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ABSTRACT Azithromycin, a 15-membered ring macrolide, is among the recommended 
antimicrobials for treating invasive salmonellosis in humans. It is not approved for use 
in veterinary medicine. We analyzed the U.S. National Antimicrobial Resistance Monitor­
ing System (NARMS) culture collections (~40,700) between 2011 and 2021 from food 
animals at slaughter and processing and retail meats, and identified 31 azithromycin-
resistant Salmonella spp. with the first occurrence in 2015. These isolates belonged to 
12 Salmonella serovars and possessed one or more macrolide resistance determinants: 
erm(42), mef(C), mph(A), mph(E), mph(G), and msr(E) or a point mutation (acrB_R717L), of 
which mph(A) was dominant (61.3%). Compared with azithromycin-susceptible controls, 
these determinants accounted for up to 256-fold MIC increases against azithromy­
cin with MIC50 and MIC90 increased by 32- and 8-fold, respectively. We report the 
first detection of an mph(G)-mef(C)-mph(E)-msr(E)-containing Salmonella Agona isolate 
with very high-level azithromycin resistance (1,024 µg/mL) and the first detection of 
acrB_R717L accounting for azithromycin resistance in nontyphoidal Salmonella serovars 
in the United States. Plasmids of diverse replicon types were identified, with 86.2% 
carrying multidrug resistance including azithromycin and ceftriaxone, or decreased 
susceptibility to ciprofloxacin. This report also highlights an emerging mph(A)-contain­
ing (on an IncR plasmid) Salmonella Newport clone of cattle/beef origin with high-
level azithromycin resistance (128 µg/mL) and decreased susceptibility to ciprofloxacin 
(0.25 µg/mL). Further work is needed to better understand the drivers of emerging 
azithromycin resistance in nontyphoidal Salmonella associated with food animal sources.

IMPORTANCE Macrolides of different ring sizes are critically important antimicrobials for 
human medicine and veterinary medicine, though the widely used 15-membered ring 
azithromycin in humans is not approved for use in veterinary medicine. We document 
here the emergence of azithromycin-resistant Salmonella among the NARMS culture 
collections between 2011 and 2021 in food animals and retail meats, some with 
co-resistance to ceftriaxone or decreased susceptibility to ciprofloxacin. We also provide 
insights into the underlying genetic mechanisms and genomic contexts, including the 
first report of a novel combination of azithromycin resistance determinants and the 
characterization of multidrug-resistant plasmids. Further, we highlight the emergence of 
a multidrug-resistant Salmonella Newport clone in food animals (mainly cattle) with both 
azithromycin resistance and decreased susceptibility to ciprofloxacin. These findings 
contribute to a better understating of azithromycin resistance mechanisms in Salmonella 
and warrant further investigations on the drivers behind the emergence of resistant 
clones.
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N ontyphoidal Salmonella is a leading cause of foodborne diarrheal diseases 
worldwide (1). In the United States, an estimated 1.35 million Salmonella infec­

tions occur annually, resulting in an estimated 26,500 hospitalizations, 420 deaths, 
and $400 million in direct medical costs (2). Though usually self-limiting, antimicrobial 
therapy is necessary for extraintestinal Salmonella infections (1). Antibiotics such as 
ciprofloxacin (a fluoroquinolone drug), azithromycin (a 15-membered ring macrolide), 
and ceftriaxone (a third-generation cephalosporin) are sometimes used to manage 
severe salmonellosis (2). Resistant Salmonella infections can be more severe especially 
when resistance genes are present on plasmids bearing additional virulence mecha­
nisms, leading to higher hospitalization rates and even deaths (2).

The use of azithromycin in treating salmonellosis is an exception to general macro­
lide indications, as membrane permeability barriers in Enterobacterales cause intrinsic 
resistance to most macrolides (3). Azithromycin, the first semisynthetic, 15-membered 
ring macrolide, is an azalide derived from the best known 14-membered erythro­
mycin (4). Due to its favorable permeability, low toxicity, and broad antimicrobial 
activity, azithromycin is now one of the most frequently prescribed antibiotics for 
various Gram-negative infections in humans, including campylobacteriosis, salmonello­
sis, shigellosis, and traveler’s diarrhea (5–7). It is not approved for use in veterinary 
medicine including food animals. Historically, resistance to azithromycin has been rare 
in Salmonella (8). Mechanisms of resistance, which primarily include target alteration 
by mutations (at 23S rRNA position A2058 or A2059) or methylations (encoded by erm 
genes), drug modification by esterases (encoded by ere genes) or phosphotransferases 
(encoded by mph genes), and reduced drug concentration by efflux pumps (such as 
those encoded by mef genes), are not yet fully understood (9).

Established in 1996, the U.S. National Antimicrobial Resistance Monitoring System 
(NARMS) collects data on antimicrobial resistance (AMR) in enteric bacteria from humans, 
animals, and raw retail meats (10). Salmonella is a major pathogen tracked by NARMS, 
and azithromycin has been incorporated into the NARMS Gram-negative antimicrobial 
susceptibility testing (AST) plate since 2011 (10). As there are no Clinical and Laboratory 
Standards Institute (CLSI)-defined azithromycin breakpoint for nontyphoidal Salmonella, 
NARMS has established an interpretive standard for azithromycin resistance monitoring 
in Salmonella based on CLSI’s breakpoint for Salmonella Typhi (3). For routine geno­
typic AMR prediction in Salmonella, whole-genome sequencing (WGS) has been fully 
incorporated into the NARMS program (11), and long-read sequencing technologies, 
such as PacBio, have been used for further in-depth genomic analysis (12, 13). Out of 
approximately 34,200 and 6,500 Salmonella isolates NARMS recovered from food animals 
and retail meats between 2011 and 2021, respectively, we selected 31 azithromycin-
resistant isolates for this study. We also included 14 azithromycin-susceptible isolates 
as controls: some possessed potential azithromycin resistance determinants; some had 
borderline MIC values for azithromycin; others were initially found to be azithromycin 
resistant but upon retesting were determined to be actually susceptible.

This study aimed to document the emergence of azithromycin resistance in 
NARMS Salmonella isolates from food animals and retail meats and elucidate the 
genetic determinants, predominantly on multidrug-resistant (MDR) plasmids, that 
were responsible for azithromycin resistance. For this work, we conducted AST using 
agar dilution with expanded azithromycin concentrations, performed short-read and 
long-read sequencing to identify AMR genes and their genomic contexts (surrounded by 
class 1 integrons and insertion sequence elements), and analyzed emerging azithromy­
cin-resistant Salmonella clones using data available at the National Center for Biotechnol­
ogy Information (NCBI).
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RESULTS

Metadata summary

Table 1 shows key metadata for all 45 Salmonella isolates examined in this study. The 31 
azithromycin-resistant Salmonella represented 12 serovars (Agona, n = 2; Anatum, n = 1; 
Bredeney, n = 1; Derby, n = 1; I 4,[5],12:i:-, n = 8, Mbandaka, n = 1; Meleagridis, n = 1; 
Newport, n = 11; Ohio, n = 1; Schwarzengrund, n = 2; Senftenberg, n = 1; and Typhimu­
rium, n = 1), of which Newport and I 4,[5],12:i:- were predominant. Each serovar had 
one unique multilocus sequence typing (MLST) sequence type (ST) except I 4,[5],12:i:-, 
which had three STs. Of these, two (ST34 and ST3224) differed by a single sucA allele, 
and the third previously uncharacterized ST differed from ST34 by another single allele 
purE. Most isolates (n = 28) were recovered from food animals at slaughter [13 cattle 
(8 products, 4 cecal, and 1 lymph node), 11 swine (9 cecal and 2 products), 2 chicken 
(products), 1 sheep (cecal), and 1 turkey (product)], and 3 from retail meats (2 pork chops 
and 1 ground turkey). The isolation years ranged from 2015 to 2021 (no azithromycin 
resistance was detected from 2011 to 2014) with all Salmonella Newport and most (75%) 
Salmonella I 4,[5],12:i:- detected from 2018 to 2021. The isolation locations spanned 18 
U.S. states, which was led by Texas (n = 6).

MIC distributions by azithromycin resistance determinants

Table 2 shows MIC distributions of the 31 azithromycin-resistant Salmonella (test 
group) and 14 susceptible ones (control group), and in subgroups possessing different 
azithromycin resistance determinant profiles. For isolates in the test group, MICs ranged 
from 32 to 1,024 μg/mL with MIC50 and MIC90 both at 128 µg/mL. Control group 
isolates had much lower MICs with MIC50 and MIC90 at 4 and 16 µg/mL, respectively. 
This translates to up to 256-fold MIC increases between azithromycin-susceptible and 
resistant ones.

Six azithromycin resistance determinant profiles were identified, namely, mph(A) 
alone (n = 18), mph(E)-msr(E) (n = 6), erm(42) (n = 3), acrB_R717L (n = 2), mph(A)-
mph(E)-msr(E) (n = 1), and mph(G)-mef(C)-mph(E)-msr(E) (n = 1). The mph(A), mph(E), and 
mph(G) genes code for macrolide 2′-phosphotransferases and erm(42) encodes 23S rRNA 
methyltransferase, whereas others are efflux pump related: mef(C) in the MFS family, 
msr(E) in the ABC family, and acrB (R717L mutation) in the RND family (9, 14). The 
highest azithromycin MIC (1,024 µg/mL) was observed in a Salmonella Agona isolate, 
18IA01PC08-S2 [Center for Veterinary Medicine (CVM) N18S0017], with the four-gene 
combination, whereas most mph(A)-containing isolates had a high MIC of 128 µg/mL 
(Table 2).

Three Salmonella controls harbored ere(A), mef(B), or mph(A) but were susceptible 
to azithromycin. Genomic analysis showed that the ere(A) gene in S. I 4,[5],12:i:- isolate 
20MO07PC10-S1 (CVM N20S0154) was truncated (missing the first 62 amino acids), 
whereas the promoter region of mph(A) in S. Typhimurium isolate Food Safety and 
Inspection Service (FSIS)12032448 was also truncated by 24 bp. Both the mef(B) gene 
and its promoter in S. Johannesburg isolate 19MN02PC03 (CVM N19S0223) remained 
intact. Eleven other Salmonella controls were initially selected based on their phenotypic 
resistance to azithromycin or carrying potential macrolide resistance genes. AST and 
WGS performed at CVM showed they differed from the original designations. This was 
due to the loss of plasmids containing mph(A) or ere(A), or AST test variations for 
borderline isolates (azithromycin MICs around 16 µg/mL). For three isolates in the latter 
group, no mutations in the 23S rRNA gene were found.

Co-resistance to ceftriaxone and/or with decreased susceptibility to cipro­
floxacin

As shown in Table 1, among the 31 azithromycin-resistant Salmonella isolates, 4 
(1 S. Agona, 1 S. Mbandaka, and 2 S. I 4,[5],12:i:-) were co-resistant to ceftriaxone 
(MIC ≥4 µg/mL) and 16 (1 S. Bredeney, 4 S. I 4,[5],12:i:-, 10 S. Newport, and 1 S. Ohio) with 
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decreased susceptibility to ciprofloxacin (MIC ≥0.125 µg/mL). One S. I 4,[5],12:i:- isolate 
FSIS11809860 was resistant to both azithromycin (MIC = 64 µg/mL) and ceftriaxone (MIC 
= 16 µg/mL) and also with decreased susceptibility to ciprofloxacin (MIC = 1 µg/mL).

The blaCMY-2 gene (three on IncC plasmids and one on a IncP6 plasmid) accounted 
for ceftriaxone resistance among the four isolates, whereas various qnr genes (qnrA1, 
qnrB6, and qnrB19), carried on diverse plasmid replicon types [Col440I/Col(pHAD28), 
IncC, IncFIB(K), IncHI2/IncHI2A, IncHI1B(R27)/IncHI1A/IncFIA(HI1), IncR, and IncY], were 
identified among 15 out of 16 isolates with decreased susceptibility to ciprofloxacin. The 
single isolate without qnr genes, S. I 4,[5],12:i:- FSIS11922707, possessed a chromosomal 
mutation (gyrA_D87N). Another isolate, S. Bredeney FSIS1702037, harbored both qnrB 
[on a Col440I/Col(pHAD28) helper plasmid] and a chromosomal mutation, gyrA_D87G, 
with the highest ciprofloxacin MIC of 4 µg/mL. This isolate also carried acrB_R717L 
mutation which accounted for its azithromycin resistance phenotype (64 µg/mL).

Azithromycin-resistant plasmids

All azithromycin resistance determinants were mapped to plasmids except for the 
acrB_R717L mutation in two isolates. The 29 closed plasmids belonged to various 
incompatibility groups (IncR, n = 11; IncC, n = 3; IncHI2/IncHI2A, n = 3; IncQ1, n 
= 3; others, n = 9), with 8 containing 2 or more replicon types (Table 3). The sizes 
ranged from 10,966 bp for an IncQ1 plasmid to 326,166 bp for an IncHI1B(pNDM-CIT)/
IncHI1A(NDM-CIT) plasmid. All were MDR (resistant to ≥3 drug classes) except for three 
IncQ1 plasmids carrying erm(42) only and one IncP6 plasmid harboring mph(E)-msr(E). All 
but six plasmids contained the biocide resistance gene qacEdelta1 (one to three copies), 
and one also carried qacG2. Twelve plasmids contained heavy metal resistance genes, 
with as many as 18 genes resistant to four heavy metals in one isolate.

Figure 1A shows the genomic contexts among 20 mph(A)-containing plasmids from 
food animal sources, 11 of which were S. Newport IncR plasmids. Not surprisingly, mobile 
genetic elements such as class 1 integrons and insertion sequence (IS) elements were 
frequently observed. Nine out of the 20 mph(A)-containing plasmids carried the class 
1 integron integrase gene intI1, 8 of which had a class 1 integron proximal to mph(A)-
containing MDR, biocide, and heavy metal resistance genes, and various IS elements. A 
BLAST query of pFSIS12106020 (S. Newport, IncR) as a representative mph(A)-containing 
plasmid revealed multiple matches with Escherichia coli plasmids, including CP104124 
and CP043753. Of the 4 plasmids that contained the complete mph(A) cluster [IS26-
mph(A)-mrx-mphR-IS6100], 1 was from S. Agona (pFSIS21821150) and 3 others were from 
S. Newport (pFSIS12106020, pFSIS31903059-1, and pFSIS32104969).

Figure 1B shows the genetic environments for 8 plasmids harboring mph(E)-msr(E); all 
except 1 (pN18S0017; Agona) were from Salmonella serovar I 4,[5],12:i:-. Again, IS 
elements were frequently observed. In 4 plasmids (pN17S1465-1, pFSIS11920112-1, 
pFSIS11922707-1, and pFSIS11809860-1), mph(E)-msr(E) was located between IS15 and 
ISce29 elements, downstream from a class 1 integron. On pFSIS31901558-2, mph(E)-
msr(E) was also located between IS15 and ISce29 elements but was not proximal to a 
class 1 integron. On pFSIS21925668-1, mph(A)-mph(E)-msr(E) was downstream of an IS15 
element. The gene cassette mph(G)-mef(C)-mph(E)-msr(E) was upstream of ISVsa3 on 
pN18S0017, while mph(E)-msr(E) alone was upstream of ISVsa3 on pF18S030-2.

Similar genetic backgrounds were found among three erm(42)-containing plasmids 
from different Salmonella serovars recovered from food animals (Fig. 1C). All were small 
IncQ1 plasmids with the erm(42) gene upstream from an ISVa3 element. On pF18S049, 
this gene was immediately downstream of another IS element, ISVch6. The presence of 
these IS elements again suggests the mobility of this resistance gene.

Figure 2A through D depicts circular structures of 4 plasmids harboring mph(A), 
mph(E)-msr(E), mph(A)-mph(E)-msr(E), and mph(G)-mef(C)-mph(E)-msr(E), respectively. 
These MDR plasmids carried genes conferring resistance to five to seven drug classes, 
including beta-lactams or quinolones, as well as biocides and heavy metals. Specifically, 
the S. Agona IncHI2 plasmid (pFSIS21821150, Fig. 2A) harbored AMR genes to five drug 
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erm(42)-containing plasmids (C).
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classes, including beta-lactams (blaTEM-1), qacEdelta1, eighteen heavy metal resistance 
genes, and intI. The S. I 4,[5],12:i:- IncFIB(K) plasmid (pFSIS21925668-1, Fig. 2C) contained 
AMR genes to seven drug classes, including fluoroquinolones [aac(6′)-Ib-cr5 and qnrB6], 
two copies of qacEdelta1, and intI. The 2 IncC plasmids, from S. I 4,[5],12:i:- 
(pFSIS11809860-1; Fig. 2B) and S. Agona (pN18S0017, Fig. 2D), both carried blaCMY-2 
conferring resistance to third-generation cephalosporins, seven mercury resistance 
genes, and intI. Notably, the S. I 4,[5],12:i:- isolate FSIS11809860 also carried qnrB19 on a 
small plasmid (not shown), conferring decreased susceptibility to ciprofloxacin.

Emerging MDR S. Newport and S. I 4,[5],12:i:- clones of cattle and swine 
origins, respectively

Of the 11 azithromycin-resistant S. Newport isolates, 10 were from cattle and 1 from 
sheep. Ten harbored MDR IncR plasmids (a representative one pFSIS12106020 shown in 
Fig. 3) that carried AMR genes for seven drug classes, conferring resistance to aminogly­
cosides (streptomycin), beta-lactams (ampicillin), folate pathway inhibitors (sulfisoxazole 
and trimethoprim), macrolides (azithromycin), phenicols (chloramphenicol), quinolones 
(decreased susceptibility to ciprofloxacin), and tetracyclines (tetracycline). These S. 
Newport isolates were found in a large NCBI single nucleotide polymorphism (SNP) 
cluster PDS000007781.898 [n = 3,060; 94% clinical and 86.4% carrying mph(A)]. Clinical 
isolates were from the United States (n = 2,398), United Kingdom (n = 82), Mexico (n = 
72), Canada (n = 15), and Chile (n = 5). Among 160 environmental isolates, 82 were from 
the United States; 72 were from Mexico; and 5 were from Chile. All but 14 U.S. isolates 

FIG 2 Structures of 4 MDR plasmids harboring mph(A) [pFSIS21821150 (A)], mph(E)-msr(E) [pFSIS11809860-1 (B)], mph(A)-mph(E)-msr(E) [pFSIS21925668-1 

(C)], and mph(G)-mef(C)-mph(E)-msr(E) [pN18S0017 (D)], respectively.
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were from beef sources (82.9%). Isolates from Mexico were mainly from river/canal/pond 
(68.1%) and beef (27.8%), whereas all five Chilean isolates were from river samples. 
Except for 75 isolates recovered from 2016 to 2017, the remaining 2,985 isolates in this 
SNP cluster were from 2018 onward (15).

All 8 azithromycin-resistant S. I 4,[5],12:i:- isolates were of swine origin and carried 
MDR plasmids of six incompatibility groups [IncC and IncFIB(K) plasmids shown in Fig. 2B 
and C, respectively]. Five isolates were found in a large NCBI SNP cluster PDS000159488.2 
(n = 13,464; 78% clinical and 1.9% carrying various azithromycin resistance genes). 
The majority (66.3%; 1,465 out of 2,211) of environmental isolates in the cluster were 
from swine/pork sources. Both clinical and environmental isolates spanned globally and 
temporally with the earliest isolation in 2001 (15).

DISCUSSION

Both World Health Organization and U.S. Food and Drug Administration (FDA) have 
classified macrolides as critically important antimicrobials for human medicine, along 
with third-generation cephalosporins and quinolones/fluoroquinolones (16, 17). All three 
drug classes are also considered critically important for veterinary medicine, though 
the widely used 15-membered ring macrolide azithromycin in humans is not approved 
for use in veterinary medicine (18). We report here the detection of Salmonella sero­
vars in food animals and retail meats with co-resistance to ceftriaxone (a third-genera­
tion cephalosporin) or decreased susceptibility to ciprofloxacin (a fluoroquinolone) and 
provide insights into the underlying genetic mechanisms and genomic contexts on MDR 
plasmids. Further, the report highlights the emergence of an MDR S. Newport clone in 
food animals (mainly cattle, also sheep) in the United States with azithromycin resistance 
and decreased susceptibility to ciprofloxacin.

Though NARMS food animal and retail meat arms started routine azithromycin AST 
for Salmonella in 2011, occurrence of resistance was first detected in 2015 in an S. Derby 
isolate from ground turkey that had the acrB_R717L mutation (Table 1). During 2016, the 

FIG 3 The structure of a representative MDR IncR plasmid (pFSIS12106020) from the emerging Salmonella Newport clone of cattle/beef origin.
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S. I 4,[5],12:i:- clone with mph(E)-msr(E) was first detected, in addition to one erm(42)-con­
taining Salmonella Meleagridis and two mph(A)-containing Salmonella Schwarzengrund 
isolates. In 2018, we detected the highly resistant S. Agona isolate harboring mph(G)-
mef(C)-mph(E)-msr(E) and additional serovars (Agona, Mbandaka, Newport, and Ohio) 
containing mph(A). This study clearly documents the sequential detection of azithromy­
cin resistance in Salmonella, including the S. Newport clone of cattle/beef origin in 2018. 
This trend can also be observed in the real-time display of NARMS monitoring data 
accessible through the NARMS Now dashboard online (19).

As noted earlier, NARMS monitoring of azithromycin resistance in nontyphoidal 
Salmonella was based on the CLSI’s breakpoint (≥32 µg/mL) for Salmonella Typhi. Our 
study (Table 2) and others (unpublished data) provided further evidence that Salmonella 
MICs to azithromycin do not differ among serovars. This breakpoint also agrees with the 
European Committee on Antimicrobial Susceptibility Testing’s epidemiological cut-off 
value, which distinguishes Salmonella likely resistant to azithromycin from a wild-type 
susceptible population (20).

The predominance of mph(A) in our study isolates corroborates with numerous 
reports on azithromycin resistance mechanisms in Enterobacterales (9, 21–23). Four S. 
Newport isolates (FSIS21924576, FSIS12033266, FSIS12035959, and FSIS22106147) have 
lost the mph(A)-containing plasmids [searching up these isolates in NCBI pathogen 
detection isolates browser (15) still shows the presence of this gene as those reflect 
original testing results], suggesting plasmid instability/mobility. The finding of one 
mph(A)-harboring Salmonella Typhimurium isolate with a truncated promoter region 
is interesting, suggesting a new mechanism accounting for the lack of azithromycin 
resistance phenotype in Salmonella harboring mph(A). A recent in-depth characteriza­
tion of two Salmonella conjugative plasmids showed the complete genetic makeup of 
the mph(A) cluster [IS26-mph(A)-mrx-mphR-IS6100], and the deletion of mphR restored 
azithromycin susceptibility (24). Four study isolates (three S. Newport and one S. 
Agona) had the complete mph(A) cluster and adjacent class 1 integron, suggesting the 
transferability of this gene cluster.

The mph(E) gene was co-located with msr(E) among all study isolates, supporting 
previous reports that they are part of a common operon in Gram-negative bacteria of 
different origins, including livestock (9, 25, 26). These two genes are often found on 
plasmids flanked by IS26 sequences associated with Tn1548::armA transposon, which 
facilitates the spread (25, 26). Agreeably, armA was found in five (out of eight) S. I 
4,[5],12:i:- containing mph(E)-msr(E). Further, we detected one S. I 4,[5],12:i:- isolate from 
swine containing mph(E)-msr(E) with adjacent mph(A) on an IncFIB(K) plasmid and one 
S. Agona isolate harboring the mph(G)-mef(C)-mph(E)-msr(E) cluster on an IncC plasmid. 
The MIC to azithromycin in the latter isolate was eightfold higher than those harboring 
mph(A) alone. A recent study reported the first detection of Shiga toxin-producing E. 
coli in France carrying plasmid-borne mef(C)-mph(G) (27). Another report showed that 
mef(C)-mph(G) was carried on various vectors including plasmids and integrative and 
conjugative elements (ICEs) among marine and wastewater bacteria in Asian countries 
(28), and yet another study reported the occurrence of mef(C)-mph(G) in bacteria from 
the aquatic environment (29). The latter study also showed that mef(C) alone did not 
influence azithromycin susceptibility of E. coli, but mph(G) alone did, with more dramatic 
increases when both were introduced, suggesting a synergistic effect (29). To the best 
of our knowledge, ours is the first report on mph(G)-mef(C)-mph(E)-msr(E)-containing 
Salmonella with high-level azithromycin resistance.

The contribution of erm(42) to azithromycin resistance in Salmonella has been 
confirmed recently by direct cloning using an IncFIB/IncHI1B plasmid from Klebsiella 
pneumoniae (30). This gene has been detected earlier on a type 2 IncA/C2 plasmid 
from two Salmonella serovars (Ohio and Senftenberg) from swine in Australia (31). 
Two very recent studies in Taiwan reported an erm(42)-carrying ICE in 26.4% of MDR 
Salmonella Albany from human salmonellosis (32) as well as in Salmonella Enteritidis 
and S. Typhimurium IS26 composite transposons in the chromosomes (33). To our best 
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knowledge, the genetic context of the three Salmonella serovars containing erm(42) 
reported in this study (on IncQ plasmids) is novel. Mutation in the RND-type transporter 
gene (acrB_R717L/Q), which has been reported mostly in S. Typhi and S. Paratyphi A, 
has been confirmed recently to confer azithromycin resistance in E. coli by cloning (34, 
35). The first Arg717 substitution was predicted to have emerged around 2010 with 
travel-related R717Q mutant found in the United Kingdom (36). To our best knowledge, 
this is the first report of acrB_R717L in nontyphoidal Salmonella in the United States.

Whether, and to what degree, the wide use of other 15-membered ring macrolides 
such as gamithromycin and tulathromycin, and 14-membered or 16-membered ring 
macrolides in veterinary medicine (specifically food animals) selects for resistance or 
confers cross-resistance to macrolides used in human medicine, such as azithromycin, 
remains largely unknown. As Salmonella is intrinsically resistant to 14- and 16-membered 
ring macrolides, further cloning studies are needed to better evaluate the contribution of 
azithromycin resistance determinants such as those identified in this study to cross-
resistance to those macrolides.

In our study, all azithromycin resistance genes were carried on plasmids, with 86.2% 
being MDR. This is not surprising owing to the significant role plasmids play in the 
evolution and acquisition of AMR genes in Salmonella (12). The finding of an S. I 
4,[5],12:i:- isolate resistant to macrolides, third-generation cephalosporins, and with 
decreased susceptibility to fluoroquinolones, and an emerging MDR S. Newport clone 
of cattle origin (also sheep) resistant to macrolides with decreased susceptibility to 
fluoroquinolones is concerning. This clone has been involved in a 2018–2019 outbreak 
linked to beef in the United States and soft cheese obtained in Mexico (37). Notably, 
clinical isolates dominate this NCBI SNP cluster, whereas environmental isolates are 
mainly from water sources. We acknowledge that this SNP analysis was limited as it was 
solely based on publicly available data at NCBI. To contain the evolution and spread of 
azithromycin resistance in Salmonella, a One Health approach focused on monitoring 
and infection control, and a strong commitment to better understand the drivers of 
azithromycin resistance in Salmonella associated with food animal sources is warranted.

MATERIALS AND METHODS

Azithromycin-resistant Salmonella isolates and controls

We examined NARMS food animal and retail meat culture collections (approximately 
34,200 and 6,500 Salmonella isolates, respectively) between 2011 and 2021 for potential 
azithromycin-resistant Salmonella isolates. For the food animal sources, collected during 
slaughter and processing, the U.S. Department of Agriculture’s FSIS and Agriculture 
Research Service tested cecal and lymph node samples (not destined for food) and 
product samples [regulatory/hazard analysis and critical control point (HACCP) program] 
from chickens, turkeys, cattle, swine, sheep, lamb, and goat. For the retail meat arm, U.S. 
FDA’s CVM, in partnership with state and local public health and agricultural depart­
ments and universities, tested retail raw meat samples from chicken, turkey, beef, and 
pork collected from grocery stores (10). AST was conducted using broth microdilution 
with NARMS Gram-negative plates (CMV2AGNF, from 2011 to 2013; CMV3AGNF, 2014–
2015; CMV4AGNF, 2016–2019; and CMV5AGNF, 2020–2021) on the Sensititre Complete 
Automated AST System (Thermo Fisher Scientific, Waltham, MA), following the manu­
facturer’s instructions and CLSI guidelines (38). Breakpoints established by CLSI were 
adopted for MIC interpretation wherever available (3). For azithromycin, a resistant 
breakpoint of ≥32 µg/mL (CLSI breakpoint for S. Typhi) was used. Thirty-one azithro­
mycin-resistant Salmonella and 14 susceptible controls were selected based on initial 
phenotypic and genotypic data (Table 1).
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Agar dilution

Besides the broth dilution mentioned above, AST against an expanded range of 
azithromycin concentrations (0.125–1,024 µg/mL) for all 45 Salmonella isolates was 
performed by agar dilution following CLSI guidelines (38). Enterococcus faecalis ATCC 
29212, Escherichia coli ATCC 25922, and Staphylococcus aureus ATCC 29213 were used 
as quality control organisms, with QC ranges from CLSI where available (3, 39). MIC 
differences between azithromycin-resistant isolates (n = 31) and susceptible controls (n = 
14) were compared, including fold changes, MIC50, and MIC90.

Short-read and long-read WGS

Short-read WGS was performed at NARMS partner labs and CVM following manufactur­
ers’ instructions. The procedure used at CVM has been described previously (40). Briefly, 
genomic DNA was extracted using the QIAamp 96 DNA QIAcube HT kit in the automated 
QIAcube HT instrument (QIAGEN, Germantown, MD). Libraries were prepared with the 
Nextera XT DNA library preparation kit (Illumina, San Diego, CA) in the automated 
Sciclone G3 liquid handling workstation (PerkinElmer, Santa Clara, CA). Sequencing was 
performed on the MiSeq platform using the MiSeq reagent kit v3 chemistry with the 
600-cycle option (Illumina). Raw reads were de novo assembled using the CLC genomics 
workbench 10 (QIAGEN).

Long-read sequencing was also performed at CVM as described previously (41) with 
slight modifications. Briefly, genomic DNA libraries with an average insert size of 10 kb 
or larger were prepared using the SMRTbell template prep kit 1.0 (PacBio, Menlo Park, 
CA). Sequencing was performed on the Sequel platform with the Sequel sequencing kit 
3.0, and reads were assembled using the microbial assembly pipeline in SMRT link v11.0 
(PacBio).

Bioinformatic analysis and data visualization

Salmonella serovars were determined by SeqSero2 (42), whereas genetic determinants 
for AMR, biocide resistance, and heavy metal resistance were identified with AMRFinder­
Plus v3.10 (14). Plasmid replicon typing was conducted using PlasmidFinder 2.1 (43), and 
IS elements flanking the resistance genes were located using ISfinder (44). MLST was 
performed with MLST 2.0 (45).

Alignments of three Salmonella isolates possessing ere(A), mef(B), and mph(A) 
with reference E. coli genes (GenBank accession no. NG_047765.1, NG_047978.1, and 
NG_047985.1, respectively) were performed with BLAST (46). Similarly, three Salmonella 
isolates with 16-µg/mL azithromycin MIC were examined for 23S rRNA gene mutations 
against a reference E. coli genome (GenBank accession no. NC_004431.1).

For data visualization, alignments of AMR gene-encoding regions were performed 
using Easyfig v2.2.2 (47). Circular structures of select azithromycin-resistant plasmids 
were drawn with BLAST ring image generator (48). The clustering of azithromycin-resist­
ant Salmonella isolates to clinical and environmental Salmonella isolates deposited at 
NCBI was observed using the NCBI pathogen detection isolates browser (15).
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