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Abstract

Polygenic risk scores (PRSs) have emerged as promising tools for the prediction of human diseases and complex traits in disease
genome-wide association studies (GWAS). Applying PRSs to pharmacogenomics (PGx) studies has begun to show great potential for
improving patient stratification and drug response prediction. However, there are unique challenges that arise when applying PRSs to
PGx GWAS beyond those typically encountered in disease GWAS (e.g. Eurocentric or trans-ethnic bias). These challenges include: (i) the
lack of knowledge about whether PGx or disease GWAS/variants should be used in the base cohort (BC); (ii) the small sample sizes in
PGx GWAS with corresponding low power and (iii) the more complex PRS statistical modeling required for handling both prognostic
and predictive effects simultaneously. To gain insights in this landscape about the general trends, challenges and possible solutions,
we first conduct a systematic review of both PRS applications and PRS method development in PGx GWAS. To further address the
challenges, we propose (i) a novel PRS application strategy by leveraging both PGx and disease GWAS summary statistics in the BC
for PRS construction and (ii) a new Bayesian method (PRS-PGx-Bayesx) to reduce Eurocentric or cross-population PRS prediction bias.
Extensive simulations are conducted to demonstrate their advantages over existing PRS methods applied in PGx GWAS. Our systematic
review and methodology research work not only highlights current gaps and key considerations while applying PRS methods to PGx
GWAS, but also provides possible solutions for better PGx PRS applications and future research.
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INTRODUCTION
Polygenic risk scores (PRSs) have recently emerged as promis-
ing tools in disease genome-wide association studies (GWAS)
for predicting human diseases and complex traits. This is par-
ticularly important for diseases/complex traits with polygenic
genetic architectures, where many genetic variants have small
but genuine effects that do not reach the genome-wide significant
threshold [1]. A PRS combines multiple single nucleotide polymor-
phisms (SNPs) into a single aggregated score that can be used to
predict disease risk. It is an individual-level score calculated based
on the number of risk variants that a person carries, weighted
by SNP effect sizes that are derived from an independent large-
scale discovery GWAS. Thus, this score represents the total genetic
risk of a specific individual for a particular trait, which can be
used for clinical prediction or screening. To date, many PRSs have
been successfully used in disease risk prediction and population
stratification. For example, Khera et al. [2] developed a PRS for
coronary artery disease (CAD), where the PRS-high group (i.e. the
top 8.0% of the population) inherited ≥ 3-fold increased risk for
CAD. Mavaddat et al. [3] built a PRS that was optimized for pre-
dicting estrogen receptor (ER)-specific disease. Individuals with

the highest 1% of PRS had 4.37-fold (increased) risk of developing
ER-positive disease, whereas those with the lowest 1% of PRS had
0.16-fold (decreased) risks.

In contrast to disease genetic studies, pharmacogenomics (PGx)
studies explore how genetic variation influences drug responses,
including drug metabolism, efficacy and toxicity, with the ulti-
mate goal of improving and personalizing drug therapy. Such
influence is usually via alterations in a drug’s pharmacokinetics
(PK, i.e. absorption, distribution, metabolism, elimination) or via
modulation of a drug’s pharmacodynamics (PD, i.e. modifying a
drug’s target or perturbing biological pathways that alter sensitiv-
ity to the drug’s pharmacological effects) [4]. Like many complex
traits, most drug responses in PGx are extremely polygenic [5, 6,
7]. For example, Muhammad et al. showed that the six PD and
five PK phenotypes they studied were highly heritable, and the
majority of the heritability was explained by small-effect and
moderate-effect variants instead of large-effect variants, which
demonstrates the potential for using PRS approaches in the clinic
to improve prediction of PD/PK phenotypes to fulfill the promise of
precision medicine [7]. There are some emerging PRS applications
in PGx studies published in most recent years. Zhang et al. [8]
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developed a PRS from schizophrenia GWAS summary statistics
reported by the Psychiatric Genomics Consortium for schizophre-
nia risk and showed that patients with higher PRSs tended to have
less improvement with antipsychotic drug treatment. Similarly,
Damask et al. [9] found that both the absolute and relative reduc-
tion rates of major adverse cardiovascular events by alirocumab
treatment compared with placebo were greater in patients with
higher PRS in the ODYSSEY OUTCOMES Trial, where they con-
structed the PRS using disease GWAS summary statistics from
a genome-wide meta-analysis of CAD risk. In addition, Marston
et al. [10] used a PRS constructed from 27 SNPs derived from a
recent large-scale disease GWAS study (a meta-analysis GWAS for
CAD) to successfully predict benefit from Evolocumab therapy in
patients with atherosclerotic disease. On the other hand, instead
of building PRSs with disease GWAS data, a few published studies
choose to construct PRSs from drug-related data for safety or
efficacy drug response predictions. For example, Lanfear et al. [11]
built an efficacy PGx PRS from a PGx genome-wide analysis of β-
blocker × SNP interaction, and successfully predicted all-cause
mortality (β-blocker benefit) in the European population. These
examples highlight the potential benefits of developing PRSs for
(safety or efficacy) drug response predictions in PGx studies, as
well as their potential utilities in clinic.

PRS applications in PGx studies have been reviewed by several
papers with different focuses. Specifically, Johnson et al. [12] and
Cross et al. [13] reviewed 51 and 63 PRS application papers, respec-
tively, focusing on the PRSs built with variants from disease GWAS.
They included an overview of the PRS applications and success-
ful findings in different disease areas, challenges and reporting
guidelines. Siemens et al. [14] reviewed 89 papers, with a focus
on the PRSs derived from pharmacogenetic variants associated
with drug responses in either candidate gene PGx studies or PGx
GWAS. In addition, the authors also reviewed the strategies of PRS
performance evaluation and validation. Similarly, Kumuthini et al.
[15] focused on the validation of the PRSs in PGx, and the potential
impact on their translation into clinical utility. Regarding the
PRS methods developed in the disease genetics field, there are
several papers reviewing the PRS methodologies using disease
GWAS summary statistics, focusing on the genotype (main or
prognostic) effects only [16, 17, 18]. In contrast, PRSs built for PGx
studies from randomized clinical trials (RCTs) need to handle both
prognostic and predictive effects. This is because in PGx studies,
a patient’s clinical outcomes are influenced by both prognostic
and predictive factors. A prognostic biomarker provides informa-
tion about an endpoint (i.e. clinical outcome) irrespective of the
treatment type. However, a predictive biomarker is associated
with an endpoint related to the treatment type (i.e. predicting
treatment benefits). In the PRS context, the prognostic effect
measures the main genotype (G) association strength with clinical
outcome before any treatment intervention. On the other hand,
the predictive effect measures the G x T interaction association
strength with clinical outcome after treatment. While current
practice involves in directly applying disease GWAS-based PRSs to
PGx studies, Zhai et al. [19] pointed out that this approach might
not fully recover the heritability of drug response since it relied
on a stringent assumption which was barely satisfied in real PGx
data. The authors further proposed a series of PRS-PGx methods
using PGx GWAS summary statistics instead.

PRS modeling in PGx GWAS shares the same challenges as
those in disease GWAS. These challenges include trans-ethnic
bias across populations (i.e. GWAS sample size for non-European

populations is relatively lower and a PRS derived from one popu-
lation is expected to perform less well in other populations due
to differences in allele frequencies, linkage disequilibrium (LD)
patterns and effect sizes across different populations) [20, 21, 22]
and architectural diversity across multiple correlated traits [23].
Some other challenges include the lack of clear guidelines on clin-
ical interpretation of PGx polygenic models, PGx studies usually
requiring more well-defined drug response clinical endpoints, and
the lack of PRS reporting guidelines. Despite previous discussions
and summaries of these challenges (for example, in the above
review papers), possible strategies and solutions to tackling these
challenges remain unclear. Therefore, it is critical to take one
step further by proposing new PRS application strategies and
methods. To gain insights into this landscape, we first conduct a
systematic review of the current progress in terms of both the PRS
applications and statistical methods development in PGx GWAS.
We identify 90 papers published by 11 March 2022 for our PRS PGx
applications review, and summarize 23 PRS methods used in these
papers in our PRS methods review. We further analyze these sys-
tematic review results to provide insights into the status, trends
and challenges of PRS applications and method developments in
PGx GWAS and discuss potential areas for improvement.

Compared with PRS modeling in disease GWAS, PRS analysis
in PGx GWAS with drug response endpoints (efficacy or safety) is
more challenging and faces additionally unique challenges. They
include the lack of knowledge about whether to use PGx GWAS,
disease GWAS or both GWAS/variants in the base cohort (BC)
for PRS construction, the small sample sizes in PGx GWAS from
RCTs (compared to large disease cohorts) which often result in
low power for prediction or association analysis, and the more
complex statistical modeling for handling both prognostic and
predictive effects simultaneously. There is a trade-off between
choosing PGx and disease GWAS (summary statistics) data in the
BC to build PRSs. Choosing disease GWAS data, which typically has
a large sample size, usually provides large power for prognostic
effect prediction, but low power for predictive effect (i.e. genotype-
by-treatment interaction) prediction. In contrast, choosing PGx
GWAS data, which typically has a relatively small sample size,
usually provides lower power for prognostic effect prediction,
but likely larger power for predictive effect prediction since PGx
variants used for PRS construction are directly drug response
related.

In this paper, rather than choosing either PGx or disease GWAS
alone in the BC to build a PRS, we propose a new strategy to
leverage both disease and PGx GWAS summary statistics. This
approach benefits from the large sample size in disease genetic
studies and the additionally strong predictive effects in PGx stud-
ies. In addition, similar to the cross-population disease GWAS
PRS, leveraging and properly modeling trans-ethnic populations
can potentially reduce the prediction bias for cross-population
prediction in PGx GWAS. To overcome the challenge of Eurocentric
or trans-ethnic bias in PGx GWAS, we extend the PRS-PGx-Bayes
method [19] to conduct the cross-population PRS modeling with
shared shrinkage parameters among multiple populations. The
new method simultaneously handles both prognostic and pre-
dictive effects. We further perform extensive simulation studies
to compare our novel PRS methods using both internal vali-
dation with a cross-validation strategy and external validation
with an independently simulated validation dataset, as suggested
by Siemens et al. [14] and Kumuthini et al. [15]. Furthermore,
integrating multiple genetically correlated traits can potentially
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increase the effective sample size in PGx GWAS, and thus improve
the power of PRS association test, PRS prediction accuracy and
PRS-based patient stratification. To investigate the impact of com-
plex genetic architectures among multiple traits, Zhai et al. [24]
systematically reviewed and compared multiple types of multi-
trait PRS methods including regression-based methods (mtPRS-
ML and mtPRS-MR), meta−/multi-GWAS-based methods (mtPRS-
minP and mtPRS-GSEM), PCA-based method (mtPRS-PCA), and
omnibus mtPRS method (mtPRS-O) under various genetic archi-
tectures. In this paper, we briefly summarize the current status
of applying mtPRS methods to PGx GWAS and main observations
from our previous mtPRS method research work [24].

In summary, in this paper, we aim to provide an in-depth
overview of the current status of both PRS applications in PGx
GWAS and the PRS methods used in those applications, identify
the main gaps and challenges, and then propose the possible
solutions including two new PRS application strategies and meth-
ods for filling the gaps and tackling the challenges. The overall
workflow of the paper is summarized in Figure S1.

METHODS
Our review aimed to summarize the current applications of PRSs
in PGx GWAS as well as the PRS analysis methods used in the
applications. The detailed paper searching workflow is provided
in Figure S2. The study screening was conducted by two inde-
pendent reviewers (Z.S. and S.J.) to minimize selection bias. In
the ‘Identification’ step, we used the same search terms as used
by Johnson et al. [12], which mainly included two categories:
polygenic score related terms and drug response related terms.
Our paper search was based on Medline and EMBASE databases
up to 11 March 2022, separately. Non-English publications were
excluded due to resource constraints. In the ‘Pre-screening’ step,
we excluded publications by title and abstract. Publications with
abstract only, reviews, letters, notes, etc. were excluded as they
did not contain enough details about PRSs [e.g. base and target
cohorts (TC)] for our review. The remaining articles that were not
drug related and did not use qualified PRSs (e.g. not genome-wide,
not genetic variation based or unweighted PRSs) were further
excluded. In the ‘Combination’ step, we combined the papers from
Medline and EMBASE together and removed duplicate records.
In the ‘Screening’ step, records were further excluded based on
a full-text screen due to either unqualified publication types or
unqualified approaches to build PRSs. Specifically, papers that
were not drug related, not drug response PGx study related, not
constructing qualified PRSs or only working on TC via cross-
validation, were excluded. The whole workflow followed the Pre-
ferred Reporting Items for Systematic Reviews and Meta-Analysis
(PRISMA) guidelines [25] to ensure completeness of the review.

In addition to summarizing the PRS applications in PGx studies,
we also summarized the PRS analysis methods used in the 90
identified PGx PRS application papers as well as some additional
PRS methods reviewed in other methodology review papers [16,
17, 18]. Regarding the challenges of applying PRSs to PGx GWAS,
in this paper we mainly focus on three key challenges: (i) the
lack of knowledge about whether to choose PGx, disease or a
combination of both PGx and disease GWAS summary statistics
in the BC for PRS construction; (ii) the Eurocentric or trans-ethnic
bias in cross-population PRS prediction and (iii) the small sample
size, low power and more complex PRS modeling in PGx GWAS.
We propose two novel PRS strategies and methods to overcome
the challenges, which provide potential solutions for better future
PRS applications in the field.

RESULTS
Overview of main challenges of PRS applications
in PGx GWAS
Our initial search identified 834 papers from Medline and 2487
papers from EMBASE between 2013 and 2022. After pre-screening
and combining the two databases, 127 papers were left for full-
text screening. Ultimately, 90 papers were included in our sys-
tematic review (Figure S2, Table S1). Despite a steady increase in
the number of PRS application articles between 2013 and 2022
(Figure 1), the PRS analysis in PGx GWAS still faces multiple chal-
lenges, which have been extensively discussed in the published
overview papers [12–15] and briefly summarized in the previous
section. In this paper, we focus on the three aforementioned key
challenges in greater details.

Challenge 1: Lack of knowledge about whether to
choose PGx, disease or both GWAS summary
statistics in the base cohort for PRS construction
The use of PRSs in PGx requires a BC and a TC. In the BC, summary
statistics are generated to obtain risk variant effect sizes, standard
errors and p-values to inform PRS calculations; in the TC, the PRS
is developed and tested. To date, many researchers leverage GWAS
derived from large cohorts of related disease and/or complex trait
(i.e. non-disease) phenotypes in the development of polygenic
models to predict drug outcome. For example, Figure 1A and B
indicate that 74 out of 90 identified articles (∼82%) published by
2022 use BC GWAS from disease studies. These include disease
phenotypes related to the drug efficacy [8, 9, 26–68], complex trait
phenotypes related to the drug efficacy [69–81], disease pheno-
types related to the adverse drug reaction [82–91], and complex
trait phenotypes related to the adverse drug reaction [92–96].
However, our previous research showed that such disease PRS
approach cannot recover the full heritability of drug response
unless an extremely stringent assumption that every causal vari-
ant has an interaction effect proportionate to its main effect is
true [19]. More details are provided in the following section. There-
fore, 16 out of 90 papers construct the PRSs for drug response
prediction using PGx GWAS summary statistics directly instead
of using disease GWAS summary statistics since the PGx variants
are directly associated with drug response, which may provide
larger power (especially in predicting drug response through the
predictive effect of a PRS) [11, 97–111]. However, using PGx GWAS
as the BC for PRS modeling presents unique challenges due to
its typically small sample size, and the difficulty in identifying
two cohorts with uniformly treated patients. These factors can
lead to increased PRS modeling uncertainty and result in low
PRS prediction power. To date, it remains unclear whether it is
optimal to use disease GWAS summary statistics that emphasize
disease variants with only prognostic effects, PGx GWAS summary
statistics that emphasize PGx variants with both prognostic and
predictive effects, or a combination of both in the BC for PRS
construction and analysis in PGx GWAS.

Challenge 2: Eurocentric or trans-ethnic bias in
cross-population PRS prediction
Recent studies have found that PRSs exhibit reduced cross-
population prediction accuracy, particularly in non-European
populations [20, 21, 22]. Building PRSs with GWAS data from
the same non-European population may yield limited prediction
accuracy due to the typically small sample size of non-European
GWAS compared with European GWAS. This applies to PRS
applications in both disease GWAS and PGx GWAS. Conversely,
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Figure 1. Number of PRS applications included in the review over time. (A) Source types of GWAS summary statistics in BC over time. (B) Types of PGx
studies in the TC over time. (C) Ancestries of participants in BC over time. (D) Ancestries of participants in the TC over time. (E) Pattern of single−/multi-
trait in BC over time (‘Single Trait’ means a paper only uses one single trait for PRS analysis; ‘stPRS’ means a paper explores multiple traits one at a
time; and ‘mtPRS’ means a paper construct PRS using multiple traits jointly).

constructing PRSs using European GWAS with larger sample
size may offer limited improvement in prediction accuracy
due to Eurocentric or trans-ethnic bias. This bias arises from
differences in allele frequencies, LD patterns and effect sizes
across populations [20, 21, 22]. With the increasing efforts
to diversify genomic study samples, non-European genomic
resources have been expanded, leading to a rapid growth in PGx
studies leveraging multiple populations (Figure 1C and D), from 1
study in 2016 to 22 in 2021. For instance, Cearns et al. constructed a
PRS using meta summary statistics calculated from seven cohorts
with European, American, Asian and African populations [55].
To mitigate the impact of trans-ethnic bias, there is a pressing
need to develop PRS methods that can handle such trans-ethnic
data. Recent publications have introduced new methods for
trans-ethnic PRS analysis in disease genetics [112, 113], but it
is unclear whether these methods can be directly applied to PGx
studies. To date, to our knowledge, no PGx PRS methods have been
developed to address trans-ethnic drug response prediction under
PGx settings.

Challenge 3: Small sample size, low power and
more complex PRS modeling in PGx GWAS
Subjects in the PGx GWAS are usually from RCTs, where the
sample sizes are much smaller than those from large disease
cohorts. Such small sample size typically results in low power for
predicting drug responses with prognostic PRS components. There
are many strategies to increase the power of PRS analysis in PGx
GWAS. In this sense, integrating multiple traits during PGx PRS
construction provides a natural way to increase power. To date,
most PRSs are constructed using a single trait (i.e. using univariate
disease or PGx GWAS summary statistics). However, most disease
and PGx GWAS data are multivariate in nature with multiple
correlated traits or drug responses. Intuitively, leveraging infor-
mation from multiple correlated traits can potentially capture
more genetic variance, thus boosting the power of PRS analysis. In

fact, the number of published papers that explore multiple traits
increased rapidly between 2019 and 2021 from 4 to 25 (Figure 1E).
Specifically, 20 out of 25 papers analyze multiple PRSs sepa-
rately. These PRSs are constructed from multiple diseases and/or
complex traits that are potentially related to the drug response
phenotype in the TC. For example, in Fanelli et al., the authors
investigated the possible association of PRSs for bipolar disorder,
major depressive disorder, neuroticism and schizophrenia with
antidepressant non-response or non-remission in patients with
major depressive disorder [28]. The remaining papers analyzed
multiple PRSs jointly using either machine learning (ML) based
regression or multivariate regression. For example, Taylor et al.
used 10 PRSs for depression and genetically correlated traits as
predictors in an elastic net model to predict response in tertiary
care patients with resistant depression [81].

There are additional challenges to be addressed while con-
structing a multi-trait PRS in PGx GWAS compared with disease
GWAS. First, a PGx multi-trait PRS requires more complex statis-
tical modeling to handle prognostic and predictive effects simul-
taneously. In literature, very few papers explore this strategy. For
example, Lanfear et al. [11] presented a successful PRS application
example in PGx GWAS study, which built a PRS using 44 SNPs with
predictive (or treatment-by-SNP interaction) effects only. Second,
the genetic architecture is more complicated when considering
different effect correlation relationships (e.g. magnitudes and
directions) between multiple traits in the BC and the phenotype
in the TC. It remains a question whether the current multi-trait
PRS (mtPRS) approaches built for disease multi-trait PRS analysis
are still robust when applied to PGx GWAS or not.

Overview of the PRS methods applied in PGx
GWAS
A large variety of methods are available for PRS construc-
tion and analysis. They differ from each other in terms of
which variants and weights are used for constructing PRS and
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conducting PRS association analysis and/or prediction. Existing
PRS methods generally fall into one of four categories: (i) clumping
and thresholding (C + T) approaches, which shrink effect sizes of
non-significant SNPs to zero according to their p-values, and
account for LD by clumping variants at a given LD; (ii) methods
that select variants jointly using penalized regression in the
framework of ML, where the number of selected causal variants
is controlled by the penalty parameter, and the LD matrix is
intrinsic to the algorithm [114–118]; (iii) methods that account
for LD through a linear mixed effects model, and estimate effect
sizes as best linear unbiased predictions (BLUP) [119, 120, 121] and
(iv) Bayesian approaches that explicitly model causal effects and
LD to infer the posterior distribution of causal effect sizes, where
the shrinkage is controlled by the prior distributions, and the LD
matrix is integral to the algorithm [19, 112, 122–126]. Compared
with simple C + T method, genome-wide model fitting with
penalized or Bayesian regression generally better accounts for
LD and has more efficient bias-variance trade-off, thus achieving
better performance. In this paper, we summarized 25 PRS methods
(including two novel methods/strategies we propose to tackle the
challenges) using a three-level hierarchical structure (Table 1). On
the first level, we categorized the methods based on the type of BC
(i.e. using disease GWAS only, using PGx GWAS only or leveraging
both disease and PGx GWAS summary statistics). On the second
level, the methods are further categorized based on trait and
ancestry information (i.e. single-trait single-ancestry; single-trait
trans-ethnic; and multi-trait single-ancestry approaches). We
do not consider the multi-trait trans-ethnic approaches since
no such methods are currently available. On the third level,
methods are divided into the four categories we mentioned
before: C + T, ML, BLUP and Bayesian regression. More details
about the 23 existing methods including their software sources
are summarized in Table S2.

Figure 2A presents an overview of the methods used in the 90
articles identified in this study. As of March 11, 2022, 91.1% (82/90)
of the papers employed the C + T method for PRS construction,
which is simple and user-friendly but may discard informative
SNPs, potentially limiting the prediction power. A small propor-
tion of papers (8/90 = 8.9%) utilized Bayesian methods, including
PRS-CS, LDpred and LDpred2. Only two papers (2/90 = 2.2%) used
ML based approaches, and no study investigated BLUP methods.
Despite the prevalence of the C + T method in these studies,
the use of more complex Bayesian and ML algorithms has been
increasing since 2014, accounting for 39.1% and 34.8% of studies
from 2022, respectively (Figure 2B). This trend reflects a growing
interest in employing more advanced PRS modeling methods to
improve performance in both disease and PGx GWAS.

TACKLING CHALLENGE 1: LEVERAGING
BOTH PGX AND DISEASE GWAS SUMMARY
STATISTICS IN THE BASE COHORT FOR PRS
CONSTRUCTION IN PGX PRS APPLICATIONS
Using disease GWAS in the base cohort may lead
to poor drug response prediction performance
PGx PRS applications can be categorized into three types in terms
of the BC GWAS type: disease GWAS, the PGx GWAS with treat-
ment arm only, and the full PGx GWAS with two arms (treatment
and control); and two types in terms of the TC study type: the PGx
study with treatment arm only, and the PGx study with two arms.
Using disease GWAS in the BC and then applying it to PGx studies
represents the largest percentage (74/90 = 82%) of 90 identified
papers, possibly due to the wide publicly available resources of

disease GWAS summary statistics, and the difficulty in finding
PGx GWAS data with the same or similar drug response end-
points. However, as we noted before, such disease PRS approach
can barely recover the full heritability of drug response, which
is consistent with what we report in Figure 3A. Specifically, the
use of disease GWAS in the BC results in the largest failure
rate (defined as the proportion of the papers with no significant
association found between the PRS and the drug responses): 20%
(15/74); when the BC GWAS are from PGx studies, the failure
rate decreases to 6% (2/16). This is not surprising since most
papers using disease GWAS-based PRSs in PGx applications rely
on the assumption that if a variant is a significant signal for some
specific disease, then that variant is also causal for the response
of the drug targeting that disease. However, the underlying genetic
correlation between complex trait/disease risk and drug response
needs to be carefully investigated and may vary case by case.
Moreover, more studies now tend to focus on PGx studies with two
arms and perform the interaction test of differential treatment
effect between the high and low genetic risk subgroups when
stratified by the PRS. Many such successful findings have been
reported [11, 110].

Disease PRS is not able to recover the full
heritability of drug response in theory
We have previously proved that, in theory, it is difficult for a dis-
ease PRS to recover the full heritability of a drug response in PGx
GWAS [19]. Here, we briefly summarize the theoretical derivation
and the main conclusions. Consider a high-dimensional regres-
sion model where the drug response, after adjusting for the covari-
ates, is determined by three components: treatment, genotype
and genotype-by-treatment interaction. Furthermore, to capture
the correlation between prognostic and predictive effects, we
assume the two effects follow a multivariate-normal distribu-
tion. Under these assumptions, we derive the squared correlation
coefficient between a disease PRS (Sdis = ∑m

j=1Gjβj) and the drug
response (Y) for the treated subjects, denoted by cor2 (Sdis, Y). We
proved that by the Cauchy-Schwarz inequality, cor2 (Sdis, Y) ≤ h2,
where h2 denotes the underlying heritability of the drug response
studied. It directly showed that a disease PRS cannot recover the
full genetic variability of a drug response unless the equality
holds. We further proved that the equality holds if and only if
the interaction effect is proportional to the main effect for every
causal variant, which is a very stringent assumption under PGx
settings. In [19], the authors used a specific example with a real
PGx GWAS data from the IMPROVE-IT RCT [127] to calculate
cor2 (Sdis, Y) = h2 (1 − 0.54), which demonstrated that any PRSs
developed from disease GWAS explained at most 46% variability
of the LDL-C drug response. This real data example highlights the
importance of switching to using PGx GWAS/variants (like what
[19] does) or the combination of PGx and disease GWAS/variants
as the BC in the PGx PRS modeling and analysis.

Leveraging both PGx and disease GWAS in the
base cohort for improving drug response
prediction
It is worth noting that there are certain limitations when calculat-
ing PRSs using PGx GWAS summary statistics only. First, it can be
challenging to find two independent PGx GWAS data with same
or similar traits. Second, the sample size in PGx studies is usually
small, which may lead to limited prediction power. In fact, Zhai
et al. [19] showed in their simulation studies that PGx PRS methods
did not necessarily outperform disease PRS approaches in the con-
trol arm. In other words, if we only focus on the control arm of a

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad470#supplementary-data
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Figure 2. Number of PRS methods included in the review over time. (A) Number of papers stratified by four types of PRS methods (C + T, ML, BLUP and
Bayesian) applied to PGx GWAS over time. The total number of papers across different methodologies is larger than 90 since some papers explored
multiple methods. (B) Number of PRS methods developed over time, stratified by four types of PRS methods.

Figure 3. PRS application success rates. (A) Success rates under different combinations of study types between BC and TC. (B) Success rates under
different combinations of ancestries between BC and TC and (C) Success rates stratified by different types of traits. If a paper has ‘PRS success status =
Yes’, then that paper has identified a statistically significant association between the PRS and the endpoint in the TC.

PGx study, a disease PRS may still be useful compared to a PGx PRS
due to its large sample size, which provides greater power in PRS
prediction in terms of the prognostic effect component. However,
in real scenario we may be more interested in the treatment arm
or both treatment and control arms. Therefore, a compromise and
a direct alterative solution is to use both PGx GWAS data and
disease GWAS summary statistics for PRS construction in the BC

if both are available. In this section, we aim to compare different
combinations between two PRS construction strategies of using
summary statistics (either disease or PGx GWAS only or both
disease and PGx GWAS) and four PRS methods (C + T, Lassosum,
PRS-CS and PRS-PGx-Bayes). Eight approaches will be compared,
which are listed in Table 2. In this table, we mainly focus on how
to incorporate strategies of leveraging summary statistics into PRS
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Table 2: Summary of eight combinations between two PRS construction strategies of using summary statistics (either disease or PGx
GWAS only or both disease and PGx GWAS) and four PRS methods (C + T, Lassosum, PRS-CS and PRS-PGx-Bayes). Detailed descriptions
of methods can be found in Table S2

Strategies of using different summary statistics

Using either disease or PGx GWAS only Using both disease and PGx GWAS

PRS Methods C + T C + T (Disease): Train the C + T model using disease
GWAS summary statistics only from BC. After the
p-value shrinkage, the algorithm outputs prognostic
effect sizes of SNPs βG. The PRS is calculated as
PRSG = GβG. And the drug response is predicted as
E [Y] = β0 + β1T + β2PRSG + β3T × PRSG.

C + T (Disease + PGx): Train the C + T model using
disease GWAS summary statistics and PGx GWAS
summary statistics with genotype-by-treatment
interaction information, respectively, from BC. After
the p-value shrinkage, the algorithm outputs
prognostic effect sizes of SNPs βG and predictive effect
sizes of SNPs βGT from disease and PGx GWAS,
respectively. Two PRSs are calculated as PRSG = GβG

and PRSGT = GβGT. And the drug response is predicted
as E [Y] = β0 + β1T + β2PRSG + β3T × PRSGT.

Lasso-
sum

Lassosum (Disease): Similar to the above C + T method,
train the Lassosum penalized regression model using
disease GWAS summary statistics only from the BC.

Lassosum (Disease + PGx): Similar to the above C + T
method, train the Lassosum penalized regression
model using disease GWAS summary statistics and
PGx GWAS summary statistics with
genotype-by-treatment information, respectively, from
the BC.

PRS-CS PRS-CS (Disease): Similar to the above C + T method,
train the PRS-CS Bayesian regression model using disease
GWAS summary statistics only from the BC.

PRS-CS (Disease + PGx): Similar to the above C + T
method, train the PRS-CS Bayesian regression model
under disease GWAS summary statistics and PGx
GWAS summary statistics with genotype-by-treatment
information, respectively, from the BC.

PRS-
PGx-
Bayes

PRS-PGx-Bayes (PGx): Train the PRS-PGx-Bayes model
using PGx GWAS summary statistics with genotype and
genotype-by-treatment information jointly from BC.
After the global–local shrinkage, the algorithm outputs
prognostic effect sizes of SNPs βG and predictive effect
sizes of SNPs βGT. Two PRSs are calculated as PRSG = GβG

and PRSGT = GβGT. And the drug response is predicted as
E [Y] = β0 + β1T + β2PRSG + β3T × PRSGT.

PRS-PGx-Bayes (Disease + PGx): Replace the genotype
information in PGx GWAS summary statistics with
disease GWAS summary statistics and keep the
genotype-by-treatment information in PGx GWAS
summary statistics unchanged. Then train the
PRS-PGx-Bayes model under this composite summary
statistics from the BC.

methods. And the description details of the methods themselves
can be found in Table S2.

Simulation studies for evaluating the new
strategy by leveraging both PGx and disease
GWAS in the base cohort for PRS construction in
PGx GWAS
We performed extensive simulation studies to compare the per-
formance of methods that use disease GWAS summary statistics
only, PGx GWAS summary statistics only, or both. We simulated
genotype data using R package sim1000G v1.40 with different
sample sizes. To simulate prognostic βG and predictive βGT effect
sizes, we used the same spike-and-slab distribution as described
in Zhai et al. [19]. The two effects were either correlated (i.e. a
causal variant had both non-zero prognostic and non-zero pre-
dictive effects) or fully separated (i.e. a causal variant had either
non-zero prognostic or non-zero predictive effect). The prognostic
effect is either on the same scale as, dominated by, or dominating
the predictive effect. Details of the data generation process are
provided in Supplementary Method A.

Figure 4 shows the scenario where prognostic and predictive
effects are correlated, and the two effect sizes are on the same
scale. Results were assessed via internal 5-fold cross-validation
in the TC. Specifically, the whole TC was randomly split into five
folds. The tuning parameters were determined using four folds,
and the PRS was constructed and recorded in the remaining fold.
In Figure 4, we initially employed disease PRS methods (C + T,

Lassosum, PRS-CS) using disease GWAS summary statistics only
as the base. Subsequently, we incorporated additional PGx data
to check the potential improvement of disease PRS methods.
Similarly, we utilized PGx PRS method (PRS-PGx-Bayes) using PGx
GWAS summary statistics only as the base, and then added addi-
tional disease genetics data to assess the improvement. All dis-
ease PRS and PGx PRS methods showed substantial improvement
in the drug response prediction and patient stratification after
leveraging additional GWAS information compared to their coun-
terpart traditional approach using either disease or PGx GWAS
alone. For example, PRS-PGx-Bayes (Disease + PGx) generally
outperformed PRS-PGx-Bayes (PGx), especially under the higher
polygenicity scenario when the sample size of PGx GWAS data
was small. In addition, when the sample size of PGx GWAS data
was large enough (for example, n = 10 000), PRS-PGx-Bayes (PGx)
was superior to PRS-PGx-Bayes (Disease + PGx) as shown in both
Figure 4 with internal cross-validation and Figure S3 with external
validation (i.e. the optimal tuning parameter was selected using
an independently simulated validation PGx dataset with sample
size 1000 as shown in Supplementary Method A.5). One possible
explanation is that it is due to the difference in the prognostic
effect estimate between disease and PGx GWAS. The same pattern
was also observed when the proportion of causal SNPs increased
from 0.001 to 0.1, although all methods generally had lower
performance.

Sensitivity analyses results are provided in Figures S3–
S5. Specifically, in Figure S3, we repeated our comparisons

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad470#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad470#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad470#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad470#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad470#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad470#supplementary-data
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Figure 4. Methods comparison results (with internal cross-validation) among methods that use either disease GWAS summary statistics only, PGx GWAS
summary statistics only, or both. The prognostic and predictive effects were correlated, and in the same scale. Heritability was fixed at 0.3. The numbers
of the causal variants for P(causal) = 0.001, 0.01 and 0.1 were 23, 226 and 2263, respectively. The PGx GWAS summary statistics in the BC were calculated
with 1000, 5000 and 10 000 subjects; the disease GWAS summary statistics in the BC were calculated with 50 000 subjects. The tuning parameters
were selected via cross-validation in the TC. The performance was assessed in terms of (A) prediction accuracy R2, and (B) predictive p-value for the
two-sided PRS-by-treatment interaction test. Data were presented as mean values +/− standard deviations (error bars) with 10 000 replications, where
results were calculated from the TC.

using external validation, where the tuning parameters were
selected with an independent validation dataset. The same
patterns held compared to the case where internal validation
was used. Figure S4 shows the scenario where the prognostic
and predictive effect sizes were on different scales. When
the prognostic effect dominated the predictive effect, it is not
surprising that incorporating disease genetics data into the PGx
PRS approach had a much larger improvement than incorporating
PGx data into disease PRS methods. When the predictive effect
dominated the prognostic effect, PRS-PGx-Bayes (Disease +
PGx) consistently achieved the highest prediction accuracy.
Figure S5 checks the situation when the prognostic and predictive
effects were fully separated. In that setting, the disease PRS
methods using disease GWAS summary statistics alone had
the lowest R2 since they could hardly capture any variability
explained by the interaction. Thus, incorporating PGx GWAS
information greatly improved the performance of disease PRS
methods.

TACKLING CHALLENGE 2: REDUCING
EUROCENTRIC BIAS USING A NEW
TRANS-ETHNIC PGX PRS METHOD
(PRS-PGX-BAYESX)
Overview of the cross-population PRS
applications in PGx GWAS
PGx PRS applications could be classified into three categories
based on the BC ancestry: European, non-European (e.g. Asian,

African) and Multiple (which is the mixture of, in most cases,
European and TC non-European population); and three cat-
egories based on the TC ancestry: European, non-European
and Multiple. No published articles were found to build PRSs
with non-European ancestry alone in the BC unless the TC
population is also non-European (the percentage is 8/90 = 9%
in Figure 3B). On the other hand, applying a PRS built from
European ancestry to the European population in the TC (which
is referred to as ‘European + European’) remains the largest
proportion (44/90 = 49%) of 90 selected studies, which is not
surprising. In addition, Multiple + European doesn’t result in a
higher success rate (defined as the proportion of the papers
with significant associations found between the PRSs and the
drug responses) compared to European + European (9/14 = 64%
versus 36/44 = 82%). One possible explanation is that adding
non-European subjects may add more noise relative to the
amount of additional information. When the TC population is
non-European, a trans-ethnic PRS analysis method is needed
since a traditional PRS built on European population has limited
transferability across ancestry groups [20, 21, 22], and a PRS built
on non-European GWAS might yield reduced prediction accuracy
due to its small sample size. However, among the 90 articles
identified, only one paper followed this trans-ethnic PRS strategy,
and failed to find any significant association between PRSs
and the drug response. Due to the limited exploration of trans-
ethnic analysis in PGx applications, it may imply great potential
opportunities for applying cross-population analysis in future PGx
studies.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad470#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad470#supplementary-data
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A new trans-ethnic PGx PRS method
(PRS-PGx-Bayesx) for cross-population PRS
analysis in PGx GWAS
A few PRS methods have been published for trans-ethnic analysis
in disease genetics, which can be adapted to the PGx setting.
A brief description of these methods is listed below, using two
populations, EUR and EAS, as an example.

1) CT-Meta: C + T based on Meta-GWAS summary statistics,
which is calculated by aggregating two disease GWAS sum-
mary statistics from EUR and EAS together.

2) Multi-ethnic PRS [117]: PRS0 = π × PRSEUR + (1 − π)× PRSEAS,
which uses a grid to search the optimal π using cross-
validation.

3) PRS-CSx [112]: a method extended from PRS-CS method
for trans-ethnic analysis via a shared continuous shrinkage
prior across different populations.

However, to our knowledge, no method has been adapted to
trans-ethnic PGx PRS analysis yet. In this study, we propose a novel
method (PRS-PGx-Bayesx) which is an extension of the PRS-PGx-
Bayes method [19] for the cross-population PRS construction and
analysis.

Consider K high-dimensional Bayesian regression models of n
patients and m SNPs from K studies (or populations in the trans-
ethnic GWAS case):

Yk = Gkβk + (Gk × Tk) αk + εk, εk ∼ N
(
0, σ 2

k

)
, k = 1, · · · , K,

where Yk, Tk, Gk denote the drug response, the binary treatment
assignment, and the n × m genotype matrix in study k, respec-
tively. βjk and αjk are the prognostic and predictive effects of SNP
j in study k, respectively.

The regression coefficient bjk = (
βjk, αjk

)
is assumed to be ran-

dom in the PRS-PGx-Bayesx method, following a prior distribution:

(
βjk

αjk

)
∼ MVN

(
0,

σ 2
k

Nk
φMj

)
, where Mj =

[
ψj ρj

√
ψjξj

ρj
√

ψjξj ξj

]
,

φ controls the overall degree of shrinkage, while ψj and ξj control
the marker-specific degree of shrinkage. Both φ and ψj, ξj are
shared across all K studies. Further, assume the residual variance
σ 2

k follows a non-informative scale-invariant Jeffreys prior, that is,
p

(
σ 2

k

) ∝ 1/σ 2
k . As suggested by Zhai et al. [19], we propose to use the

hierarchical half-t prior [128] on the variance–covariance matrix
Mj:

Mj ∼ W−1 (
Bj, 2v + 1

)
, where Bj = 4v

(
δj 0
0 λj

)
,

δj ∼ G
(
b1, 1

)
, λj ∼ G

(
b2, 1

)
,

W−1
(
Bj, 2v + 1

)
denotes the inverse Wishart distribution with

scale matrix Bj and v degrees of freedom, and G denotes the
Gamma distribution.

Given the above prior information, we can derive posterior
distributions:

bk |Y ∼ MVN (μk, k) , where μk = Nk

σ2
k

kb̂k, andk = σ2
k

Nk

(
Dk+�−1)−1

Dk = X′
kXk/Nk =

[
cor (Gk, Gk) cor (Gk, Gk × T)

cor (Gk × T, Gk) cor (Gk × T, Gk × T)

]
,

where Xk = [Gk Gk × Tk] � =
[
� P
P �

]
, � = diag

(
ψj

)
, � = diag

(
ξj

)
,

P = diag
(
ρj

√
ψjξj

)
σ 2

k | Y ∼ iG

(
M + Nk

2
,

Nk

2

[
1 − 2b̂′

kbk + b′
k

(
Dk + �−1) bk

])
,

where iG = inverse GammaMj | (
bjk, k = 1, · · · , K

)

∼ W−1 (
Bj + Aj, 2v + K + 1

)
, where Aj =

K∑
k=1

Nk

σ2
k

[
β2

jk βjkαjk

βjkαjk α2
jk

]

δj | Mj ∼ G

⎛
⎝v + b1 + 1

2
, φ + 2v

ψj

(
1 − ρ2

j

)
⎞
⎠ ,

λj | Mj ∼ G

⎛
⎝v + b2 + 1

2
, φ + 2v

ξj

(
1 − ρ2.

j

)
⎞
⎠

It is worth noting that, as derived in Zhai et al. [19], LD ref-
erence panel of population k is required to calculate Dk, for
each k = 1, · · · , K. Detailed theoretical derivation is provided in
Supplementary Method B, and the detailed algorithm of PRS-PGx-
Bayesx method is summarized in Algorithm 1. We ran extensive
simulations to compare the proposed PRS-PGx-Bayesx method
with existing trans-ethnic PRS methods mentioned above.

Simulation studies for evaluating the proposed
trans-ethnic PGx PRS method (PRS-PGx-Bayesx)
In this section, we performed extensive simulation studies to
compare performances of multiple trans-ethnic methods with
single-ethnic methods when the TC population is either Euro-
pean (EUR) or East Asian (EAS). Simulation studies were per-
formed with simulated genotype data using sim1000G software
for both EUR and EAS. We used a vector of parameters v =
(μ1, μ2, γ1, γ2, β1, β2, α1, α2) to denote the underlying true prognos-
tic (μ, β)/predictive (γ , α) effect size in base (μ, γ )/target (β, α)
cohort of European (with index 1)/non-European (with index 2)
population. Following the simulation setup by Ruan et al. [112],
we further assumed v follows a multivariate-normal distribu-
tion with a well-defined variance–covariance matrix  (ρE, ρP, ρC),
where ρE measures the correlation between prognostic and pre-
dictive effects, ρP measures the effect correlation between Euro-
pean and non-European populations, ρC measures the effect cor-
relation between BC and TC. Details of the data generation process
are provided in Supplementary Method C.

Figure 5 shows that under our simulation setup (i.e. EUR-EAS
effect correlation ρP = 0.5), constructing PRSs using EUR alone
outperforms using EAS alone even when the TC is EAS. And using
EAS in the BC to predict EUR TC results in the smallest R2 and the
largest interaction p-value. When the TC is EUR, using EUR + EAS
in the BC has limited improvements compared to using EUR alone
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Figure 5. Methods comparisons between single-ethnic methods (using EUR or EAS alone) and trans-ethnic methods (using EUR and EAS jointly) when the
effect correlation between EUR and EAS populations ρP = 0.5. The prognostic and predictive effects were correlated, and in the same scale. Heritability
was fixed at 0.3. The numbers of the causal variants for P(causal) = 0.001, 0.01 and 0.1 were 12, 119 and 1188, respectively, for EUR population; and
were 11, 106 and 1065, respectively, for EAS population. In the BC, the disease GWAS summary statistics of EUR and EAS populations were calculated
based on 50 000 and 10 000 subjects, respectively; the PGx GWAS summary statistics of EUR and EAS populations were calculated based on 5000 and
1000 subjects, respectively. Sample sizes of EUR and EAS populations in the TC were 5000 and 1000, respectively. The tuning parameters were selected
via cross-validation in the TC. The performance was assessed in terms of (A) prediction accuracy R2, and (B) predictive p-value for the two-sided PRS-
by-treatment interaction test. Data were presented as mean values +/− standard deviations (error bars) with 10 000 replications, where results were
calculated from the TC.

due to the small sample size of EAS and the moderate correlation
between EUR and EAS. On the other hand, when the TC is EAS,
trans-ethnic analysis of EUR + EAS is superior to using EAS alone
clearly by incorporating the information of EUR population. Lastly,
PRS-PGx-Bayesx method is superior to all the other methods for
drug response prediction across different proportions of causal
variants.

For sensitivity analysis, we considered scenarios when the EUR-
EAS effect correlation is low (ρP = 0.1; Figure S6) and when the
EUR-EAS effect correlation is high (ρP = 0.9; Figure S7). When
ρP = 0.1, using EUR for the prediction of EAS and using EAS
for the prediction of EUR both retained the lowest prediction
accuracy. Furthermore, trans-ethnic predictions are not neces-
sarily superior to single-ethnic ones, since integrating EAS in
the BC to predict EUR in the TC may include noise rather than

signals, and vice versa. When ρP = 0.9, all approaches have better
performance. Both Figures S6 and S7 indicate that our proposed
novel PRS-PGx-Bayesx still outperforms other methods.

TACKLING CHALLENGE 3: USING
MULTI-TRAIT PRS METHODS TO INCREASE
POWER FOR PRS ANALYSIS IN PGX GWAS
We categorized the 90 selected papers into three categories: those
using a single trait, those exploring multiple traits one at a time,
and those building PRSs by aggregating multiple traits together.
Figure 3C indicates that the three approaches had similar success
rates of 82% (53/65), 85% (17/20) and 80% (4/5), respectively. This
is possibly due to the very small number of the multi-trait PRS
papers. With the success of leveraging information from multiple

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad470#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad470#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad470#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad470#supplementary-data
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related traits for signal detection in GWAS [129] and WES (SNP-set
analysis) [130], it is also appealing to use multiple traits to increase
the power of PRS analysis for drug response prediction and patient
stratification in PGx GWAS. Our review results in Figure 3C show
that some PGx GWAS are starting to use multi-trait PRS methods.
However, it remains unclear which methods are robust under
different genetic architectures in PGx studies.

There are a variety of multi-trait PRS analysis methods in
literature. For example, the regression-based methods [42, 71, 80,
81] fit a linear or a penalized regression model with individual
PRSs from multiple traits as predictors; the meta-GWAS-based
methods [131, 132] construct the PRSs using meta-GWAS sum-
mary statistics by aggregating individual GWAS summary statis-
tics from multiple traits; the BLUP-based method (wMT-SBLUP)
[121] combines the single-trait predictors with BLUP properties in
a weighted index calculated from genome-wide SNP heritability,
genetic correlation between traits, and expected squared corre-
lations between the phenotype and BLUP predictors; the PCA-
based method (mtPRS-PCA) [24] combines PRSs from multiple
traits with weights obtained from performing PCA on the genetic
correlation matrix, etc. In addition, a more robust method mtPRS-
O [24] combines several complimentary multi-trait PRS methods
via Cauchy Combination Test. With a variety of multi-trait PRS
analysis methods developed, there is an urgent need to systemat-
ically evaluate their robustness to different genetic architectures.
Zhai et al. [24] provided a comprehensive simulation framework
and ran extensive simulations to systematically compare most of
the multi-trait PRS methods under various genetic architectures
covering different effect directions, signal sparseness and cross-
trait correlation structures. Table S3 briefly summarizes the main
features of the existing multi-trait PRS methods in terms of their
pros, cons and performances in simulation studies from [24] and
our additional simulation analyses (the detailed results are not
shown). In terms of the PRS association test, mtPRS-O is the most
robust method that achieves optimally larger power compared
with other multi-trait methods; however, in terms of the drug
response prediction, no single method uniformly outperforms
the others across all scenarios. In summary, integrating multiple
genetically correlated traits from disease GWAS does increase
the power for PRS based drug response prediction and patient
stratification in PGx GWAS.

DISCUSSION
In this study, we systematically review 90 PRS application papers
in PGx GWAS for drug response prediction and patient stratifi-
cation. We summarize 23 PRS methodologies from these 90 PRS
application papers and three other PRS method review papers.
From this review, we show that although both PRS application and
PRS method development have progressed rapidly in PGx fields,
the PRS analysis in PGx GWAS still faces multiple challenges from
the PRS analysis method standpoint. In this paper, we mainly
dive into three key challenges: (i) the lack of the knowledge on
choosing PGx, disease or both GWAS summary statistics in the BC
for PRS construction; (ii) the Eurocentric or trans-ethnic bias in the
cross-population PRS prediction; (iii) the small sample size, low
power and more complex PRS modeling in PGx GWAS. We further
propose two new PRS analysis strategies and methods to tackle
these challenges.

For the first challenge, under PGx settings, we compare tra-
ditional disease GWAS-based methods (C + T, Lassosum, PRS-CS)
and PGx GWAS-based method (PRS-PGx-Bayes), with our proposed
novel strategy of leveraging both disease and PGx GWAS summary

statistics to construct PRS, PRS-PGx-Bayes (Disease + PGx). It is
an extension of PRS-PGx-Bayes by replacing the prognostic effect
size estimates from PGx GWAS summary statistics with the effect
size estimates from disease GWAS summary statistics, which is
simple and easy to be implemented. In the simulation studies, we
find that the combination of disease GWAS based PRS analysis
methods and additional information from PGx GWAS improves
the drug response prediction accuracy. Moreover, PRS-PGx-Bayes
(Disease + PGx) generally outperforms the other methods espe-
cially when the sample size of PGx GWAS in the BC is not large
enough. Intuitively, using PGx GWAS summary statistics allows
us to model the prognostic effect (i.e. genotype main effect) and
predictive effect (i.e. genotype-by-treatment interaction effect)
simultaneously, while including disease GWAS summary statis-
tics from disease genetics studies generally provides a much
larger sample size than PGx studies, which improves the modeling
of the prognostic effect component of a PGx PRS. For the second
challenge about the Eurocentric or trans-ethnic bias, although
there are already some PRS methods in literature from the disease
genetics field, their performance in PGx GWAS setting is unknown.
To reduce the Eurocentric or trans-ethnic prediction bias, we
propose a novel method, PRS-PGx-Bayesx, which is an extension of
PRS-PGx-Bayes for trans-ethnic analysis by updating the global–
local shrinkage parameters with cross-population information.
Specifically, we assume that the variance–covariance matrix of
prognostic and predictive effects of SNP j (Mj) is shared across all K
studies/populations, and the posterior distribution of Mj is derived
conditional on all K studies. Our simulation studies indicate that
PRS-PGx-Bayesx is superior to other methods regardless of the
correlation between European and non-European populations. For
the third challenge, we focus on reviewing the methods which
integrate multiple traits during PGx PRS construction and provide
a natural way of increasing power for PRS analysis in PGx GWAS.
In addition to the review of the applications of mtPRS methods
in PGx GWAS, we further refer to our previous research work [24]
and provide a comprehensive summary of the performance of the
existing multi-trait performance in PGx GWAS.

Our study has some limitations. First, in this review, the study
screening was conducted by two independent reviewers (Z.S.
and S.J.) to minimize selection bias. However, there is currently
no risk of bias assessment tool for PRS related reviews [133].
Therefore, some evidence may still be missing due to publication
bias (e.g. negative results are less likely to be reported) [14,
134, 135]. Second, our efforts of tackling the first challenge
demonstrate the fact that leveraging both disease and PGx GWAS
summary statistics may further improve the power of PGx PRS
analysis. However, it would be more challenging to obtain both
disease GWAS and PGx GWAS with similar (or genetic correlated)
phenotypes. In addition, it is difficult to evaluate the genetic
correlation relationship between a disease phenotype and a
relevant drug response phenotype (i.e. by calculating their genetic
correlation). Our proposed solution by replacing βG of the PGx
GWAS with βG from the disease GWAS is simple and intuitive.
However, there is a gap between the prognostic effect sizes from
disease GWAS and those from PGx GWAS. Therefore, our simple
strategy may not increase the prediction accuracy, especially
when the sample size of the PGx GWAS is large enough (we have
demonstrated this point in the simulation results summarized in
Figure 4). In theory, more complicated models can be constructed
for further increasing the PRS prediction performance. However,
they may face additional barriers in clinical interpretation and
implementation. In addition, the PRS-PGx-Bayesx method we
develop for tackling the second challenge is a Bayesian based

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad470#supplementary-data
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method, which requires a relatively longer computational time
(as shown in Figure S8). Therefore, it is recommended to perform
PRS-PGx-Bayesx method by LD blocks [19, 124, 136] under the
high performance computing or parallel computing environment.
Besides, PRS-PGx-Bayesx is an extension from PRS-PGx-Bayes [19]
for cross-population analysis, and it shares the same challenges
of the PRS-PGx-Bayes method. For example, PRS-PGx-Bayesx uses
one of the most popular continuous shrinkage priors, the global–
local scale mixtures of normals (i.e. the Horseshoe prior), for effect
size shrinkage. There are other candidate priors (e.g. the spike-
and-slab prior and the Normal-Gamma shrinkage prior), and the
currently existing Bayesian methods do not have a systematic way
to determine the optimal prior. Third, we focus our study on the
three main challenges in current PRS analyses under PGx settings.
Other challenges mentioned before (e.g. the lack of guidance in
clinical interpretation of PGx polygenic models) are beyond the
scope of this paper, but have been discussed in other PRS PGx
review papers [12–15]. Fourth, phenotypic characterization also
presents a unique challenge within pharmacogenomic research
as many drug outcomes are difficult to measure quantitatively
[14]. Discrepant phenotyping may lead to different polygenic
models being constructed depending on the definition of the drug
outcome since they will result in different effective sample sizes
and power for PRS analyses and predictions. Finally, with the rapid
development of PRS applications and methodologies as we show
in this paper, more efforts are needed to accelerate the PGx PRS
application with clinical utilities. Further research should now
aim at comparing the drug response prediction accuracy with
and without the use of PRSs to demonstrate the benefit of PRSs
in PGx applications.

As this field of research continues to grow, we believe that
there are many promising applications for the use of PRSs in
the context of PGx and precision medicine to further improve
treatment outcomes. Our efforts of reviewing the current progress
of PRS applications and methods in PGx GWAS, identifying the
current main challenges and proposing new analysis strategies
and methods to further overcome them in PGx PRS applications
help move a step forward in the field and may accelerate the
translation of PRSs to clinical practice.

Key Points

• The application of PRSs in PGx GWAS has begun to show
great potentials for improving patient stratification and
drug response prediction. However, applying PRSs to PGx
GWAS faces multiple challenges including (i) the lack of
knowledge about whether PGx, disease or both GWAS/-
variants should be used in the BC; (ii) the Eurocentric or
trans-ethnic bias; (iii) small sample sizes in PGx GWAS
with low power and (iv) the more complex PRS modeling
while handling both prognostic and predictive effects
simultaneously, etc.

• We conduct a systematic review of current progress in
both PRS applications and PRS method developments
in PGx GWAS to gain insights about the general trends,
challenges and possible solutions.

• We further propose (i) a novel PRS application strategy
by leveraging both PGx and disease GWAS summary
statistics in the BC for PRS construction in PGx PRS
applications and (ii) a new Bayesian method (PRS-PGx-
Bayesx) to reduce Eurocentric or across-population PRS
prediction bias. Our extensive simulations demonstrate

their advantages over existing PRS methods applied in
PGx GWAS.

• Our systematic review and methodology research work
in this paper not only highlights current gaps and
key considerations while applying PRS methods to PGx
GWAS, but also provides possible solutions for better PGx
PRS applications and future research.
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