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Influenza A virus infection alters the resistance profile of gut 
microbiota to clinically relevant antibiotics
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ABSTRACT Influenza A virus (IAV) infection triggers quantitative and qualitative 
modifications in lung and intestinal microbiota composition, which contain an important 
reservoir of antibiotic resistance genes. Analysis of genetic changes is a common practice 
in studies that analyze microbiota modifications. However, there is little evidence of 
functional changes linked to such microbiota modifications. This study evaluates some 
cecal microbiota’s functional changes, comparing sublethal IAV with mock-infected 
mice. Community-wide phenotypic metabolic profile (Biolog EcoPlatesTM) and relative 
antibiotic resistance changes to clinically relevant antibiotics (cenoantibiogram) have 
been performed in this context. Results reveal a temporal association between IAV 
infection and alterations in nutrient substrate profile usage as well as changes in 
antibiotic resistance of cecal microbiota. Alterations are transient and predominantly 
occur at early time points post-IAV infection. There is a functional rebalance in nutrient 
substrate usage and antibiotic resistance under the established culture conditions, 
accompanied by a decrease in microbial density of the cecal community on days 5 and 
7 after the IAV infection. Our data underline that active IAV infections altering micro
bial populations are associated with changes in nutrient usage preferences and affect 
community behaviors toward specific antibiotics. These findings could have implications 
including activation of nutrient-related metabolic stress at the microbiota community 
level and additional antibiotic resistance selection mechanisms of clinically relevant 
infections.

IMPORTANCE Influenza virus infection affects both lung and intestinal bacterial 
community composition. Most of the published analyses focus on the characterization 
of the microbiota composition changes. Here we assess functional alterations of gut 
microbiota such as nutrient and antibiotic resistance changes during an acute respi
ratory tract infection. Upon influenza A virus (IAV) infection, cecal microbiota drops 
accompanied by a decrease in the ability to metabolize some common nutrients under 
aerobic conditions. At the same time, the cecal community presents an increase in 
resistance against clinically relevant antibiotics, particularly cephalosporins. Functional 
characterization of complex communities presents an additional and necessary element 
of analysis that nowadays is mainly limited to taxonomic description. The consequences 
of these functional alterations could affect treatment strategies, especially in multimicro
bial infections.

KEYWORDS intestinal microbiota, influenza virus, cenoantibiogram, microbial 
community, antibiotic resistance

T he human intestinal microbiota plays important roles in the body (1, 2) includ
ing maintaining the integrity of the intestinal mucosa, avoiding colonization of 

opportunistic pathogens, and developing and maintaining the immune system (3), or 
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synthesis of vitamins and metabolites, like anti-inflammatory molecules such as butyrate 
(4). Alterations of the intestinal microbiota are associated with a higher incidence 
of gastrointestinal disorders, cancer, cardiovascular, neurological, respiratory (2), and 
metabolic diseases such as obesity or type 2 diabetes (4), among others.

The gut microbiota composition is relatively stable during adulthood (2, 4), although 
between 30% and 40% of the composition can be modified through either the influence 
of hormonal, genetic, and environmental factors such as diet (1, 2, 4), geographic 
location, exposure to toxins and carcinogens (2), infectious diseases (5–7) antibiotic 
consumption, or the immune system (8), leading to a state of dysbiosis (2). However, less 
is known about the consequences of acute viral infections on microbiota composition 
and functionality.

Influenza viruses are associated with hundreds of thousands of deaths worldwide 
every year (9). Gut dysbiosis during influenza virus infection may influence the pathogen
esis associated with secondary bacterial pneumonia (10). Treatment of these compli
cations can be addressed with a combination of antibiotics and respiratory support 
therapy.

Traditional analysis of bacteria properties focuses on the metabolic and functional 
features at the species or strain levels. One example of a functional analysis is the 
antibiogram. However, functional analysis of complex communities, such as the intestinal 
microbiota, adds relevant information that cannot be obtained by adding properties of 
each microorganism and even less by the exact taxonomic composition description (11). 
Influenza A virus (IAV) infections trigger changes in the respiratory and gut microbiota 
(10, 12–15). Most of the time, bacterial community analysis is restricted to the identifica-
tion of microorganisms present in the samples. Importantly, gut commensal bacteria 
adapt rapidly to changing environmental conditions, mostly by regulating their gene 
expression profile (16). Functional properties of the gut microbiota during or after IAV 
infection, beyond metagenomic analysis in bacteria composition, have not been well 
explored.

One approach to determining the metabolic microbial profiles of communities 
associated with environmental changes is the analysis of their community-level 
physiological profile (CLPP) using Biolog EcoPlates (11, 17). Analysis of the antibiotic 
resistance of bacterial communities is an additional functional characterization assay 
enabling the study of changes in the equilibrium of complex bacterial communities. 
Characterization of antibiotic resistance is especially relevant in the context of Influenza 
A virus infection since it favors secondary or superinfections with bacterial pathogens. 
From a global perspective, antibiotic resistance is considered one of the biggest public 
health challenges (18, 19).

Antibiotic resistance is not a static property. Resistance is developed as an adap
tive response of bacteria to different environmental conditions (20). Determination 
of mechanisms driving the evolution of antibiotic resistance is important in establish
ing novel strategies to counteract their effects (21, 22). Few studies have focused on 
characterizing antibiotic resistance profiles in microbial ecological communities (23, 
24). In this context, the cenoantibiogram assay has been developed to determine the 
community-wide phenotypic resistance profile to clinically relevant antibiotics (17).

In this work, we applied a combination of metabolic and antibiotic resistance profiling 
to cecal microbial communities of mice exposed to IAV or mock infection. We used 
samples from IAV-infected animals previously described by Yildiz et al. (15). Under 
aerobic manipulation conditions, CLPP analysis of samples indicates changes in overall 
carbon and nitrogen nutrient preferences. Cenoantibiogram analysis of the different 
groups of samples indicates additional alterations in antibiotic resistance of the cecal 
bacteria communities to specific antibiotics. These results indicate not only the influence 
of the viral infection on changes in the intestinal microbiota functionality but also 
suggest underlying mechanisms that could drive the selection of antibiotic-resistant 
bacteria.
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RESULTS

Semiquantitative determination of bacteria in cecal samples

Previous reports have described composition changes in gut microbiota after IAV 
infection. However, it remains unclear whether those changes are associated with 
relevant phenotypic differences. In the present work, cecal samples from mock or 
IAV-infected mice described by Yildiz et al. (15) were used to study functional changes 
associated with the infection.

Comparison of the relative changes and content of viable bacteria in mock- or 
IAV-infected mice was performed on different days post-infection (3, 5, 7, and 14 dpi) 
by the extraction of bacterial content from different samples in a fixed amount of cecal 
material that was resuspended in saline solution buffer. Bacteria in suspension were 
cultured in a cap-closed laminoculture tube to estimate the relative number of colony-
forming bacteria per gram of cecal material (Fig. 1). Under this experimental setting, the 
relative number of microorganisms in mock control groups was estimated as 106 CFU/g. 
A significant decrease in cecal bacterial growing load was observed on day 3 (105 CFU/g), 
day 5, and day 7 (104 CFU/g) in IAV-infected mice. On day 14, there was a recovery 
tendency in the number of colony-forming bacteria in the cecal samples of IAV-infected 
animals. This decrease in the number of colonies growing in cap-closed laminoculture 
tubes correlates with a drop in genome counts in the small intestine samples previously 
reported (15) from the same animals. This drop also coincides with high viral titers in the 
lungs of IAV-infected animals at days 3 and 7 post-inoculation as described in Yildiz et al 
(15).

Analysis of CLPPs in microbial communities

Alterations of bacterial communities in the intestinal microbiota during viral infection 
have been associated with reduced food intake as typical sickness behavior (10, 
14). Alteration of a bacterial community composition may imply the need to switch 
metabolic states, to use different nutrients. To test this hypothesis, Biolog EcoPlates were 
used to determine the CLPP by analyzing the consumption of a set of defined substrates 
within cecum material sampled from IAV and mock-infected animals (see Table S1 
at https://figshare.com/articles/dataset/Supplementary_Table_1_biolog_Spectrum_xlsx/
24428692). After standardizing the number of inoculated bacteria, Biolog EcoPlates 

FIG 1 Estimation of bacterial density in different experimental groups. Estimation of viable bacterial 

concentration in 0.4 g of cecal samples resuspended in 40 mL of saline solution. An approximation of 

bacterial concentration was estimated by observing colony density in CLED from the Uricult laminocul

ture test. Baseline D0 and Baseline D28 indicate untreated mice sacrificed on D0 or D28, respectively (n = 

3). Circles represent samples coming from mock-infected mice and squares the IAV-infected mice.
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plates were inoculated under aerobiotic conditions and incubated at 37°C for 72 h, the 
estimated time necessary by these microbial communities to reach the stationary phase 
of growth. Colorimetry in these plates allows the determination of microbial growth by 
measuring the absorbance at 590 nm in the presence of individual substrates.

Differences in the consumption of each substrate were analyzed by a random forest 
methodology using the colorimetric assay values obtained for each mouse sample. To 
find the substrates that can be differentially metabolized, Boruta analysis was performed 
(Fig. 2A). Certain substrates, such as α-D-Lactose, D-Xylose, Tween 80, and D-Cellobiose, 
present statistically relevant differences (green and yellow whiskers) while the rest of the 
substrates (red whisker plots) did not.

The random forest approach followed by Boruta’s analysis of the data does not 
reveal changes between IAV- and mock-infected animals at particular time points. To 
find them, a daily comparison was performed by calculating the difference between 
the average of the substrate consumption indicator for IAV- and the mock-infected 
groups for each substrate (Fig. 2B). Bacteria density-related changes observed using 
cap-closed laminocultures occur in infected animals between days 3 and 7 (coincidental 
with changes observed in animals by Yildiz et al. (15), particularly the high viral titers 
at days 3 and 7). Therefore, the analysis of substrate use was focused on cecal samples 
coming from days 3, 5, and 7.

The difference between the average in IAV- and mock-infected groups indicates a 
drop in consumption of some substrates by the cecal microbiota mainly on day 3, 
and recovering on days 5 and 7 under our experimental conditions. Together with a 
drop in consumption of D-Lactose, samples from IAV-infected mice show a drop in 
consumption of both, simple sugars (i.e., Glucose-1-phosphate, N-acetyl-D-glucosamine, 
or methyl glucoside) and complex sugars (i.e., xylose, cyclodextrin, or glycogen), and 
carbon sources like mannitol and the Krebs cycle precursor pyruvate. A small reduction 
in amino acid arginine consumption was also observed in samples from IAV-infected 
mice. A potential decrease in the consumption of lipids in the IAV group on day 3 
can also be suggested (i.e., a modest drop for Tween 40). At day 5, substrates that 
can feed the Krebs cycle such as alpha-cyclodextrin, erythritol, methyl-pyruvic-ester, 
N-acetyl-D-glucosamine, or lactose present a lower consumption average in IAV-infected 
as compared to mock-infected mice. Interestingly, there is an increase in the utilization 
of some substrates such as alpha-cyclodextrin, glycogen, or xylose preferentially at day 7 
post-infection in IAV-infected mice as compared to the mock-infected ones.

In Table S1 at https://figshare.com/articles/dataset/Supplementary_Table_1_biolog_S
pectrum_xlsx/24428692, we can observe a strong dispersion of values for each substrate 
utilization. A non-parametric Wilcoxon-Mann-Whitney statistical analysis test was used in 
this case to determine differences in nutrient substrate uptake between IAV- and mock-
infected groups at each time point (Fig. 2C). This analysis presents statistically significant 
IAV- vs mock-infected groups at 3 dpi for D-lactose, methyl-pyruvic ester, or putresin. 
Significant differences between groups 5 dpi appear for D-lactose and D-galacturonic 
acid, and 7 dpi for alpha-cyclodextrin and D-xylose. These data suggest a broad meta
bolic adaptation of cecal microbiota to the environmental changes during acute viral 
infection of the respiratory tract.

Cenoantibiogram analysis

Characterization of changes in antibiotic resistance of multi-species communities is 
a challenge in the field due to several variables that are difficult to address experi
mentally. For instance, antibiotic resistance phenotypes can be modulated by several 
factors, including additive and synergistic effects between strains, quorum-sensing/quo
rum-quenching processes affecting gene expression, as well as the response to biotic 
and abiotic factors coming from the host. Moreover, antibiotic resistance cannot be 
explained just by the presence of individual bacterial populations and cannot be inferred 
from metagenomic analysis approaches like 16S gene sequencing. On the other hand, 
previous reports have shown that metabolic shifts are one trigger for the development 
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FIG 2 Changes in the metabolic profile of different cecal microbiota samples extracted from IAV- and mock-infected mice. 

Nutrient usage profiles are determined using Biolog EcoPlates. (A) Evaluation of significant differences in nutrient usage 

between the samples under study analyzing the data by an initial random forest iterative approach followed by a Boruta 

statistical analysis comparing all the measurements from individual nutrients. The importance of each nutrient is represented 

in a whisker-box plot. Boxes contain 50% of all aleatory arrangements close to the mean of the importance for each nutrient. 

The whiskers present the remaining arrangements. Red boxes indicate those nutrients with a null effect. Yellow boxes indicate 

evidence of changes, while green boxes mark the highest statistically significant differences in the ability to metabolize the 

indicated nutrients. The blue boxes mark the lower, mean, and shadowmax values in the Boruta analysis which also sets the

(Continued on next page)
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of bacterial antibiotic resistance (25). Hence, how changes in microbiota composition or 
phenotype could affect the overall antibiotic resistance of bacterial communities has not 
been well understood.

The entire community resistance profile against a particular antibiotic within the host 
microbiota will be shaped by the cumulative effect of different resistance mechanisms 
expressed by cohabitating microorganisms composing a community at a particular time 
within a dynamic environment. We designate the term cenoantibiogram to express a 
specific community’s antibiotic profile.

Cenoantibiogram profiles were determined as described in the Section Materials 
and Methods, by diluting the bacterial suspension samples 1:3 in saline solution, which 
was inoculated on Vitek 2 AST-N243 cards and automatically analyzed. In Table 1, we 
can observe the minimal inhibitory concentration (MIC) of different antibiotics for the 
bacteria present within cecal samples from IAV-infected and mock groups under the 
given experimental conditions. To interpret changes in antibiotic resistance, Escherichia 
coli was set as the reference bacteria for the analysis comparison of all the samples. 
Accordingly, MIC values of this reference allow evaluation of changes in antibiotic 
resistance between samples, that is, between groups or the same group over time.

Table 1 presents the antibiotic resistance profile changes across time points between 
IAV- and mock-infected groups. Specifically, the pattern of increased ESBL activity 
appears mainly positive in cecal samples from IAV-infected mice starting on day 3 and is 
generalized in all IAV-infected mice, but not in their mock controls, except for one animal, 
on days 5 and 7. On day 14, the cecal community behavior tends to recover resistance 
pattern previous to infection. Interestingly, on day 7 post-infection, only two out of 
six samples from IAV-infected mice presented an increased relative resistance against 
the β-lactam amoxicillin as compared to the mock samples. In any case, the amoxicillin 
resistance in the microbiota of these two cecal samples disappeared in the presence of 
the β-lactamase inhibitor clavulanic acid.

Another interesting phenotype observed on day 3 post-infection was the increased 
relative antibiotic resistance against some second-generation cephalosporins such as 
cefoxitin (6/6) in samples from IAV-infected mice. These differences were diminished at 
later time points. A similar effect was observed for resistance against third- (ceftazidime) 
(5/6) and fourth-generation (cefepime) cephalosporins (4/6). An increase in resistance 
against the carbapenem imipenem was also observed in three over six animals on day 
3 post-IAV infection. Increased relative resistance against aminoglycosides amikacin (4/6) 
and gentamicin (3/6) can be observed in samples from some animals at day 3; however, 
this phenotype seems to disappear at later time points. Interestingly, fluctuations in 
the antibiotic resistance against quinolones, particularly in resistance against nalidixic 
acid increased in the IAV group (5/6 mice) compared to mock on day 3 post-infection. 
These changes, however, were contradictory when compared to the relative resistance in 
the samples from the basal group on day 0. In any case, differences between IAV- and 
mock-infected groups disappeared at later time points suggesting a transient impact 
of IAV infection on the global resistance profile of gut microbiota. There appeared 
to be little alteration in antibiotic resistance against tetracyclines such as tigecycline, 

FIG 2 (Continued)

cutoff limit. Green boxes correspond to statistically differential values with a P ≤ 0.05. Each condition contains the analysis of 

fecal samples from three mice. (B) Differences between the mean of IAV- and the mock-infected ones for each substrate usage 

in Biolog analysis. Metabolization of each substrate in the Biolog is performed using individual cecal (n = 3). Individual values 

are presented in Table S1 at https://figshare.com/articles/dataset/Supplementary_Table_1_biolog_Spectrum_xlsx/24428692 

(Biolog). Results are represented in AWCD (average well-color development) where the color gradient reference represents 

arbitrary difference units. Positions close to red represent the largest drops in nutrient usage when comparing IAV- vs 

mock-infected mice and in green the largest increases. (C) Representation of the P-value corresponding to the analysis of 

the differences between the IAV- and mock-infected groups for each of the substrates. The analysis was performed using the 

non-parametric Wilcoxon-Mann-Whitney analysis test. Results compare samples collected on days 3, 5, and 7. M: mock; I: IAV 

infections.
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some relative resistance against this antibiotic increased in two animals on day 14 after 
infection.

Statistical analysis of the results presents a challenge due to the low number of 
samples and strong dispersion of the data. To determine changes in the antibiotic 
resistance profile in any sample at any point, antibiotic data were also analyzed by 
a random forest approach followed by Boruta analysis (Fig. 3A). Significant antibiotic 
resistance alterations were observed for most of the antibiotics tested (green boxes). 
The largest differences between groups can be attributed to the presence of extended-
spectrum beta-lactamases (ESBL) phenotype, including changes in resistance against 
ampicillin, piperacillin/tazobactam, or cephalosporins. Additional changes in resistance 
were observed also in the case of quinolones such as nalidixic acid or ciprofloxacin, and 
aminoglycosides such as amikacin.

FIG 3 Antibiotic resistance changes in cecal microbiota. The cenoantibiogram approximation of antibiotic resistance profiles was determined with a Vitec 2 

automatic analyzer using AST-N243 cards. (A) Detection of significant differences in the samples under study was performed using a random forest iterative 

approach followed by a Boruta statistical analysis comparison. The importance of each change in resistance to different antibiotics is represented in a 

whisker-box plot. Boxes contain 50% of all aleatory arrangements close to the mean of the importance for each antibiotic resistance change. The whiskers 

present the remaining arrangements. Red boxes indicate those nutrients with a null effect. Yellow boxes indicate evidence of changes, while green boxes 

mark the highest statistically significant differences in the ability to metabolize indicated nutrients. The blue boxes mark the lower, mean, and shadowmax 

values in the Boruta analysis which also sets the cutoff limit (P ≤ 0.05). The whiskers in the panel represent the attribute importance over the different random 

forest arrangements followed after the Boruta analysis. Each condition contains the analysis of fecal samples from 3 to 6 mice. ESBL: Extended-spectrum beta 

lactamases. (B) Data represent a P-value differences heat map in antibiotic resistance changes in cecal samples from the IAV- and mock-infected mice groups 

using the non-parametric Wilcoxon-Mann-Whitney analysis test. Results compare samples collected on days 3, 5, 7, and 14 post-infection. Yellow to brown 

colors represent situations where the antibiotic resistance against the indicated antibiotic significantly increases in samples from IAV-infected mice at each 

particular time point. Blue and purple colors P-value > 0.05 (without statistical differences); green, yellow, orange, and red colors P-value ≤ 0.05 (significant 

differences). (C) Representation of specific cephalosporin antibiotic resistance variation comparing the average and standard deviation of the minimal inhibitory 

concentration (MIC) using E. coli as reference bacteria against cephalosporins cefoxitin, ceftazidime, and cefepime. Individual values are presented in Table 1. 

Statistical analysis performed using the non-parametric Wilcoxon-Mann-Whitney test (*: P < 0.05, **: P < 0.01). The number of mice for each condition ranges 

from n = 3 to n = 6.
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To assess statistical differences in microbiota communities for individual sampling 
days, an additional Wilcoxon-Mann-Whitney statistical analysis was performed by 
comparing antibiotic resistance changes of fecal samples between IAV- and mock-infec
ted mice groups at different days post-infection. Figure 3B shows the P-values from 
this analysis. This examination reveals no differences or minor, not statistically relevant 
differences in most of the comparisons. Comparisons represented with orange and 
red colors with P-values ≤ 0.05 were considered significantly different. Changes in the 
relative antibiotic resistance increase were more pronounced in IAV-infected animals 
as compared to mock-infected animals early in infection (3 dpi). At this time point, 
changes in relative antibiotic resistance significantly changed for ESBL phenotype as well 
as resistance against antibiotics such as gentamycin, amikacin, ceftazidime, cefoxitin, 
or cefepime. Differences were not always sustained over time, yet specifically, ESBL 
phenotype relative resistance in infected animals was further elevated on day 5 and even 
more strongly on day 7 post-IAV infection. A significant increase in relative antibiotic 
resistance to certain cephalosporins was observed in fecal samples from IAV-infected 
mice as compared to the mock samples. This was observed for some second-, third-, and 
fourth-generation cephalosporins (Fig. 3C) on day 3, as well as on day 5 post-infection 
in the case of second-generation cefoxitin and third-generation ceftazidime cephalo
sporins. Interestingly, some relative antibiotic resistances present different kinetics. For 
instance, an initial increasing resistance tendency to second-generation cephalosporins 
cefuroxime and cefuroxime-acetyl was observed on day 3 and disappeared on days 5 
and 7. This resistance increased again on day 14 in the IAV as compared to mock-infected 
groups. Other antibiotic resistance changes were also observed; however, no biological 
or statistical relevance was attributed to them.

DISCUSSION

Acute and chronic viral infections alter the composition of intestinal microbiota, as 
described for HIV (26), HCV (27), or SARS-CoV-2 (28, 29). Influenza virus infection also 
alters intestinal microbiota composition, both in mice (10, 12, 14, 15, 30, 31) and in 
humans (32). The three main intestinal microbiota changes upon viral infection are as 
follows: (i) a decrease in the Bacteroidetes count (13, 15, 31), (ii) an increase in Proteo
bacteria (10, 12, 30–32), including Escherichia coli (31, 32), and (iii) a decrease in the 
Firmicutes count (14, 15), including the genus Lactobacillus (10, 14, 31). These changes 
are mainly observed on day 7 after infection, recovering the composition on day 14 
post-infection, specifically in the small intestine samples from animals used for the assays 
shown here (10, 15). Bartley et al. (30) and Groves et al. (14) described alterations after 4 
days post-infection. These differences can be attributed to particularities between virus 
strains, animal husbandry, or differences in experimental conditions. Upon infection, 
driving forces for bacteria community alterations could be attributed to microbiota 
adaptations to reduced uptake of food and water (10, 14) as well as innate and adaptive 
immune responses (12, 16).

It is important to know how primary viral infections may influence not just the 
composition but also the functional properties of the gut microbial community (33). 
The metabolic state of bacterial communities and/or alterations in antibiotic resist
ance profiles may influence the expected response against oral antibiotic treatments 
to prevent secondary bacterial infections. Current approaches to describe microbiota 
composition do not predict the functional performance of complex microbiota 
communities.

The metabolic profile in the samples analyzed here (Fig. 2) shows a reduction in 
the consumption pattern of lactose on days 3 and 5 post-infection as well as differ-
ent sugars (D-Lactose, Glucose-1-phosphate, N-acetyl-D-glucosamine, methyl glucoside, 
xylose, cyclodextrin, or glycogen) and other possible carbon sources such as pyruvate, 
mannitol, or Tween 40. Interestingly, amino acid consumption seems not much affected 
except for an initial drop in the consumption of arginine on day 3 and a tendency to 
increase the consumption of serine on day 5 (Fig. 2A).
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These changes in nutrient uptake could be attributed to different alternatives that 
will require novel experimental metabolomic approaches and culture conditions for 
a better description. Changes in metabolic performance by specific microorganisms, 
microbiota substitution, or simultaneous influence of both are likely to be behind the 
observed changes. It is also relevant to notice that these changes are coincidental with 
a body weight loss between days 5 and 9 post-infection, high viral titers at days 3 and 
7, and a drop in core body temperature at day 7 in the mice analyzed as reported by 
Yildiz et al. (15). For example, nutrient uptake changes could be attributed to possible 
alterations in Enterobacteriaceae belonging to Gamma proteobacteria (31, 32), which 
could be responsible also for the changes observed in the cenoantibiogram results 
(ESBL phenotype changes). In this sense, gene expression related to the catabolism 
of simple sugars can be significantly downregulated in Escherichia coli present in the 
intestinal microbiota during an intestinal inflammatory process (34). By contrast, the 
expression of some genes associated with amino acid metabolism can be stimulated, like 
genes involved in L-serine metabolism (34). The observed decrease in lactose and sugar 
consumption by bacterial communities observed in our study may also be explained by 
the drop in the number of lactose-consuming bacteria such as Lactobacillus spp (8) or 
Bifidobacterium spp (10, 32) described on day 7 post-infection (10) and that could be 
correlated with a drop in Bacilli in fecal samples from IAV-infected mice (Fig. 4). These 
bacteria are part of the normal commensal microbiota, which may have been affected 
during the first days after viral infection. In any case, despite the possible role of specific 
bacteria, complex functional interactions between members of a microbial community 
cannot be predicted by a simple analysis of the bacteria present in microbiota like 
those using just metagenomic analysis. The results presented here highlight the need 
to increase the attention to microbial community behaviors determined by functional 
changes.

Metagenomic analysis upstream (small intestine) and downstream (fecal) of cecum 
microbiota (Fig. 4) presents significant changes at day 7 post-infection. The prevalence 
of the Muribaculaceae family is reduced at 7 dpi (days post-infection). Lactobacillaceae 
and Spreptococcaceae families within the Lactobacillares order are increased at 7 dpi. 
At the same time, the Gammaproteobacteria class presents an increase at 7 dpi. In 
particular, Pseudomonadaceae, Halothiobacillaceae, Enterobacteriaceae, Pasteurellaceae, 
Vibrionaceae, and Moraxellaceae families present the highest increase, Verrucomicrobia
ceae family within the Verrucomicrobiae class experience an increase also at 7 dpi. 
These profiles present differences between animals and can also be linked to the high 
variability of our functional assays of cecal microbiota.

Analysis of fecal microbiota at days 7 and 14 post-infection also presents some 
differences between IAV- and mock-infected animals. In this case, no clear differences 
could be observed in Bacteroidia, but a reduction in Lactobacillus at 7 dpi could be 
observed. A small but significant increase in the Gammaproteobacteria and Verrucomi
crobiae classes can be observed at 7 dpi (Panel F of Fig. 4). This correlation between 
SI and fecal microbiota could indicate an intermediate composition at the cecum, 
whose samples were used for the functional assays. In particular, Enterobacteriaceae 
increase in IAV-infected animals both in small intestine and feces correlate with the 
functional phenotype described. Metagenomic analyses, however, cannot guarantee the 
identification of the members in the communities responsible for the functional changes 
analyzed.

Reproducing the cecal microbiota in environmental conditions is challenging. We are 
aware of the culture conditions limitations in our experimental setup, and how these 
conditions can affect the interpretations of the results, particularly the aerobic manipu
lation of the samples. The conditions used are however the same for all samples. The 
same animals inoculated with IAV suffered a gradual decrease in certain small intes
tine bacteria that peaked on days 5–7 post-infection (15) compared to mock controls. 
This effect was transient, in parallel with animal pathologic recovery, and microbiota 
replacement on day 14 post-infection (10, 15). Whether intestinal microbiota recovery is 
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influenced by previously altered antibiotic-resistant phenotypes, as described in other 
contexts (35, 36) requires future characterization in the case of IAV infection. These 
changes could explain the differences in growth observed using cecal samples in Fig. 
1. An additional caveat in the present study may be attributed to bacterial viability 
since the samples were subjected to freeze-thaw, thus influencing the metabolic profile 
and antibiotic resistance results. However, it can be fairly assumed that the community 
properties would be similarly affected in samples taken from mock-treated or IAV-infec
ted animals. This study aims to specifically underline the community-level evaluation of 
microbiota rather than individual species properties.

FIG 4 Metagenomic analysis of small intestine and fecal microbiota. Bacteria Class relative abundance at different time points 

of (A) small intestine and (B) fecal samples from IAV-infected animals vs mock-infected animals previously described by Yildiz 

et al. Relative abundance (%) of the indicated bacterial class is depicted for mock (blue violin with blue dots) or IAV-infected 

(red violin with red dots) mice at different time points for (C) small intestine or (D) fecal samples. Orden relative abundance 

(%) of indicated bacterial class a different time points for (E) small intestine or (F) fecal samples. The legend to interpret colors 

associated with bacteria is shown in (E) and (F).
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The cenoantibiogram antibiotic resistance profile analysis presented here shows 
time-dependent differences in IAV-infected mice, specific to some but not all the 
antibiotics under analysis. This fact is an argument for using our experimental approach 
as an initial approximation to further characterize functional differences that could have 
significant implications. It is safe to assume that differences observed in metabolic 
state and antibiotic resistance could not be attributed to an inoculation bias since such 
an effect would cause global changes. Instead, specific changes occurring in a small 
subset of bacteria, or their expression pattern can explain such differences. In addition, 
changes in community properties presented here are in accordance with changes in 
the composition of certain bacteria previously reported by Yildiz et al. (15), whose cecal 
samples are analyzed in the present study.

Different studies have linked the increment of Gamma-proteobacteria, especially 
Enterobacteriaceae, to starvation or viral-induced dysbiosis with an increase in the 
expression of antibiotic resistance genes. Enterobacteriaceae could host some of these 
genes (12, 37, 38). Increased amounts of Enterobacteriaceae in the small intestine and 
feces (Fig. 4) suggest this possibility. In any case, the mere presence of certain bacteria 
could not be enough to express antibiotic resistance mechanisms that may require 
stimuli coming from the infection context.

Although there is an observation of a possible trend, due to the community-wide 
analysis performed here, this study could not present sufficient evidence for a direct 
causal link between nutrient uptake profiles and relative antibiotic resistance profiles. 
Future nutrient usage signatures, metabolomic analysis, and cenoantibiogram valida
tions from purposeful biased cecal samples would improve the validation of such 
links. Yet, the quality and robustness of the assays allow comparison of steady-state 
or altered bacterial communities harboring distinctive resistance elements, including the 
contribution to the phenotype by anaerobic and capnophilic bacteria.

Cecal samples from IAV-infected animals presented elevated changes in antibiotic 
resistance against some second-generation cephalosporins like cefoxitin, as well as those 
of the third generation (cefotaxime and ceftazidime) on days 3 to 5 and even for fourth 
generation’s cefepime (Fig. 3C). Cephalosporin resistance increase can also be linked to 
an increased expression of β-lactamase phenotypes in Enterobacteriaceae (39, 40). Again, 
the use of metagenomic analysis will not be enough to determine the expression of 
these enzymes. In this scenario, possible inter-species resistance transmission (especially 
those transmissible through the exchange of mobile gene elements) cannot be ruled 
out (35, 41). In addition, the selection of antibiotic-resistant bacteria could be boosted 
clinically by concomitant antibiotic treatment.

Analyzing antibiotic resistance in the microbial cecal community is a challenge 
beyond the traditional concept of individual antibiotic resistance against one specific 
strain. The origin of antibiotic resistance at the microbial community level is difficult 
to discern and may not necessarily be linked to classical antibiotic resistance by 
specific bacteria populations. Instead, resistance may be linked to synergistic func
tional interactions between different bacteria species in a community, minimizing 
antibiotic activities, for example, by polymicrobial biofilms. If this is the case, interac
tions between non-pathogenic commensals could build changes in community-based 
antibiotic resistance that can be detected by a cenoantibiogram analysis.

Influenza virus as well as other relevant viruses producing acute infections such 
as SARS-CoV-2 could also affect intestinal microbiota functions that may determine 
systemic effects. Antibiotic resistance alterations such as the ones observed here open 
a new factor to be considered in the field of virus-host interactions specifically in the 
case of infections by influenza viruses. Some of the secondary infections associated 
with influenza are produced by bacteria that require oral antibiotic treatments, and how 
intestinal microbiota interacts with them may require further attention.

Research Article Microbiology Spectrum

January 2024  Volume 12  Issue 1 10.1128/spectrum.03635-2213

https://doi.org/10.1128/spectrum.03635-22


MATERIALS AND METHODS

Sample collection

Sampling was carried out by Yildiz et al. in 2018 (15) with C57BL/6J mice (8- to 9-week-
old females). All animals were exposed to the same SPF / BSL2 (Specific Pathogen Free/
Biosafety Level 2 conditions) for 7 days feeding ad libitum. They were then treated as 
(i) Baseline or untreated animals, (ii) Mock or animals that were administered 40 µL 
of intranasal phosphate-buffered saline (PBS) without virus (control), and (iii) IAV or 
mice that were inoculated with virus A/VN/1203/2004 (low pathogenic variant) in 40 µL 
intranasal PBS solution. Upon reaching the experimental endpoints, the animals were 
humanely sacrificed using controlled exposure to CO2. Organs were collected using 
sterile tools. Utensils were changed between each organ and each experimental group 
to avoid cross-contamination. Cecum samples extracted in an aerobiotic environment 
were stored at −70°C. All animal procedures were in accordance with federal regulations 
of the Bundesamt für Lebensmittelsicherheit und Veterenärwesen (BLV) Switzerland 
(Tierschutzgesetz) and approved by cantonal authorities (license number GE/44/17 and 
GE/45/15).

The experiments were performed using a very limited number of samples and cecal 
content from the animals used by Yildiz et al. (15). The reason for using these samples 
was based on the analysis of the sample complexity in a relevant animal model. In this 
paper, the authors performed a description of changes in the intestinal microbiota in the 
context of mice infected with recombinant attenuated Influenza H5N1 HALo (42). Using 
this model allows for studying influenza-associated changes in a non-lethal model, like 
the one that most influenza virus infections cause in humans.

Sample processing

A mass of 0.4 g of intestinal content, free of tissue, was weighed for each sample of 
40 mL. The feces were suspended in Falcon tubes with sterile 0.45% NaCl saline. They 
were heavily vortexed for 5 minutes and centrifuged for 5 minutes at 4,000 rpm. The 
pellet was discarded, and the supernatant was kept for successive tests.

Semi-quantitative counting

A laminoculture (Uritest) was used for the standardization of the bacteria sample 
inoculum. For this, the suspension samples described above (0.4 g/40 mL) were seeded 
by immersion and incubated at 37°C for 24 hours. After this time, the counting was 
carried out. For the assessment of total aerobic mesophiles, CLED medium was used.

Community antibiotic resistance phenotypic profile (cenoantibiogram)

Given that there is no previous reference in the literature to the use of the cenoantibio
gram on stool samples from experimental animals, it was necessary to adapt techniques 
traditionally used for susceptibility testing of microbial populations. We employed the 
Vitek 2 technique following the criteria of Robas et al. (17). One milliliter of bacteria 
suspension was diluted in 2 mL of sterile 0.45% saline solution. The 3 mL was used for the 
automatic inoculation of Vitek 2 AST-N243. Samples were incubated and automatically 
read by a Vitek 2 Compact, Automated ID/AST Instrument (Biomérieux, France).

Metabolic profile of bacterial communities (CLPP)

The metabolic profile study was performed using Biolog EcoPlates. The plates used 
(BiologECO Biolog, Inc., Hayward, CA, USA) consist of 96 wells containing different 
sources of freeze-dried carbon and nitrogen, as well as a red-ox indicator of the 
consumption of said source (tetrazolium salts). The wells of the Biolog EcoPlates were 
loaded with 135 µL of the bacterial suspension prepared before from cecal material. The 
plates were incubated at 37°C and absorbance was measured at 590 nm. Plate readings 
presented in the manuscript were made 72 hours after inoculation.
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DNA extraction, Library construction and Illumina sequencing, and Bioinfor
matics analysis

The methodology used for analyzing the small intestine and fecal microbiota was 
described by Yildiz et al. (15). Data processing, graphs, and statistical analysis were 
performed using the R 3.6.0 software.

16S rRNA gene NGS data were deposited at NCBI Bioproject (https://
www.ncbi.nlm.nih.gov/bioproject/) under the accession numbers PRJNA419861 for SI 
samples, PRJNA419862 for fecal pellet samples, included already in the Materials and 
Methods section of Yildiz et al. (15).

Data processing

The SPSS program (version 26.0 IBM Corp.) was used to perform the statistical analy
sis. Changes in the apparent number of bacteria growing in the laminoculture were 
performed using a two-way ANOVA followed by Sidak’s multiple comparison test.

In the case of the metabolic profile, an initial multivariate analysis was performed 
by random forest (43) followed by Boruta algorithm analysis for featuring relevance 
estimation on top of an iterated (random forest) analysis. The results are represented in 
a box-whisker diagram. The algorithm is designed as a wrapper method. The original 
data set is extended by adding the so-called shadow features whose values are randomly 
permuted among the original cases to remove their correlations with a decision variable. 
This procedure makes it possible to establish a threshold defined as the highest feature 
importance recorded among the shadow features and a confidence interval regarding 
whether a factor is relevant. In addition, Boruta analysis was chosen to be able to 
capture non-linear relationships in a large number of substrates. Multiple comparisons 
between different groups were performed using a Wilcoxon-Mann-Whitney test to 
detect significant differences among them when P < 0.05.

The statistical analysis of the cenoantibiogram values was also performed by random 
forest followed by Boruta analysis to be able to capture non-linear relationships 
significantly different across samples. In addition, group condition comparisons were 
analyzed using a Wilcoxon-Mann-Whitney test to detect significant differences among 
them. A P-value < 0.05 was set as the limit to consider significant differences between 
conditions.
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