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Abstract

The Human Phenotype Ontology (HPO) is a dictionary of more than 15,000 clinical phenotypic 

terms with defined semantic relationships, developed to standardize phenotypic analysis. Over 

the last decade, the HPO has been used to accelerate the implementation of precision medicine 

into clinical practice. In addition, recent research in representation learning, specifically in graph 

embedding, has led to notable progress in automated prediction via learned features. Here, we 

present a novel approach to phenotype representation by incorporating phenotypic frequencies 

based on 53 million full-text health care notes from more than 1.5 million individuals. We 

demonstrate the efficacy of our proposed phenotype embedding technique by comparing our 

work to existing phenotypic similarity-measuring methods. Using phenotype frequencies in 

our embedding technique, we are able to identify phenotypic similarities that surpass current 

computational models. Furthermore, our embedding technique exhibits a high degree of agreement 

with domain experts’ judgment. By transforming complex and multidimensional phenotypes from 

the HPO format into vectors, our proposed method enables efficient representation of these 

phenotypes for downstream tasks that require deep phenotyping. This is demonstrated in a patient 

similarity analysis and can further be applied to disease trajectory and risk prediction.
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1 Introduction

Electronic medical records (EMRs) have been implemented in the majority of US hospitals 

and accumulate clinical data at a massive scale [1]. While initially created for billing 

purposes [2], EMRs increasingly represent a major source of data in clinical research efforts 

to improve patient care[3]. However, automated interpretation of EMRs is challenging, 

particularly for diagnoses that incorporate dynamic and diverse sets of clinical features. 

Phenotypes, a set of observable characteristics and clinical traits, have an essential role in 

connecting clinical research and practice. Algorithms that use phenotypes to find similarities 

and differences between patients play a foundational role in EMR research [4]. However, 

phenotypic descriptions available in EMRs are often stored in the form of unstructured data 

and do not allow for direct comparisons.

The Human Phenotype Ontology (HPO) is one approach to overcome these limitations 

(human-phenotype-ontology.org). The HPO is a standardized representation of more than 

15,000 clinical phenotypic concepts and their relationships based on expert knowledge. The 

clinical and scientific community has contributed to HPO terminology since 2010 [5–8]. 

The HPO has been widely used for harmonization of clinical features in various studies, 

including, but not limited to, semantic unification of common and rare diseases [9], genetic 

discoveries in pediatric epilepsy [10, 11], and delineation of longitudinal phenotypes [12, 

13]. In addition, the HPO is commonly used for genomic studies and allows for analyses 

of clinical data at a scale that is required by current and future initiatives. For example, 

large national and international initiatives have started to systematically link biorepositories 

to EMR data, including up to 80,000 cases and 500,000 controls [14–16], highlighting the 

possibilities for novel biological insight at scale.

The HPO can be modeled as a directed acyclic graph (DAG) in a computational system, 

where each phenotype is presented as a node with a unique identifier and is connected to 

its parent phenotypes by “is a” relationships in the form of directed edges. This structure 

guarantees that if a disease or gene is annotated to a phenotypic term, it will also be 

annotated to all its ancestral terms (higher-level concepts within the larger phenotypic tree). 

The HPO is regularly updated to incorporate advances in phenotypic conceptualization.

Extraction of phenotypic concepts is a crucial step in any automated pipeline to exploit 

the scale of EMR data in clinical research. Natural Language Processing (NLP) pipelines 

such as cTAKES [17], ClinPhen [18], and MetaMap [19] are commonly used to derive 

phenotypic concepts from the EMR, effectively allowing the transition from unstructured 

free text to structured representations. While these NLP pipelines share a common goal, 

that is, extracting phenotypes from clinical free text, they have different components and 

employ a variety of procedures, thus, should be evaluated from different endpoints such as 

precision, sensitivity, ease of use, and speed [18, 20]. Furthermore, phenotype extraction 
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typically serves as only a starting point to more complex analyses. Therefore, studies 

need to perform additional analyses on the extracted phenotypes and their relationships to 

accomplish tasks like patient comparisons and predicting patient status [21–23]. Manual 

analysis of phenotypes is non-scalable, resource-intensive, and virtually impossible for 

larger cohorts. Accordingly, reliable algorithms for computational phenotype analysis are 

urgently needed.

Comparing phenotypes to one another is a common building block for downstream 

clinical tasks. Methods for measuring phenotypic similarities, using measures such as the 

Resnik score [24], information coefficient [25], and graph information content [26], have 

shown promise for diagnoses and open doors to novel biological insights such as genetic 

discoveries [10]. However, these methods are not generally transferable to other tasks and 

require a significant amount of computation, even with minor changes to the data. While 

these methods perform well on data with hundreds of patients, they are computationally 

intensive for research questions involving thousands of patients and can become impractical 

for cases with millions of patients [18].

Representation learning is a group of machine learning algorithms that discover and learn 

representations of data, making it easier to extract information that can be used for various 

tasks such as classification and prediction [27]. Recent work in representation learning has 

demonstrated success in discovering useful representations without relying on procedural 

techniques, especially in domains with complex and large data [27]. Embedding algorithms, 

discussed in Section 2, are a branch of representation learning that model discrete objects as 

continuous vectors. They offer a compact representation that captures similarities between 

the original objects and have revolutionized data processing and analysis in many domains, 

including text processing, by representing words in a compact space [28, 29]. Embedding 

algorithms have also been extended to encode other data structures such as nodes and graphs 

[30, 31]. A few studies have applied representation learning and embedding techniques in 

the clinical domain and presented promising results on specific phenotypes for a limited 

number of diseases [32, 33].

Here, we map 53 million full-text healthcare notes of more than 1.5 million individuals 

to HPO terms and perform graph embedding to assess the possibilities and limitations of 

representation learning techniques. We demonstrate that phenotype embedding, in some 

scenarios, can exceed more computationally intense measures of phenotype similarity, 

providing a framework for computationally efficient analysis of large-scale phenotyping 

data. The source code for our computational model is available on GitHub [34].

2 Materials and Methods

2.1 Clinical data extraction

The data used in this study represents the entirety of available full-text patient notes 

from the Children’s Hospital of Philadelphia (CHOP). All medical documentation is 

performed using a unified Electronic Health Record (EHR) system, Epic (Verona, WI), 

for all care documentation (www.epic.com). The EHR system documents contacts with 

patients, including telephone call records, refills, visits for laboratory and imaging, hospital 
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admissions, and clinic and emergency room visits. Each contact point is referred to as an 

encounter. Patient data from the resulting medical record is then merged into a separate 

reporting database provided by Epic (Clarity) as well as an internal database system, 

the Clinical Data Warehouse (CDW). For research purposes, a subset of this data is 

modeled within Arcus, an institutional informatics platform at CHOP [35]. The Arcus Data 

Repository (ADR) de-identifies the clinical data allowing researchers to safely access and 

conduct studies on the data, reducing administrative burden and lifting Institutional Review 

Board (IRB) oversight requirements. We refer to this de-identified clinical data as “data” 

throughout the paper.

Additionally, we selected 53 individuals with epilepsy and a genetic diagnosis of SCN1A 
from the data set. Most of these individuals have Dravet Syndrome (n=45), a childhood 

developmental and epileptic encephalopathy typically characterized by febrile seizures in 

the first year of life followed by other severe seizure and neurodevelopmental abnormalities 

[36]. These individuals were enrolled as part of the Epilepsy Genetic Research Program 

(EGRP) at Children’s Hospital of Philadelphia [11]. Since 2014, EGRP has been enrolling 

individuals with known or presumed genetic epilepsy and collected individuals’ clinical and 

genomic data [10, 11, 37]. As part of EGRP, all collected diagnoses were evaluated and 

verified in a clinical and research setting, and if necessary, reclassified according to the 

criteria of the American College of Medical Genetics and Genomics (ACMG). We refer 

to this subset of data from 53 individuals as the “EGRP-subset” and use it in our patient 

similarity analysis (see Section 2.8).

It is worth mentioning that due to the sensitive nature of the research supporting data, 

including patient notes and the extracted phenotypes, are not available in their original form. 

However, the input data to our proposed method, i.e., frequency of phenotypes, is available 

in the supplementary materials and can be used for replicating the experiments (Section 8 

Supplemental).

2.2 Mapping to Human Phenotype Ontology terms

Many commercial NLP systems struggle with recognizing clinical text, and those trained on 

clinical data are usually costly, proprietary, and lack customizable features. Apache Clinical 

Text Analysis and Knowledge Extraction System (cTAKES), an open-source project, tries 

to fill this gap [17]. cTAKES performs clinical named-entity recognition (NER), a natural 

language processing task that searches for observations of medical concepts within the text 

[38, 39]. In doing so, cTAKES passes the text through a series of steps within a pipeline. 

These steps vary based on the selected configuration. Although cTAKES provided an NLP 

solution specialized to health data, the analysis of large sets of clinical notes is time- and 

resource-intense. Accordingly, in its default configuration, this framework is not practical 

for institution-size data, and many institutions use cTAKES only on a small subset of their 

records [40, 41].

We have developed a pipeline that is capable of running cTAKES on millions of clinical 

notes in parallel, allowing for the utilization of institution-size data at full capacity 

[42]. We employed cTAKES 4.0.0 [43] with the default configuration that splits a 

document into a series of sentences and then each sentence is split into individual words 
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in a process called tokenization (see https://cwiki.apache.org/confluence/display/CTAKES/

Default+Clinical+Pipeline).

We applied two modifications to the default cTAKES pipeline. First, we used a dictionary 

based on the Human Phenotype Ontology, HPO release version 2020-10-12, as included 

with the 2021AA release of the Unified Medical Language System (UMLS) [44]. This 

mechanism assigns a part of speech or phrase type to each token before the entity recognizer 

matches the tokens against a concept dictionary derived from the UMLS. Secondly, we 

included the NegEx negation annotator in addition to the default machine learning negation 

classifier available in cTAKES [45]. NegEx is a regular expression algorithm that uses a 

list of patterns in an attempt to better capture negated terms in encounter notes, filtering 

out sentences containing phrases that incorrectly appear to be negating terms. This process 

allowed us to accurately map each encounter in the EMR to a set of HPO terms at a large 

scale. Figure 1 illustrates a schematic of our distributed cTAKES pipeline.

Although cTAKES pipeline, particularly with our changes to the default configuration, 

is one of the most dependable systems available, as with any NLP system, there are 

some shortcomings. The most prominent one is its failure to detect all phenotypes in 

clinical notes that are absent or have non-unique short forms. For example, medical 

cannabis or cannabidiol (CBD) has been recently considered as a treatment option for 

Alzheimer’s disease and epilepsy, especially for Dravet Syndrome [46, 47]. On the other 

hand, CBD is also an alias for “red-green color blindness” and deuteranomaly. Upon 

further examination, we realized that in individuals with epilepsy, the cTAKES pipeline 

was incorrectly categorizing CBD as Deuteranomaly (HP:0011520). Another area of failure 

for cTAKES is the manner it deals with phenotypes containing multiple phenotypic terms 

in their names, such as the term “myoclonic seizures” which is classified into both 

Myoclonic seizures (HP:0032794) and Seizure (HP:0001250). Typically, this shortcoming 

is inconsequential as in most methodologies, Seizure (HP:0001250) is inferred after 

“propagation” of Myoclonic seizures (HP:0032794) and duplicated terms are then removed. 

However, when Myoclonic seizures is negated, cTAKES falsely assigns negation to both 

Myoclonic seizures and Seizure. Nevertheless, since clinicians typically include major 

detected or presumed disorders separately and repeatedly in their notes, in this case Seizure, 

our employed query which only incorporates positive categorizations overcomes this failure 

as well (Figure 2).

Several studies with small corpora attempt to correct such errors by performing manual 

review on the data or by verifying the significant findings with clinical staff. However, this 

is not a feasible solution for large-scale hospital data such as that used in our study. Thus, 

we tried to reduce the number and effects of such samples by (1) Customizing data queries 

that incorporate additional modifier tags provided by cTAKES (Figure 1). (2) Relying on the 

robustness provided by algorithms that categorize large corpus samples as a whole and can 

generalize their findings.

Thus, in querying the data, we excluded phenotypes with tags that represented “family 

members” as opposed to the “patient”, had a positive “history”, were “negated”, “generic”, 

“conditional”, or identified with “uncertainty”. Figure 2 provides a sample patient note with 
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its identified phenotypes obtained by running the cTAKES pipeline marked in blue. Rows 

marked with a red sign represent wrong categorization by cTAKES with the mistaken tag 

marked in bold. Furthermore, the phenotypes that were excluded based on our customized 

query, as discussed above, are shown with their corresponding (query-excluded) tag in 

orange.

2.3 Assessing HPO term frequencies corrected for frequencies of higher-level phenotypic 
concepts

We calculated the frequency of each phenotype by dividing the number of individuals 

mapped with that HPO term in at least one encounter by the total number of individuals. 

However, assessing the baseline frequency does not fully represent the complete frequency 

of each phenotypic term as higher-level terms are not typically included in encounters. 

Clinical descriptions tend to be annotated with the phenotypic term at the greatest applicable 

level of detail. Consequently, the analysis of the direct translation of clinical records into 

HPO terms underestimates the frequency of higher-level, conceptually broader, phenotype 

terms. However, it can be reasoned that these higher-level terms are often essential as 

they may capture large groups of individuals with phenotypically broad but clinically or 

biologically important similarities. Accordingly, we performed a method referred to as 

“propagation” that we have used extensively in past work [7, 11, 12, 48, 49]. In brief, for 

each individual’s set of explicitly annotated HPO terms, we add all HPO terms that can be 

inferred by taking the union of all those terms extracted and following all possible paths 

along their “is a” relationships to the root of the HPO. For example, if an individual was 

coded with Mild global developmental delay (HP:0011342), we can infer that they also 

have the parent terms Global developmental delay (HP:0001263) and Neurodevelopmental 
delay (HP:0012758). This technique ensures this individual is counted when calculating the 

frequency of the higher-level terms. The term frequency of the propagated terms provides 

a more accurate representation of the true term frequencies for concepts coded in the HPO 

[10]. We refer to the frequency derived from the propagated counts as propagated frequency. 

Thus, the propagated frequency of the root term in the HPO, freq HP :0000001 , is always 

equal to 1.

2.4. Similarity analysis using the Resnik Score

Various frameworks have been introduced to automatically measure the semantic similarity 

between concepts [50, 51]. Among them, many focus on deriving statistical information 

from cohorts and combining them with lexical resources and knowledge graphs [52]. 

These techniques have been effective in NLP tasks such as information extraction based 

on WordNet [53]. In 1995, Resnik introduced information content (IC) as a measure of 

specificity for a concept [24]. The IC of each concept represented in an ontology can be 

calculated based on the occurrence frequency of that concept in a large and relevant corpus. 

As a result, a generic concept would be associated with a lower IC value, and a very 

specific and rarely encountered concept would have a higher IC. In calculating the IC of a 

concept, the frequency of all concepts encountered following all possible paths along the “is 

a” hierarchy to the main concept should be counted. Formally, the IC of a concept can be 

calculated as:
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IC c = − log freq(c) , (1)

where c represents the concept, and freq .  returns the propagated frequency value of a 

given concept. We used logarithms to the base two in our analysis.

Having the IC, the Resnik score computes the similarity between concepts c1 and c2 based 

on their Most Informative Common Ancestor (MICA), the concept that subsumes c1 and c2 

and has the maximum IC. Formally,

simResnik = IC MICA c1, c2 , (2)

where MICA c1, c2  is the lowest common subsumer of concepts c1 and c2, and IC(.) returns 

the information content of a concept.

In the HPO, represented as a DAG, phenotypes closer to the root (HP:0000001) are more 

general and have a lower IC value. The MICA of two phenotypes is the least common 

ancestor (LCA) of those phenotypes in the HPO. As a result, the quantity of shared 

information between two phenotypes would be higher if the LCA is a rare term and thus has 

a high IC.

Among the leading methods for comparing patients and correlating phenome and genome 

data, phenotypic similarity measures based on information content (IC) or, more specifically, 

the most informative common ancestor (MICA), or Resnik method, remains the most 

dependable [24].

Recent studies have demonstrated the effectiveness of the Resnik method in developing 

novel diagnostic approaches, generating statistical evidence for disease causation, and 

even discovering novel genes [10, 11, 54]. Research on real-world datasets has repeatedly 

demonstrated Resnik to be a consistently more versatile and robust phenotype similarity 

measure compared to several other phenotype similarity methods, such as the Lin 

measure[55] , the Jiang-Conrath measure [56], the Relevance measure [57], the information 

coefficient measure [25], and the graph IC measure [16, 58, 59]. As such, Resnik remains 

one of the most popular and effective methods of measuring the similarity between 

phenotypes. Thus, we chose this method as a reference to evaluate the efficacy of our 

proposed techniques.

However, there are certain limitations associated with the application of Resnik. For 

instance, in some cases, the Resnik score cannot make a fine-grained distinction as many 

phenotypes may share the same LCA and thus receive equal similarity scores. In addition, 

the frequency values involved in calculating the information content may suffer from 

different sources of biases in the reference cohort, including but not limited to selection 

bias, information bias, and confounding bias [60]. Although some bias sources can be 

identified and their potential impact assessed, they may require extensive data cleaning 

and supervised analysis, which are very costly for institutional data. Many sources of bias, 
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however, will likely remain hidden. Thus, techniques like Resnik that directly use the 

phenotypic frequencies in measuring similarities are inevitably susceptible to such biases.

2.5. Node embeddings using Node2Vec

Inspired by advancements in word embeddings for NLP tasks, the Node2Vec model 

maps nodes in the graph to a d-dimensional vector space [30]. There are several 

sampling strategies that are used to explore nodes in the graph [30, 61, 62]. Different 

sampling strategies generate different sentence-like samples that result in distinct learned 

representations. Some of these strategies rely on a rigid notion of a network neighborhood 

and are insensitive to connectivity patterns unique to networks [61, 62]. As a result, they 

have shortcomings in generalizing different prediction tasks and graph structures. Therefore, 

it is essential to employ a flexible sampling strategy to explore the graph and learn node 

representations with two rules in mind: (1) learning representations where nodes with 

similar roles in the graph receive similar embeddings, and (2) learning representations 

where nodes from the same substructure or community are set closer together in space. 

Node2Vec introduces a biased randomized procedure that samples neighborhoods for each 

given node where the transition probability to the next node depends on both the current and 

previous node. This procedure overcomes the mentioned shortcomings and follows the listed 

rules. The generated biased random walks from each node preserve the mutual proximity 

among the nodes, effectively exploring a node’s local neighborhood. By running multiple 

biased random walks on each node, Node2Vec generates sets of sentence-like sequences, 

which serve as inputs to the Skip-gram model used in word embedding [29] (Supplementary 

Method S1).

The Skip-gram model aims to learn a continuous representation of words by optimizing a 

neighborhood likelihood objective in a semi-supervised fashion. The Skip-gram objective 

is based on a distribution hypothesis stating that words that appear in a similar context 

(windows over sentences) tend to have similar meanings. Particularly, similar words tend 

to appear in similar word neighborhoods and should be moved closer in vector space. For 

example, the words “epilepsy” and “illness” will likely be much closer in vector space than 

“table”, as they are much more likely to appear within the same windows of text. The biased 

random walks introduced in Node2Vec sample the nodes’ neighborhoods and serve the same 

purpose as context/sentences for the Skip-gram model.

2.6. HPO2Vec and Node2Vec+ as extensions of the Node2Vec framework

Phenotype embedding for HPO data has been developed by applying Node2Vec on the 

phenotypic nodes with weights equal to 1, a tool referred to as HPO2Vec [32]. Despite 

HPO2Vec’s promising results on specific phenotypes for a limited number of diseases, 

the equal weighting strategy prevented connection strength from being incorporated into 

exploring the graph, placing phenotypes equally close to their general and rare neighbors. A 

possible solution to this problem is to include connection strength in the form of edge weight 

in the HPO (see Section 2.7). While Node2Vec was designed to work on both weighted and 

unweighted (equal-weight) graphs, it does not distinguish weak connections from stronger 

ones and thus cannot detect cases where the potential next node is weakly connected to 

the previous one. The Node2Vec+ model proposed an extension of Node2Vec that resolved 
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the issue with weak connections [63]. Intuitively, a connection is called “loose” based on 

some threshold edge value; however, it is hard to determine a reasonable threshold value 

for networks without having the distribution of edge weights of all nodes. Accordingly, they 

set a relative threshold for each node based on its surroundings. Formally, to evaluate if a 

connection u, v  is loose, where u and v are two nodes in the graph, they compare its weight 

with the average edge weight from u, defined as:

d u = ∑v′ ∈ N u w u, v′
N u . (3)

If w u, v < d u , the edge, u, v , is referred to as a loose connection. For simplicity, u, v  is 

also considered a loose connection if u, v ∉ E. The extended bias factor is defined as:

αpq vp, vc, vn =

1
p if vp = vn

1 if w vn, vp ≥ d vn

min 1, 1
q if w vn, vp < d vn andw vc, vn < d vc

1
q + 1 − 1

q
w vn, vp

d vn
ifw vn, vp < d vn andw vc, vn ≥ d vc

.

(4)

where vc represents the current, vp the previous, and vn the next visited node in a biased 

random walk. Note that for an unweighted graph, Equation 4 acts as the bias factor in 

Node2Vec (Supplementary Method S1), and there is no difference between the two methods. 

Also, similar to Node2Vec, if p and q are set to 1, the biased random walk will work as a 

simple first-order random walk.

2.7. Frequency-based human phenotype (FQ-HP) embedding

Here we propose a frequency-based human phenotype (FQ-HP) embedding model which 

consists of three steps, including: (1) updating the HPO graph by incorporating the 

propagated frequencies, (2) creating phenotype embeddings using Node2Vec+, and (3) 

calculating the similarity between phenotypes. Available studies on phenotype embedding, 

including HPO2Vec [32] and HPO2Vec+ [33] (see Section 4), apply their techniques 

to equally-weighted graphs which are equivalent to unweighted graphs. This results in 

choosing among surrounding phenotypes evenly rather than incorporating any connection 

strengths and priorities. This shortcoming would ultimately create equivalent similarity 

values between a phenotype with its rare child and the same phenotype with its relatively 

general neighbor (which could be another child or its parent). We call this category of 
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techniques Equal-weight human phenotype (E-HP) embeddings and employ them in our 

evaluations. See Section 3 for more details.

2.7.1. Updating the HPO graph—The HPO version used in the current project 

contains 15,371 nodes (phenotypes) connected with unweighted and directed edges. To 

apply the Node2Vec+ algorithm, we created a copy of the HPO graph, including all 15,371 

nodes and their accompanying 19,523 undirected edges. Assigning undirected edges helps 

the biased random walks in Node2Vec+ explore each given phenotype’s lower-level and 

higher-level neighborhoods. Additionally, we assigned weights to the edges of our graph. 

Weighted edges affect the probability of choosing the next nodes to visit in the biased-

random walks. More specifically, at each step in the biased-random walk, if the algorithm 

needs to choose amongst a group of nodes to visit next, it will most likely choose the node 

(phenotype) with the strongest connection (largest weight) to the current node (Equation 

S7). We used the frequency calculated in Section 2.3 to weight the edges. More precisely, 

the weight between two connected nodes is calculated by the minimum frequency value of 

the two nodes, formally defined as:

w v, u = min freq v , freq u + b, (5)

where v and u are two connected nodes (phenotypes), and freq .  determines the frequency 

of a given phenotype. Here, b is a constant bias value that prevents zero weights. In our 

study, we used the difference between the maximum frequency and the second maximum 

frequency among all phenotypes as b (0.00146). The weighting mechanism introduced in 

Equation 5 creates stronger connections between phenotypes with higher frequency values 

(more general terms) compared to rare terms. Furthermore, if phenotype p has multiple 

neighbors, its connection(s) to its parent(s) will be stronger than to its children — that are 

equally rare or rarer. Conceptually, this puts rare phenotypes further away in vector space 

compared to common ones as we argue that they represent more unique information about 

a patient. We have provided the example of embedding the HPO terms Generalized-onset 
seizure (HP:0002197) and Motor seizure (HP:0020219), which represent children of the 

phenotype Seizure (HP:0001250) in Figure 3 and Supplementary Method S1.

2.7.2. Creating phenotype embedding—We used the Node2Vec algorithm, 

described in Section 2.5, with the extended bias factor introduced in Node2Vec+ (Section 

2.6) to incorporate our weighting mechanism in embedding the phenotypes. We ran the 

embedding algorithm on all 15,371 phenotypes available in the HPO.

2.7.3. Hyper-parameters—Since our task is unsupervised and there is no label involved 

in the fine-tuning process, we relied on the provided hyper-parameters used in HPO2Vec+ 

for the sampling strategy [33]. The select hyperparameters used in the sampling strategy as 

well as training the Skip-gram model are provided in Table 1.

2.7.4. Representing the embedding space—With the embedding model, each 

phenotype can be mapped into the embedding space with its vector representation. However, 

the embedding space has high dimensionality, where dimensionality is defined by the 
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hyper-parameter vector length. Thus, visualizing how phenotypes occupy the embedding 

space is impossible. We apply two dimensionality-reduction techniques, namely, Principal 

Component Analysis (PCA) [64] and t-distributed stochastic neighbor embedding (t-SNE) 

[65] to the embedding vectors to visualize them in 2-D and 3-D space. Since the 

dimensionality reduction techniques lose important information from the original data, we 

use them only for visualization purposes and work with the original vectors when comparing 

phenotypes and calculating their similarities.

2.7.5. Calculating phenotype similarities—There are three main techniques 

available in the literature to calculate the similarity between two embedding vectors: 

Euclidean distance, Cosine similarity, and dot product. Among these techniques, the dot 

product is proportional to the vector length, which is a hyper-parameter of the sampling 

strategy. Thus, we only used the Euclidean distance and Cosine similarity to measure the 

similarities between the two vectors in our experiments (Table 2).

2.8. Calculating phenotypic similarity between two individuals

Phenotypic similarity between two individuals can be assessed based on the similarity 

between their phenotype pairs. As discussed in the previous sections, we employed three 

methods to calculate phenotypic similarity. These methods are Resnik, E-HP embedding, 

and FQ-HP embedding (see Sections 2.4, 2.6, and 2.7). We relied on available metrics 

for calculating individuals’ similarity when using Resnik for measuring the phenotypic 

similarity [11, 24].

This metric, referred to as Simmax, Resnik, generates a symmetric score, measuring the similarity 

between two individuals P1 and P2 by summing over the maximum phenotypic pair 

similarity,

Simmax, Resnik P1, P2 = 1
2 ∑j = 1

m max 1 ≤ i ≤ n sij + ∑i = 1

n max 1 ≤ j ≤ m sij , (6)

where i represents a phenotype reported for individual P1, with a total of n phenotypes, and j
represents a phenotype reported for individual P2, with a total of m phenotypes. sij represents 

the similarity between phenotype i of P1 and phenotype j of P2 calculated by simResnik (see 

Equation 2). Note that based on the definition of simResnik, the similarity score between two 

individuals, Simmax, Resnik, with shared rare phenotypic terms is greater than that between two 

patients with only shared general phenotypes. This is due to the higher IC value of the 

MICA of two rare phenotypes.

Similarly, we propose a new metric for measuring patient similarity when using the 

embedding techniques, i.e., E-HP and FQ-HP embeddings, in calculating the similarity 

between phenotypes. In doing so, we employ a weighting mechanism to suppress the 

effects of common general phenotypes thereby increasing the similarity between individuals, 

prioritizing shared rare phenotypes between individuals. This concept is also available in 

Simmax, Resnik by incorporating MICA (see Equation 2). Formally, we define
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Simmax, Emb . P1, P2 =
1
2 ∑j = 1

m max 1 ≤ i ≤ n sij × (1 − max freq i , freq j ) + ∑i = 1

n max 1 ≤ j ≤ m sij × (1

− max freq i , freq j ) .
(7)

Here, freq i  is the propagated frequency of phenotype i as described in Section 2.3.

We calculated the phenotypic similarity between all individuals (n = 53) in EGRP-subset 

resulting in 1,378 patient pairs with a median of 174 distinct phenotypic term per individual. 

We followed the same procedure in extracting the phenotypes as described in Section 

2.2. In contrast to many studies that have relied on manual data cleansing and further 

clinician analysis for patient similarity [11, 66] in this study, we have analyzed the extracted 

phenotypes without undergoing any additional pruning. Our aim was to challenge existing 

and proposed similarity measuring techniques and evaluate their effectiveness on large scale 

data in which manual expert analysis is not feasible.

3 Results

53 million patient notes were translated into 9,477 phenotypes

We analyzed data from 1,504,582 patients with a wide range of syndromes available on 

53,955,360 electronic notes in the Arcus Data Repository version 1.4.4 [35]. By applying 

the cTAKES algorithm on all available full-text notes from the EMR, we extracted 8,425 

distinct HPO terms with more than one occurrence and 9,477 distinct phenotypes with more 

than one propagated occurrence. Patient encounters over time and the histogram of the 

propagated frequency of phenotypes are presented in Figure 4.

Representing the Human Phenotype Ontology in a lower-dimensional space

We qualitatively evaluated our embedding method by visualizing the 15,371 phenotypes 

in the embedding space. Since we designed the embedding vectors to be of length 128, it 

is impossible to visualize the space directly. We used the PCA and t-SNE algorithms to 

reduce the embedding dimension to 2D and 3D. Figure 5 displays a 3D representation of the 

original (128D) embedding space using PCA, where phenotypes that are closer together are 

more similar.

Graph representation learning preserves relationships between phenotypes in the 
embedding space

We next assessed the Skip-gram objective to determine if proximity to similar contexts 

would drive the phenotypes to be closer in the embedding space. In doing so, we 

examined a group of phenotypes, including Seizure (HP:0001250) and its neighbors in 

the HPO, and measured their similarities in the embedding space. Table 3 shows the 

similarity values between Seizure and some of its closest neighbors in the original vector 

space. We calculated the similarity using the Cosine Similarity and Euclidean Distance 

metrics with larger values in the Cosine System representing a higher degree of similarity 

while smaller values in the Euclidean System representing shorter distances, thus greater 
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similarities. Even in a lower-dimensional 3D space generated by PCA, the clos e neighbors 

of Seizure are evident (Figure 5). We also implemented the t-SNE algorithm to reduce 

the embedding space to three dimensions. Our results demonstrate that while t-SNE can 

preserve the similarity and difference between most phenotypes, it requires that we tune 

its hyper-parameters (perplexity, learning rate, and iteration number) to obtain a stable low-

dimensional representation adding additional complexity that does not necessarily improve 

the representation (Supplementary Figure S1).

Incorporating phenotype frequencies in the HPO graph transfers likelihood distribution to 
embeddings

We next analyzed the effects of incorporating weights in the HPO graph. In doing so, 

we first calculated pair-wise cosine similarity values between all phenotype pairs. We 

observed changes in the similarity values when using the FQ-HP embedding (our technique) 

compared to the E-HP embedding (conventional equal weights). Figure 6A represents the 

changes in the cosine similarity values between a sample phenotype (Seizure (HP:0001250)) 
and all other phenotypes in the HPO. In this example, the range of cosine similarities is 

wider for FQ-HP embedding (our technique, y-axis) compared to the E-HP embedding 

(the conventional equal weights, x-axis). Considering that cosine similarity is bound by a 

constrained range of −1 and 1, the increased range for FQ-HP (y-axis) suggests that more 

phenotypes have a notable, more extreme positioning with respect to the main phenotype in 

the embedding space. We observed various patterns of changes in the similarity values on 

different phenotypes (Supplementary Figure S2).

In order to assess the patterns of distributions between FQ-HP and E-HP across all 

phenotypes, we defined a metric that compares the ratio between the range for 99% of all 

cosine similarity values for FQ-HP and E-HP, the ratio of Y to X as demonstrated in Figure 

6A. We referred to this metric as “Info Score” (Supplementary Method S3) and compared 

the distribution of Info Scores of FQ-HP over E-HP with that of embeddings with randomly 

assigned weights (R-HP) over E-HP. The observed Info Score distribution of FQ-HP/E-HP 

(Figure 6B, green) suggests stronger similarity values compared to R-HP/E-HP (Figure 6B, 

yellow), indicated by the “longer tail” of the FQ-HP/E-HP distribution. This difference 

between embeddings using true frequencies and random frequencies indicates that, on 

average, the spectrum of similarities is broader when using frequency-based embedding. 

Accordingly, when using the additional information of term frequencies, the existing 

proximities and distances in the phenotypic graph can be represented more efficiently.

Frequency-based phenotype embeddings improved recognition of expert-curated 
phenotype similarities

Next, we assessed how similarity using embeddings compared to human assessment of 

clinical similarities. To evaluate the utility of the frequency-based phenotype embeddings 

over conventional methods to assess clinical similarity, we generated an expert-curated 

dataset comparing a reference to two choices of phenotypes, here referred to as candidate 

phenotypes. The domain experts were asked to assess which of the two choices is more 

closely related to the reference phenotype in their opinion. They were also given the option 

to indicate uncertainty if they viewed the candidate phenotypes as equally related to the 
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reference phenotype or found it impossible to choose. We reasoned that this would generate 

a gold standard dataset that provides a valuable framework to assess the utility of similarity-

measuring algorithms. In brief, an algorithm that is more aligned with the expert-curated 

dataset is considered superior to an algorithm that results in less overlap.

To generate such a gold standard dataset, we provided a group of 13 domain experts in 

epilepsy and neurogenetics, including 12 clinicians and a researcher, with 100 neurology-

related reference terms (i.e., Abnormality of the nervous system (HP:0000707) and all 

descendent (child) terms). These terms were balanced between common and rare phenotypes 

as well as phenotypes above or below in the phenotypic hierarchy compared to the candidate 

phenotypes (see Table 4 and Supplementary Table S1). In total, this resulted in 1,300 

individual phenotype prioritizations. Across each phenotypic trio, a voting system was 

implemented, assigning the most frequent decision among the expert raters as the gold 

standard.

Next, we performed a leave-one-out analysis [67] and identified a 59.85% agreement 

between our raters. This value provided a reference for the expected accuracy of similarity-

measuring algorithms. While this reflects more than 1.5 × accuracy of random agreement 

(38.46%), it still indicates a wide variability in the clinical assessment by expert reviewers 

(Supplementary Method S4).

We then assessed the similarity-measuring algorithms in various scenarios, comparing 

the conventional Resnik algorithm, phenotype-embedding using equal weight (E-HP), and 

frequency-based phenotype-embedding (FQ-HP). For the E-HP and FQ-HP algorithms, we 

also included a variation with a safety threshold (ST) that would declare ties if the distances 

between the two candidates and the reference phenotype were close (<0.06 in the cosine 

system). This safety threshold was implemented to prevent false-positive prioritizations 

based on marginal frequency differences of the candidate phenotypes and was chosen using 

a trial-and-error strategy.

We found that FQ-HP, with an overall accuracy of 68%, surpasses other similarity-

measuring algorithms in matching the experts’ gold standard (Figure 7A) and is even higher 

than the agreement level between our raters. When applying the safety threshold, we see a 

significant difference between the performance of FQ-HP and FQ-HP(ST) with an accuracy 

of 68% and 54%, respectively. These results emphasize the importance of incorporating 

estimated frequencies in phenotype embeddings. We also observed a wider confidence 

interval when using Resnik compared to the other methods, indicating its susceptibility in 

generalization.

Next, we categorized our 13 experts’ decisions into four categories based on their agreement 

level (Figure 7B, Supplementary Method S4). We examined the performance of the 

similarity-measuring algorithms on the records of each agreement level. In short, if a 

similarity-measuring method performs inaccurately even when the experts have a high-level 

agreement, it would be considered a low-quality method. We observed a frequent increasing 

pattern in the performance of all similarity measuring techniques as the agreement level 

increased which is in line with our original hypothesis. Furthermore, we found FQ-HP to be 

Daniali et al. Page 14

Artif Intell Med. Author manuscript; available in PMC 2024 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



more accurate than the other techniques, including Resnik, in the “substantial” and “high” 

agreement levels. These findings suggest that FQ-HP is more aligned with human experts’ 

decisions specially in cases with a higher-level agreement (Figure 7C).

Finally, we analyzed the efficacy of similarity-measuring algorithms in specific scenarios 

that were used in generating the expert-curated phenotypic trios (e.g., the combination of 

common and rare term frequencies as well as term hierarchies; Table 4). We sought to 

evaluate the effectiveness and significance of our proposed technique on scenarios that do 

not follow straightforward relationships based on the HPO DAG, i.e., direct hierarchical 

relationship between the reference terms and only one of their candidates. Figure 8 

demonstrates the performance of the similarity-measuring algorithms in each scenario.

We refer to the scenarios with straightforward relationships between the reference term and 

its candidate as positive controls (Table 4). We found that the conventional Resnik method 

performed best for positive controls (S22, S71, S8, S9), i.e., when only one candidate is 

in a hierarchical relationship with the reference term, providing accuracies close to expert 

assessments (Figure 8, marked with *). Also, among positive controls, Resnik performed 

better than embedding techniques in only two scenarios where the reference term was 

rare (S8 and S9). On the other hand, for scenarios where the reference term is not in 

a hierarchical relationship with the candidates (S1, S3, S4, S5), embedding methods are 

superior. These findings indicate that the accuracy of various strategies to assess phenotypic 

relatedness may depend on the relationship and frequencies of the specific terms, and Resnik 

may not be the preferred choice in challenging scenarios that do not follow straightforward 

relationships based on HPO.

Frequency-based phenotype embeddings can be used to measure patient similarity 
reliably

As discussed in the previous sections, our computationally efficient, interpretable, and 

versatile phenotype embedding technique effectively measures phenotypic similarity 

and aligns better with expert assessments, especially in challenging scenarios where 

conventional MICA-oriented techniques typically fail.

In this section we further confirm the reliability of our proposed method in a separate 

case study by evaluating its performance in measuring patient similarity. More specifically, 

we assess the phenotypic similarity of the 53 individuals with a genetic diagnosis of 

SCN1A-related disorders by employing metrics discussed in Section 2.8. We hypothesis 

that these individuals have a higher phenotypic similarity compared to a random cohort. 

The expected similarity scores for individuals with disease-causing variants in SCN1A 
(n=53) were assessed by determining their average similarity scores compared with 100 

draws of random cohorts of size 53, leading to 137,800 permutations of patient pairs. 

Figure 9 demonstrates the distribution of patient similarity scores among random draws 

presented by the average similarity score in each cohort. Note that similarity scores based 

on the embedding techniques (FQ-HP and E-HP) has a different range than Resnik since 

2Also, a tie between embedding techniques and Resnik.
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cosine similarity used in Simmax, Emb .  is bound by [−1,1] while SimResnik is bound by the 

IC .  of the rarest phenotype, which is 20.51 in our cohort. Hence, Resnik and embedding 

techniques cannot be directly compared based on reported similarity scores. In summary, 

all three methods easily identify the group of individuals with SCN1A-related disorder 

as significantly different than a random group of individuals. Our results demonstrate the 

applicability and reliability of our proposed frequency-based embedding technique, in this 

case on measuring patient similarity for a rare genetic childhood epilepsy.

4 Discussion

This study aimed to assess the properties of phenotype embedding techniques to analyze 

the Human Phenotype Ontology (HPO) terms in a more computationally efficient manner 

while accurately reflecting their complex biological and clinical relationships. We examined 

representations of HPO terms using node embeddings and compared the performance of 

embeddings with and without including HPO term frequencies derived from more than 

53 million patient notes. Finally, we assessed the degree to which phenotype embedding 

methods align with expert opinion and how these methods performed in comparison to 

conventional phenotype similarity-measuring techniques. We demonstrate that incorporating 

phenotype frequencies from a large patient corpus resulted in phenotype embeddings 

surpassing conventional techniques in calculating phenotypic similarity and aligning more 

closely with assessments by domain experts. In contrast to conventional methods such 

as Resnik, our proposed method is fast and computation-efficient and can also be used 

in many downstream tasks such as patient similarity without any recalculation for new 

patients, directly from the embedding space. In summary, our results demonstrate that 

incorporating phenotypes frequencies from a large patient corpus as a weighting mechanism 

can transfer the phenotype distributions to the embedding space and ultimately provide a 

superior representation that aligns more closely with domain experts.

Our study has five main findings. First, we used Human Phenotype Ontology (HPO) to 

analyze clinical data in our study, which has its own advantages and disadvantages. HPO 

contains more than 15,000 clinical phenotypic terms with defined semantic relationships, 

developed to standardize their representation for phenotypic analysis. In addition, HPO is 

modeled as a directed acyclic graph (DAG) in which each phenotype is presented as a node 

and is connected to its parents by “is a” relationships using directed edges. Despite the fact 

that this structure facilitates phenotypic analysis, HPO is limited to symptoms, and diseases 

and syndromes are not directly mapped to its structure. While this limitation affects the 

in-depth analysis of clinical features, incorporating more than 15,000 phenotypic terms in 

our analysis allowed us to cover a wide range of complex clinical relationships.

Second, we demonstrate that clinical information from full-text patient notes can be 

translated at scale through Natural Language Processing. In our study, we mapped the 

entirety of available full-text patient notes of a large, tertiary pediatric care network 

to Human Phenotype Ontology terms, generating the most comprehensive estimates 

for frequencies of clinical concepts in the pediatric population currently available 

(Supplementary Table S2). Given the increasing use of HPO for both common and rare 

diseases, having valid term frequencies will be essential for the development of algorithms 
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aimed to assess phenotypic overlaps, such as the assessment of autistic-like traits [68] and 

rare neurodevelopmental disorders [69].

Third, we demonstrate that phenotype embedding is a useful tool to represent the 

>15,000 HPO concepts in a lower-dimensional space while preserving existing phenotypic 

relationships. Additionally, the inclusion of observed term frequencies improves the vector 

embedding. This was demonstrated by the embedding’s ability to generate meaningful 

proximities and distances between clinical terms. When compared to randomly assigned 

term frequencies, the inclusion of term frequencies in the embedding allows for more closely 

related phenotypes to be “drawn in” and more distantly related phenotypes to be “pushed 

out.” This exemplifies how additional information incorporated in the embedding technique 

such as term frequency can provide more specificity and nuance in the connections 

between phenotypes. Future iterations including temporal components [12, 70] or inclusion 

of additional data such as medication and procedure information may further improve 

phenotype embeddings and exceed the currently available frameworks.

Fourth, we demonstrate that the phenotype embedding methodology is largely superior to 

conventional similarity-measuring techniques; however, its strengths and weaknesses are 

dependent on the specific clinical scenario. For all comparisons, frequency-based embedding 

is slightly superior to equal-weight embeddings and Resnik similarity. Additionally, we 

only see the excellence of Resnik in scenarios where the reference terms are in a 

hierarchical relationship with one of the candidates. We reason that this strong effect of 

specific scenarios reflects the inherent mechanics of conventional methods that are designed 

based on the HPO graph. For example, the Resnik algorithm cannot generate meaningful 

similarities in situations when terms are not in a direct hierarchy, which is demonstrated 

by our results for Scenarios S1 and S3-S5. In contrast, frequency-based embeddings are 

susceptible to potential errors in frequency assessments, which may be critical when rare 

references are used.

Fifth, we demonstrate the efficacy of our proposed frequency-based phenotypic 

representation in measuring phenotypic similarity between individuals. As a case study, 

we show that in addition to accurately categorizing patients with certain diagnoses, in our 

case a genetic diagnosis of SCN1A, our proposed method is more cost-efficient. More 

precisely, in conventional techniques such as Resnik minor changes in patient data, e.g., 

recording a newly observed phenotype, require additional computation to find the least 

common ancestor for all new phenotypic pairs which in worst case scenarios leads to 15,371 

times more than what embedding algorithms require (Supplementary Method S5).

Despite the large amount of data, our mapping algorithm and proposed similarity measuring 

approach have several limitations. First, we observed several phenotypes with unexpectedly 

large frequency values in our cohort; for example, Alveolar rhabdomyosarcoma 
(HP:0006779) had a propagated frequency of 27.31% while it was reported for a total 

of 987 children between 1975 and 2005 in the National Cancer Institute’s Surveillance, 

Epidemiology, and End Results (SEER) Program [71]. Given the large and diverse source of 

encounter notes available in our corpus and the multi-layer phenotype extraction process, 

we could not trace back these instances and update the extracted phenotypes in the 
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encounters and their consequent frequencies. These frequencies could potentially shift the 

biased random walks, reducing their effectiveness in exploring neighborhoods; however, 

our proposed embedding method attempts to reduce the effect of such potential artifacts in 

the data by assigning the minimum propagated frequency of two phenotypes as their edge 

weight as well as using relative weights in graph exploration.

Furthermore, like other distance-based embedding algorithms, the biased random walks 

in our method are bound within a defined walk length and tend to exploit the local 

neighborhood more rather than explore further nodes. Consequently, denser sub-graphs 

of HPO are treated differently. Potential future solutions to overcome this problem may 

involve flexible exploring criteria, using dynamic p and q hyper-parameters depending on 

the sub-graph structure to navigate both sub-structures of the HPO more evenly. Unlike 

conventional machine learning problems, we did not have ground-truth similarity values for 

the phenotype pairs to tune the hyper-parameters used in our model, a limitation imposed 

by the structure of the data assessed in this study. These limitations shed light on the 

importance of incorporating domain experts’ knowledge in tuning the model parameters and 

potentially achieving higher accuracy.

Moreover, in evaluating our proposed method against domain experts’ judgments, we 

limited ourselves to neurological phenotypes. Given the expertise of our domain experts, 

we only validated the similarity-measuring techniques for phenotypes under “Abnormality 
of the nervous system (HP:0000707)” with thirteen domain experts in epilepsy and 

neurogenetics. The agreement level among our domain experts suggests that measuring 

phenotypic similarity could be a challenging task for experts in their particular field. This is 

particularly the case when experts are asked to compare pairs of phenotypes that are distant 

and hard to compare on anatomic or functional grounds. Having access to a larger and more 

diverse pool of domain experts could help us evaluate our model more thoroughly and obtain 

insights into overcoming such challenges. Additionally, based on the unsupervised nature of 

our embedding algorithm, we expect our proposed technique to work with approximately the 

same efficacy on phenotypes related to other fields of medicine.

In summary, we demonstrate that assessing clinical similarity in large EHR-derived datasets 

using phenotype embeddings may have significant advantages in scenarios where other 

similarity-measuring techniques have difficulties. We believe incorporating information 

from patient records, such as the intra-patient co-occurring phenotypes, will improve 

phenotypic similarity-measuring techniques. Incorporating additional disease-phenotype 

information has been explored before in the form of adding additional edges to the HPO 

in embedding phenotypes, a method referred to as HPO2Vec+ [33]. Although this technique 

was found to be more successful than embedding phenotypes purely based on the HPO, 

it required expert-curated data, has been evaluated on a limited set of phenotypes and 

diseases, and is not practical for hospital-size datasets. Our goal, however, is to provide 

unsupervised methods that are more robust and generalizable to large-scale data. Given the 

increasing availability of electronic health records and phenotype extraction techniques and 

the transformative results of applying representation learning in natural language processing, 

such as BERT [72] and GPT-3 [73], our phenotype embedding algorithm has the potential 

to be used in downstream tasks such as accessing similarities between clinical trajectories, 
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identifying novel genetic etiologies. Ultimately, this will allow for providing better care 

to individuals by extracting useful information from unstructured medical records in a 

highly efficient manner. Representation learning can also be used to learn more general 

representations of clinical data, such as patient demographics, lab results, and imaging 

studies, that can be used as input to machine learning models for tasks such as risk 

prediction and prognosis estimation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic of our fault-tolerant, distributed, and scalable cTAKES pipeline using the 
Apache Spark programming model [42].
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Figure 2. Sample patient note with its extracted phenotypes using the cTAKES pipeline.
While cTAKES could correctly categorize most medical terms, it falsely detected rows 

marked with red signs with their mistaken tags marked in bold. In our customized 

query, we excluded cTAKES modifier tags that represented phenotypes identified based 

on family members or patients’ history, were negated, generic, conditional, or detected with 

uncertainty. These records are marked in orange.
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Figure 3. An illustration of the weighting mechanism on a portion of the HPO.
The thickness of an edge represents its weight. Stronger weights have a higher chance 

of being selected by the biased random walks in the sampling algorithm. The propagated 

frequency values are calculated as described in Section 2.3. The cosine similarity values 

between each phenotypic pair are shown in gray. Higher similarity values represent a higher 

degree of closeness in the embedding space.
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Figure 4. More than 53 million patient health records can be translated into phenotypes.
(A) Individual data points in the Arcus Data Repository used in our analysis (n = 

53,955,360). The X-axis shows patients’ age at the time of the encounter, and the Y-axis 

represents patients’ indices stacked and sorted by their age at the earliest encounter with 

a total of 1,504,582 individuals. (B) Histogram of the phenotypes’ propagated frequency 

available in the HPO, a total of 15,371 phenotypes. Note that the X-axis has a logarithmic 

scale, and the phenotypes with a frequency less than 10−6 were not available in any of the 

encounters (log 0 ≪ 10−6).
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Figure 5. The HPO can be represented in a lower-dimensional space where similarities and 
differences between the phenotypes are preserved.
(A) A 3D representation of all phenotypes in the embedding space using the PCA algorithm. 

The axes are based on the first three principal component vectors (PC) of the PCA 

algorithm. (B) Seven closest phenotypes to Seizure (HP:0001250) are marked in the 3D 

space. Closer phenotypes in the original space (128D) are represented with larger circles.
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Figure 6. Incorporating phenotypes frequencies in the HPO graph transfers likelihood 
distribution to embeddings.
(A) Pair-wise cosine similarity changes between a sample phenotype, Seizure 
(HP:0001250), and all other phenotypes in the HPO using the FQ-HP and E-HP embedding 

methods. Info Score captures the similarity changes between these two methods by dividing 

the similarity range using FQ-HP by the similarity range using E-HP, i.e., Y/X. (B) A 

comparison between the PDF of the Info Score of FQ-HP over E-HP (shown in green) and 

the Info Score of Random Gaussian weights (R-HP) over E-HP (shown in yellow). The PDF 

of Info Score of FQ-HP/E-HP with a smaller peak around 1 and a longer tail indicates that 

FQ-HP could generate reliable phenotype clusters in the embedding space and shows the 

importance of assigning weights that represent the actual distribution of the phenotypes.
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Figure 7. FQ-HP embeddings improve recognition of expert-curated phenotype similarities.
(A) A comparison on the overall accuracy of the similarity-measuring algorithms on 

100 expert-curated phenotypic trios. The accuracy of our method (FQ-HP) surpasses the 

other similarity-measuring techniques where black bars show 95% confidence intervals, 

and the green dashed line represents the experts’ agreement level. (B) Histogram of 

experts’ agreement level for the 100 trios. Almost half of the records belong to the fair-

level agreement category, indicating a wide variability in the clinical assessment of the 

experts and the challenging nature of such evaluations. (C) Performance of the similarity-

measuring algorithms on the records of each agreement level. While all techniques have 

almost an increasing pattern in their performance as the agreement level improves, FQ-HP 

achieves better accuracy than other techniques, including Resnik, in the substantial and high 

agreement levels.
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Figure 8. Comparison of scenario-based accuracy of the similarity-measuring algorithms.
The conventional Resnik method is more aligned with experts’ assessments only in 

two similar scenarios: where the reference term is rare and is compared with only one 

hierarchically related common candidate (S8: RCAC¬A, S9: RCAR). However, Resnik fails 

on four other scenarios where such relationships do not exist (S1: CRDRD, S3: CR¬DR¬D, 

S4: CCDCD, S5: CC¬DC¬D), two of which with 0% accuracy (S1, S4). Table 4 provides 

details outlining each scenario.
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Figure 9. Distributions of patient similarity scores, using 100 randomly chosen cohorts of size 53 
of phenotypic similarities between paired individuals (137,800 paired patient permutations).
In each distribution plot, the vertical black line indicates the median similarity score of 

random cohorts using the specified similarity metric. The vertical green line represents the 

observed value for individuals with SCN1A-related disorder.
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Table 1.

Select hyper-parameters used for the phenotype embedding methods.

Hyper-parameter Value

vector length (dimension) 128

p 1

q 0.05

number of walks 10

number of steps 5

learning rate 0.001

number of negative samples 4

batch size 1024

number of epochs 15
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Table 2.
Techniques for measuring the similarity between two vectors u and v of size d.

Similarity between the two vectors has an inverse relationship with metric value in a “decreasing” relationship, 

such as Euclidean distance.

Similarity Technique Description Relation Formula

Euclidean distance Length of the line between ends of vectors Decreasing u1 − v1
2+ u2 − v2

2+…+ ud − vd
2

Cosine similarity Cosine of the angle between vectors (θ) Increasing uTv
u . v

Dot product Cosine θ multiplied by lengths of the vectors Increasing u1v1 + u2v2 + … + udvd = u v  cos θ
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Table 3.
Closest phenotypes to the node Seizure (HP:0001250) in the embedding space using the 
Cosine Similarity System, as shown in black, versus the Euclidean Distance System, as 
shown in blue.

While the two systems share most phenotypes, there are minor differences in phenotypes’ ranks.

Cosine 
Rank

Euclidian 
Rank HPO

Closest 
Phenotypes 

Cosine.

Cosine 
Similarity

Euclidian 
Distance

Euclidian 
Rank

Cosine 
Rank HPO

Closest 
Phenotypes 
Euclidian.

Cosine 
Similarity

Euclidian 
Distance

1 1 HP:0012638

Abnormal 
nervous 
system 

physiology

0.781 3.089 1 1 HP:0012638

Abnormal 
nervous 
system 

physiology

0.781 3.089

2 32 HP:0000707

Abnormality 
of the 

nervous 
system

0.705 4.078 2 5 HP:0020219 Motor seizure 0.644 3.297

3 3 HP:0011446

Abnormality 
of higher 
mental 

function

0.694 3.530 3 3 HP:0011446

Abnormality 
of higher 
mental 

function

0.694 3.530

4 5 HP:0002493

Upper 
motor 
neuron 

dysfunction

0.648 3.629 4 7 HP:0011442
Abnormal 

central motor 
function

0.614 3.603

5 2 HP:0020219 Motor 
seizure 0.644 3.297 5 4 HP:0002493

Upper motor 
neuron 

dysfunction
0.648 3.629

6 59 HP:0100022
Abnormality 

of 
movement

0.625 4.131 6 15 HP:0020221 Clonic seizure 0.509 3.695

7 4 HP:0011442

Abnormal 
central 
motor 

function

0.614 3.603 7 20 HP:0032855

Photosensitive 
myoclonic-
tonic-clonic 

seizure

0.495 3.725

8 12 HP:0002527 Falls 0.583 3.906 8 14 HP:0004372
Reduced 

consciousness/
confusion

0.521 3.783
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Table 4.
Scenarios for generating expert-curated phenotypic trios.

Each scenario defines the relationship between the reference phenotype with its candidate phenotypes, 

represented with a three-letter acronym, where the first letter represents the reference term, and the second and 

third letters represent Candidate 1 and Candidate 2, respectively. C and R define common and rare phenotypic 

terms, respectively. Similarly, A and D define ancestor and descendant relationships with the reference term, 

respectively. The negation sign, i.e., ¬, represents the logic complement of a hierarchy relationship. For 

instance, CRDR¬D represents a common reference phenotype and two rare candidates, Candidate 1 is a 

descendent of the reference term and Candidate 2 is not a descendent term.

Scenario Abbreviation Description #(total:100)

S1 CRDRD Common1 reference with two rare candidates and both candidates as descendants 10

S2 CRDR¬D Common reference with two rare candidates and only one candidate as a descendant (positive 
control)

5

S3 CR¬DR¬D Common reference with two rare candidates and neither as a descendant 5

S4 CCDCD Common reference with one rare and one common candidate and both candidates as 
descendants

5

S5 CC¬DC¬D Common reference with two common candidates not descending from the reference 5

S6 R¬A¬AR¬A¬AR¬A¬A Rare reference with two rare candidates, none being an ancestor of either of the other two 
terms

50

S7 RCACAA Rare reference with two common candidates, both being ancestors and one candidate being 
an ancestor of the other (positive control)

5

S8 RCAC¬A Rare reference with two common candidates, one being its ancestor and the other not 
(positive control)

5

S9 RCAR Rare reference with one common candidate and one rare candidate with the common 
candidate being an ancestor of the reference (positive control)

5

S10 RC¬A¬DR¬A¬D Rare reference with one common candidate and one rare candidate and both unrelated 5

1Common indicates phenotypes with the relative propagated frequency > 20% with respect to Abnormality of the nervous system 
(HP:0000707).
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