a newbie first reveals itself when trying to differentiate between segments of the seemingly identical, dizzying lines 
on the monitor that the EEG signal looks like for a beginner. Of course, you eventually get to the point where a simple glance would 
suffice to tell sleep stages apart, but this requires training, which, in the absence of standardized criteria, is not unlike a round of 
whispering game. Indeed, scoring methods used in a laboratory are passed down from researchers to students and, at one point, 
from one student to another over the years—with the phrase “it is all slightly subjective” being thrown around every so often. In this 
process, the criteria go through gradual but substantial changes as each trainer will also transmit their attempts at ameliorating 
the analysis or complying with new trends in the field (e.g. how to mark the transition at the border of slow-wave sleep to REM 
sleep or how to score microarousals during sleep). On the one hand, it leads to potentially improved scoring strategies as decades 
of experience are being distilled over the years with the added layers of knowledge and observations from each participant in this 
peculiar whispering game. However, as an impressive number of hours are recorded even by a single rodent sleep study, digging 
through the data often requires long hours of meticulous sleep scoring from several members of a laboratory. Therefore, having 
varying scoring methods across team members eventually leads to decreased inter-rater coherence and potentially biased results.

While switching to automatic methods may improve the intra-team coherence issue, the ordeal has not finished. Once the anal-
ysis is over, you have your statistics in order, your figures painstakingly arranged and colored, and you get to the part where you 
would want to know how your results compare to previous publications. However, it soon becomes apparent that comparison is 
futile as the parameters used across research teams vary tremendously—be it epoch length, the number of slow-wave sleep stages, 
or once again the issue of transitional sleep. To speak of personal experience, this variability in scoring criteria is debilitating even at 
the level of highly specific (i.e. smaller) research topics only encompassing a handful dozen publications. At this point, you have two 
options: either let it go and publish—throwing yet another scoring language to the mix—or you brace yourself for redoing the whole 
analysis to comply with the criteria of at least one of the previous publications that you deem to be the gold-standard in your field. 
However, each previous methodology one stumbles upon has its own advantages, innovations but also its pitfalls—and there comes 
a point where it becomes all too tempting to try to create the perfect method by merging the positive components from the literature 
while ridding of the elements that seemed ambiguous. In the end, in spite of your efforts to ameliorate the situation, you end up 
aggravating it with another method stranger to both your own laboratory and to every other one, and that will eventually get lost 
in the turmoil around the ruins of the Tower of Babel that will remain until standardized sleep scoring criteria are introduced.
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This process oversimplifies the complex and intricate sleep 
architecture observed in rodents, as documented by several early 
studies [3, 18, 19]. It reduces the multifaceted architecture to two 
primary sleep states, disregarding the presence of the transi-
tional sleep state and other substates. For example, a transitional 
sleep state is characterized by the emergence of oscillations in 
the hippocampus and cortex in the theta/spindle range that per-
sists for several seconds before transitioning into wake or REM 
sleep [3, 20]. Furthermore, relying solely on theta–delta ratio for 
sleep state scoring primarily aids in identifying the deep non-REM 
state, while it fails to accurately capture the light non-REM state. 
Moreover, the theta dynamics during REM sleep exhibit tempo-
ral variability, displaying bursting-like activity during phasic 
REM periods and differentiating it from tonic REM periods, which 
tends to be not considered [21].

Most automatic sleep scoring attempts have been conducted 
separately on humans and rodents, thereby failing to establish a 
correlation between sleep patterns in both species. Additionally, 
the absence of consensus regarding the definition of different 

sleep states and substates in rodents renders it challenging to 
extrapolate findings from rodent sleep studies to the human con-
text and there have been misunderstandings considering, e.g. 
the use of slow-wave sleep in the past [17]. Finally, even when 
comparing rodent studies, significant differences arise from the 
divergences in methodological choices when constructing the 
sleep-scoring algorithm. Therefore, despite rodents serving as a 
crucial model for sleep research, our understanding of sleep in 
this species remains limited, with little effort devoted to enhanc-
ing our understanding of their sleep architecture and patterns.

Data availability and sharing among various laboratories pose 
a significant challenge in establishing a consensus for sleep scor-
ing in rodents. While numerous repositories have been set up 
for human data e.g. OpenNeuro and National Sleep Research 
Resource, allowing for further exploration and validation by sleep 
and machine-learning researchers, similar initiatives are noticea-
bly absent in rodent sleep research.

Several factors contribute to this gap. To start with, rodent 
sleep research attracts professionals from diverse backgrounds. 
These include machine-learning experts, dedicated rodent sleep 
researchers, and neuroscientists more focused on understanding 
physiological phenomena in the brain, such as memory consoli-
dation during sleep, rather than on sleep itself. These research-
ers, coming from varied disciplines, often have distinct research 
questions and methodologies without a unified approach. For 
instance, a neuroscientist keen on deciphering the function of 
specific neurons during various sleep states might not focus on 
performing a comprehensive sleep classification. Instead, they 
may categorize sleep based on the electrophysiological signals 
relevant to their area of interest.

Furthermore, unlike humans, where sleep studies are primar-
ily EEG-centric, rodent sleep research employs a variety of record-
ing methods. Sleep researchers may prioritize EEG sleep signals, 
whereas neuroscientists might opt for deeper recordings from 
specific brain structures. This variability in data collection meth-
ods complicates the aggregation of sizable datasets. Coupled with 
the absence of well-defined sleep scoring criteria for rodents, 
establishing publicly available datasets becomes even more 
challenging.

In light of these considerations, we believe a critical step in 
compiling such a dataset is to reach a consensus on rodent sleep 
data scoring. Achieving this requires an open dialogue and collab-
oration among researchers from diverse disciplines.

Advantages and Disadvantages of 
Automatic Sleep Scoring
In the following section, we will explore both advantages and dis-
advantages of automatic sleep scoring process (see Table 1).

Advantages

-	 Time/labor saving: The primary motivation behind the 
development of automatic sleep scoring is the significant 
time and expert labor required for manual scoring. While 
human scorers could theoretically be trained within a 
few days, scoring a full night sleep recording in humans 
typically takes approximately 2 hours, and similar length 
of recording in rodents takes around 0.5–2 hours if the 
substates e.g. light versus deep non-REM or phasic and 
tonic REM substates, are not considered during the scor-
ing. Consequently, manual sleep scoring could consume 

Box 2: Sleep States

REM sleep: REM is a sleep state characterized by muscle ato-
nia during sleep. In humans, it is associated with wake-like 
brain activity and vivid dreaming, while in rodents, it is char-
acterized by the presence of predominant theta oscillation 
on the cortex and hippocampus.

Phasic REM sleep: Phasic REM sleep is a substate of REM 
sleep that is dominated by bursts of REMs.

Tonic REM sleep: Tonic REM sleep is another substate of 
REM sleep that is characterized by the absence of bursting 
eye movements.

Non-REM (NREM) sleep: NREM sleep is heterogenous sleep 
state comprised of several substates. It is generally charac-
terized by the absence of REM and is further divided into 
different stages based on specific EEG patterns.

Stage N1: It is a transition state between wakefulness 
and sleep. In humans, it is identified by the disappearance 
of alpha oscillations in the EEG. This specific state has not 
been extensively examined I rodents, but an equivalent to 
N1 state in rodents could potentially be quiet wakefulness 
or NREM (for further details, see Rayan et al. [4]).

Stage N2: Stage N2 is slightly a deeper sleep state com-
pared to N1. It is characterized by the presence of sleep 
spindles and K-complexes (global slow oscillations). Sleep 
spindles are commonly observed in humans and rodents 
during sleep.

Stage N3: This sleep stage is referred to as slow-wave sleep. 
It is characterized by the presence of high amplitude and 
low-frequency delta oscillations in the EEG. K-complexes 
and spindles also occur in this sleep state but can be hard 
to visualize due to the dominance of delta waves. All these 
oscillations are observed in humans and rodents.

In rodent sleep research, sleep is typically simplified to 
two main sleep states: REM and NREM (sometimes incor-
rectly referred to as slow-wave sleep). The classification of 
these states is primarily based on muscle tone (EMG) and the 
theta–delta ratio in the EEG or local field potential record-
ings. This simplified classification system overlooks the finer 
distinctions and substates observed during human sleep.
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several weeks of the project’s timeline. While automatic 
sleep scoring has the potential to reduce this time by sev-
eral magnitudes of order, the actual reduction is usually 
less than anticipated. Currently, the most reliable systems 
tend to be semiautomatic, involving initial manual thresh-
old-setting and extensive manual pre- and post-curation, 
including artifact removal and correction of misclassifica-
tion, respectively. Even fully automated scoring systems 
require some manual interventions before or after scoring, 
leading companies offer such services for substantial fees 
per recording session.

-	 Comparability of results: Manual scorers may not always 
agree on the classification of every epoch, particularly 
when dealing with mixed or pathological sleep states. Even 
if the same scorer assesses the same recording session 
twice, slight variations can occur due to slight differences 
in attention to detail and concentration levels. By contrast, 
algorithm-based scoring generates consistent results as 
long as the sample size/training dataset is sufficiently large 
and the algorithm does not incorporate random walks. 
Therefore, employing automatic sleep scoring can signifi-
cantly enhance the comparability of the results across dif-
ferent laboratories and projects.

-	 Identification of substates: The major sleep states can be fur-
ther divided into substates, each serving potentially dis-
tinct functions and exhibiting unique electrophysiological 
properties. However, in case of rodents, these substates are 
often exceedingly brief, sometimes often lasting only a few 
seconds. Consequently, manual or current semiautomatic 
scoring systems typically overlook or fail to identify these 
substates. Thus, the classification and the potential discov-
ery of new substates represent a significant advantage of 
the automatic scoring systems. Nevertheless, one drawback 
of machine-learning algorithms is that they are primarily 
designed to detect significant variations or unambiguous 
states, potentially overlooking subtle differences between 
substates unless explicitly trained to capture them.

Disadvantages and caveats

-	 Atypical data: The main drawback of automatic scoring is its 
handling of atypical data. Although such data may not be 
as prevalent as normative sleep data, they can significantly 
impact the sleep-scoring process or the final diagnostic deci-
sion for human patients. This includes recordings obtained 
from patients, animal models of neurological disorders, or 
pharmacological interventions, among other factors that alter 
the fundamental sleep signatures or structure. For instance, 

an algorithm trained solely on standard sleep data might 
misinterpret seizures as artifacts, undermining the reliability 
of the automatic sleep scoring. While manual scoring might 
be more time-consuming when dealing with atypical data, 
the human experts; however, are more adept at adapting to 
anomalous events or conditions that occur during recording. 
They can readily adjust and prioritize the scoring criteria 
based on the unique features exhibited during the record-
ing or after the intervention and identify other pathological 
conditions. This adaptability extends to identifying changes 
in the ongoing predominant oscillations such as spindles and 
delta oscillations, or a general alteration in the state’s proper-
ties or their sequence. As an example, modifications of seroto-
nin levels, either through medications like selective serotonin 
reuptake inhibitors or genetic manipulations of rodents’ ser-
otonin systems, can result in increased a state characterized 
by low muscle tone but wakeful brain activity, resembling 
quiet wakeful state [22, 23]. While current semiautomatic 
systems tend to classify such instances as Non-REM (focusing 
on muscle tone feature), human experts (focusing on brain 
activity) would score it as wake. One potential solution to this 
problem is to ensure that atypical data is included during the 
training phase of the network. Additionally, advancements 
in the field of artificial intelligence and artificial generalized 
intelligence, such as the utilization of language models and 
generative pretrained transformers or semantic-based algo-
rithms (Box 3), hold promise for the development of more 
innovative solutions that exhibit enhanced human-like cog-
nitive abilities, which could greatly improve the classification 
of atypical data.

-	 Less flexibility: Automatic sleep scoring methods demon-
strate optimal performance when applied to data obtained 
by standard acquisition protocols. It is important to note 
that any changes in the electrode position can significantly 
impact the occurrence and the appearance of sleep state 
indicator oscillations e.g. delta oscillations in non-REM 
sleep, thereby affecting the classification accuracy of the 
automatic sleep scoring. In human sleep research, both 
Rechtschaffen et al. and AASM scoring criteria require 
specific electrode placements. Since human electrode 
placement is typically limited to the surface of the skull, 
complying with requirements is relatively straightforward. 
However, in the case of intracranial recordings in rodents or 
in humans, electrode placement is determined by the spe-
cific research question or pathological condition, leading to 
much greater variability in the electrode placement scheme. 
To facilitate the standardization of standard automatic 
sleep scoring in rodents, it becomes necessary to establish 
additional standard criteria including standard electrode 
placement locations. However, this may not always be fea-
sible due to the small size of the rodent skull. Additionally, 
a consensus must be reached regarding the most advanta-
geous electrode locations. Interestingly, locations that are 
currently less commonly used, such as olfactory bulbs in 
rodents, may prove to be more reliable for sleep scoring [24].

-	 Lack of current standards: To leverage automatic sleep scor-
ing, it is essential to establish a unified system that is uni-
versally adopted or to ensure that different methods are 
validated against the same set of standards, enabling com-
parability of the results across studies. However, the current 
landscape lacks a consensus on scoring criteria specifically 
designed for rodents. Numerous attempts have been made 
to develop automatic sleep scoring. However, the lack of 

Table 1.  Strength and Weaknesses of Different Scoring 
Approaches

Manual scoring Automatic

Comparability of results across labs − +1 

Time/work effort − +

Detecting short states − +/−

Atypical data + −

Variance of electrode placement + −

Artifact detection + +/−

1if same algorithm is used and same training dataset.
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standard criteria makes it challenging to evaluate and 
compare their performance precisely. Consequently, with-
out standardized framework for assessing the efficacy of 
these systems, the aforementioned advantage of automatic 
sleep scoring remains elusive in the current approaches.

Key Considerations in Automatic Sleep 
Scoring for Reliable Rodent Sleep Analysis
When developing a new automatic sleep scoring system, it is vital 
to consider and evaluate certain factors [4]. Notably, the duration 
of sleep cycles differs significantly between rodents and humans. 

For instance, while human sleep cycles last between 60 to 120 
minutes, those of rodents span roughly 10 minutes [16]. Due to 
these shorter cycles, rodents might spend less time in each fine-
grained sleep stage such as light NREM or phasic REM states. For 
instance, their phasic REM periods often last just a few seconds 
[21]. Given the brevity of these states, many researchers clas-
sify REM sleep in rodents as a uniform and homogenous state, 
overlooking its inherent complexity and variety. This can make 
manually classifying these short sleep phases difficult, leading 
to their frequent exclusion and omission during manual scor-
ing. Consequently, when comparing automated scoring tech-
niques in rodents to human-based evaluations, there’s a risk of 

Box 3:Conceptual Future Directions

Deep ensemble learning: Deep learning networks are renowned for their adaptability and scalability, attributes that enable them 
to adjust effectively to training data. However, their adaptability often stems from the use of stochastic training algorithms. As a 
result, they can be sensitive to the specific characteristics of the training dataset, rendering them susceptible to issues of bias and 
variance. Although contemporary advancements in deep learning aim to mitigate such concerns, the unique nature of each train-
ing session can yield divergent weight sets, consequently leading to variable predictions. This propensity for fluctuation, known as 
high variance, presents significant challenges when the objective is to craft an automatic sleep scoring method that predicts sleep 
states with high accuracy. One potential solution to this problem is ensemble learning, which involves the concurrent training of 
multiple models. By subsequently integrating their predictions using techniques such as bagging and boosting, ensemble learn-
ing not only mitigates the variance but also enhances overall prediction performance, outstripping what any single model could 
achieve. However, deep ensemble learning, despite its potential to refine the automatic sleep-scoring process, is not without draw-
backs. Specifically, it is computationally demanding, given the need to train multiple models. Additionally, it introduces a further 
layer of computational complexity, which can sometimes obscure result interpretation. It is worth noting that the advantages of 
deep ensemble learning are most pronounced when supported by a diverse and comprehensive training dataset; absent such a 
dataset, the benefits might be marginal.

Unsupervised Classification: Unsupervised classification stands out as a promising avenue in future sleep scoring, offering a data-
driven approach to classification. Rather than relying on pre-labeled data, this method allows algorithms to discern underlying 
variable relationships autonomously, with subsequent post-processing curation of the results. Granting such autonomy to unsu-
pervised algorithms can potentially mitigate human biases in sleep state labeling, offering enhanced adaptability and the opportu-
nity to uncover previously unidentified sleep states. A compelling example of this direction is the recent study by Katsageorgiou et 
al. [36], where they employed a deep neural network for sleep classification in mice, revealing numerous substates.

Semantic segmentation: In the realm of sleep scoring algorithms, a fundamental challenge is to semantically discern which epoch, 
characterized by specific features, matches a certain sleep state. Recent times have seen the advent of numerous techniques, with 
semantic segmentation—initially conceptualized for image processing and classification—gaining substantial traction. In semantic 
segmentation, pixels from an image are systematically categorized into distinct classes. Facilitating this categorization, the U-net 
architecture emerged as a prominent entity within the family of fully convolutional networks [37, 38]. Studies involving human 
participants, utilizing the U-net architecture, have unequivocally shown its superiority over conventional classification methods 
[26, 29]. The integration of such advanced techniques into automatic sleep scoring for rodents, particularly when combined with 
expansive and representative datasets, augments the prospects of elevating the precision and dependability of subsequent auto-
matic scoring models. Additionally, there is a potential for large language models to offer new solutions by harnessing semantic 
search or reasoning to refine classifications process [39]. However, it is noteworthy that large language models come with their set 
of challenges, being computationally intensive, necessitating robust infrastructure, and producing significant CO2 emissions in 
comparison to other models.

Improving Feature Selection: Feature engineering, an indispensable component of machine learning and automatic sleep scor-
ing, transforms raw sleep signals into insightful features encapsulating the complexity of sleep patterns. This process begins with 
feature extraction, converting raw sleep data into a comprehensive set of descriptive features. These can span a diverse spectrum, 
from spectral characteristics, and statistical metrics to time-domain attributes.

In rodent sleep research, data collection serves varied purposes and employs different recording methodologies. Consequently, 
it is vital to pick up features for data analysis that resonate with the specific attributes of the dataset. For instance, researchers 
often link a surge in sigma power (9–17 Hz) to the emergence of spindles. Yet, while spindle presence correlates with elevated sigma 
power, an uptick in this power does not inherently signify spindle presence. Spindles also exhibit distinct spatial and topographical 
structures, factors that merit consideration during their detection [40, 41]. This discernment is pivotal, especially when distinguish-
ing the substates of NREM sleep stage.

This principle also holds for other oscillations, such as delta and theta, which have their unique spatial organization structures 
[32]. Opting for pertinent features from a dataset can amplify the efficacy of sleep-scoring algorithms. Through the application of 
feature selection strategies, like filter, wrapper, or embedded methods, one can pinpoint the most telling features that significantly 
bolster sleep state classification given the dataset at hand.
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inadvertently introducing the biases of human scorers into the 
model [25]. Overlooking these brief sleep segments, particularly 
during the training phase of a neural network, can skew results. 
Therefore, an automatic scoring system that might appear to be 
less effective could, in reality, offer greater accuracy than manual 
methods in this scenario.

Secondly, sleep is a multifaceted and dynamic phenomenon, 
marked by transient events or events obscured by other ongo-
ing brain oscillations [4]. Relying exclusively on human scorers 
to evaluate the precision of a classification algorithm can inad-
vertently ignore sleep’s inherent complexity. Even within human 
sleep research, condensing sleep data into 30-second epochs 
to discern the prevailing sleep state might lead to overlooking 
briefer sleep substates. Hence, it is imperative to adopt automatic 
systems that go beyond the traditional benchmarks of sleep clas-
sification. Such systems should be capable of revealing previously 
unidentified states and subtle variables that might elude human 
scorers. Fiorillo et al. [26] adopted a comparable strategy, leverag-
ing the U-sleep algorithm to show that with appropriate training, 
algorithms can operate effectively without being strictly bound to 
the conventional AASA guidelines.

Thirdly, the methods behind automatic scoring algorithms are 
often designed to identify and classify based on the dominant 
state within an epoch. This can inadvertently overlook the com-
plexity of specific epochs, especially those characterized by mixed 
states. In contrast, human scorers, with their intuitive judgment, 
might be more adept at recognizing such heterogeneous ele-
ments within epochs. Consequently, the chosen epoch duration 
for classification ought to be tailored according to the distinct 
objectives of the classification. Adopting a blend of both long- 
and short-duration epochs in sleep classification could provide a 
trade-off between classifying the main sleep states and identify-
ing the fine-grained sleep states [18, 19, 27]. Notably, the contin-
uous evolution in the realms of machine learning and artificial 
intelligence is equipping us with innovative tools [28]. These tools 
e.g. U-sleep algorithm transcend the limitations of fixed time 
epochs, offering a more flexible and comprehensive approach to 
sleep analysis [25, 26, 29]

Fourthly, achieving accurate sleep scoring classification neces-
sitates the careful identification and management of artifacts, 
as underscored in previous studies [3, 30]. These artifacts can 
originate from a myriad of sources, be it the recording appa-
ratus or intrinsic sleep patterns like microarousal states [31]. 
Unfortunately, during sleep classification, microarousal states 
are often neglected and predominantly labeled as wake phases. 
Compounding this issue is the polyphasic sleep pattern in rodents, 
characterized by more frequent awakenings than in humans. This 
leads to a more prevalence of artifacts in rodents. Therefore, it is 
imperative to approach these artifacts with discernment, ensur-
ing they are accurately differentiated and addressed during the 
classification process.

Finally, unlike in humans, rodent research often resorts to 
invasive implantation techniques or depth electrodes to examine 
the neural underpinnings of sleep and memory. The choice and 
placement of electrodes can significantly influence sleep scoring 
and the potential features viable for microstate classification. 
This becomes particularly pertinent when recordings are from a 
solitary brain region. It is noteworthy that the majority of sleep 
stages are classified predominantly in the low-frequency spectrum 
(<20 Hz), exhibiting variations across the brain’s anteroposterior 
axis [32]. Hence, even marginal shifts in electrode positions might 
impact sleep classification, more so in automated systems (as 
observed by Fang et al. [33]). For instance, studies that exclusively 

implant an electrode in the hippocampus, such as those by Winson 
[34] and Costa-Miserachs et al. [35], may not capture delta spec-
tral dynamics in their entirety, given their prominence at frontal 
electrodes. Moreover, determining transitional sleep hinges on the 
consistent presence of spindles at the frontal electrodes, coupled 
with the onset of theta oscillations at posterior electrodes [3, 20]. 
Solely focusing on a single brain region for sleep classification risks 
obscuring the intricate dynamics of rodent sleep, which could lead 
to potential misclassification or imprecise state commencement 
identification during automatic sleep scoring.

Conclusion
In conclusion, automatic sleep scoring holds great potential for 
enhancing efficiency, comparability, and identification of fine-
grained sleep states. Despite the advantages offered by automatic 
sleep scoring, several challenges need to be addressed to fully 
harness its benefits. These challenges include handling atypi-
cal data, establishing standardized criteria and evaluation met-
rics, accounting for the unique characteristics of rodents’ sleep 
cycles, accommodating the heterogeneity within sleep epochs, 
considering the complexity of sleep, and effectively detecting and 
managing artifacts. Overcoming these challenges will require col-
laborative efforts between researchers across different domains, 
methodological advancements, and integration of newly devel-
oped artificial intelligence techniques (see Box 3). As the field 
progresses, incorporating advancements in artificial intelligence, 
such as using language models and generative pretrained trans-
formers, may offer new avenues for more accurate and human-
like experience capabilities during sleep scoring. By addressing 
these challenges and working towards standardization of sleep 
states’ definition, the potential of the automatic scoring system 
could be fully realized, providing researchers with powerful tools 
to unravel the mysteries of sleep and the neural mechanisms 
underlying memory consolidation.
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