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Abstract 

Compared with proteins, DNA and RNA are more difficult languages to interpret because four-letter coded DNA / RNA sequences have less infor- 
mation content than 20-letter coded protein sequences. While BERT ( Bidirectional Encoder Representations from Transf ormers ) -lik e language 
models ha v e been de v eloped f or RNA, the y are ineffectiv e at capturing the e v olutionary inf ormation from homologous sequences because unlik e 
proteins, RNA sequences are less conserv ed. Here, w e ha v e de v eloped an unsupervised multiple sequence alignment-based RNA language 
model ( RNA-MSM ) by utilizing homologous sequences from an automatic pipeline, RNAcmap, as it can provide significantly more homologous se- 
quences than manually annotated Rfam. We demonstrate that the resulting unsupervised, two-dimensional attention maps and one-dimensional 
embeddings from RNA-MSM contain str uct ural inf ormation. In f act, the y can be directly mapped with high accuracy to 2D base pairing probabil- 
ities and 1D solvent accessibilities, respectively. Further fine-tuning led to significantly impro v ed perf ormance on these tw o do wnstream tasks 
compared with existing state-of-the-art techniques including SPOT-RNA2 and RNAsnap2. By comparison, RNA-FM, a BERT-based RNA language 
model, perf orms w orse than one-hot encoding with its embedding in base pair and solv ent-accessible surf ace area prediction. We anticipate 
that the pre-trained RNA-MSM model can be fine-tuned on many other tasks related to RNA structure and function. 
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Introduction 

Three essential biomacromolecules in living organisms are
DNA, RNA and proteins, all of which are linear polymers,
whose components are denoted by a fixed number of let-
ters of the alphabet ( typically 4 for DNA and RNA and
20 for proteins ) . The sequences of different letter combina-
tions encode their biological functions, very much like mean-
ingful sentences in human language. As a result, language
models such as BERT ( Bidirectional Encoder Representa-
tions from Transformers ) ( 1 ) and GPT ( Generative Pre-trained
Transformer ) ( 2 ,3 ) , originally developed for natural language
processing, found their ways into dissecting the sequence–
structure–function relationship of biological sequences ( 4 ,5 ) . 

Most previous efforts have been focused on proteins. Ex-
amples are UniRep ( 6 ) , UDSMProt ( 7 ) , ESM-1b ( 8 ) , TAPE
( 9 ) , ProteinBERT ( 10 ) and ProtTrans ( 11 ) . UniRep ( 6 ) ap-
plied a recurrent neural network to learn a unified represen-
tation of proteins and examined its ability to predict pro-
tein stability and mutation effects. UDSMProt ( 7 ) developed
a universal deep sequence model based on Long Short-Term
Memory ( LSTM ) cells and demonstrated it by using several
classification tasks, including enzyme class prediction, Gene
Ontology prediction and remote homology detection. ESM-
1b ( 8 ) is a deep transformer model trained on 250 million
protein sequences and tested on secondary structure, tertiary
contact and mutation–effect prediction. TAPE ( 9 ) systemati-
cally evaluates different self-supervised learning methods on
protein sequences by utilizing five downstream tasks. Protein-
Bert ( 10 ) combined a bidirectional language modeling task
with a Gene Ontology annotation prediction task to pre-
train a protein sequence language model. Its performance was
evaluated on nine downstream tasks associated with protein
structure, post-translational modifications and biophysical at-
tributes. ProtTrans ( 11 ) compared six natural language mod-
els ( i.e. Transformer-XL, XLNet, BERT, Albert, Electra and
T5 ) pre-trained on UniRef ( 12 ) and BFD ( 13 ) protein sequence
databases, and suggested that the embedding of these protein
language models have led to them learning some ‘grammar’
from protein sequences. 

More recent attention has been placed on DNAs and
RNAs. These include Bert-like models for DNA, including
DNABert ( 14 ) with the downstream prediction task of pro-
moters, splice sites and transcription factor-binding sites,
iEnhancer-BERT ( 15 ) with a focus on enhancer identifica-
tion and BERT6mA ( 16 ) for predicting N 

6 -methyladenine
sites. For RNAs, preMLI ( 17 ) trained an rna2vec model ( 18 )
to obtain the RNA word vector representation for predict-
ing microRNA–long non-coding RNA ( lncRNA ) interactions.
RNA-FM ( 19 ) constructed a BERT-based RNA foundation
model on large unannotated RNA sequences with applica-
tions in prediction of structural and functional properties. 

However, unlike human languages, whose evolution is
mostly lost in history, the evolutionary history of biological
sequences is well preserved through the appearance of pro-
teins ( or DNAs / RNAs ) with the same function but differ-
ent sequences in different species. Such an evolutionary his-
tory of sequences, revealed from multiple sequence alignment
( MSA ) , allows an in-depth analysis of sequence conserva-
tion and mutational coupling due to structural and functional
requirements ( 20–22 ) . Indeed, employing homologous se-
quences was one of the key factors for the recent success of Al-
phaFold2 ( 13 ) for highly accurate prediction of protein struc-
tures. Similarly, incorporating evolutionary information in a 
language model ( MSA transformer ) allows improved perfor- 
mance in protein contact map and secondary structure predic- 
tion over a single-sequence-based language model with fewer 
parameters ( 23 ) . 

To build a similar MSA transformer for RNA, one must 
first obtain RNA homologs. Searching for RNA homologs,
however, is more challenging than searching for protein ho- 
mologs due to the isosteric nature of RNA base pairs and 

because sequence identity is much easier to lose for a se- 
quence denoted by fewer letters of the alphabet ( 4 versus 
20 ) . A sequence-based search such as BLAST-N ( 24 ) against 
a nucleotide database often leads to only a few homologs,
if any. A more sensitive approach is to search for homolo- 
gous sequences compatible with a defined secondary struc- 
ture because secondary structure is more conserved than se- 
quence ( 25 ) . Currently the best secondary-structure-based ap- 
proach ( 26 ,27 ) is Infernal ( 28 ) , which is based on a covariance 
model. Infernal was employed to build RNA families ( Rfam ) 
by manual curation with known or predicted experimental 
secondary structures ( 29 ) . However, Rfam updates slowly and 

only ∼4000 families have been curated so far . Moreover , us- 
ing experimental secondary structures for alignment in some 
RNAs prohibits the application of Rfam MSAs to ab initio 

structure prediction. This problem was solved with the devel- 
opment of RNAcmap ( 30 ) , which integrates BLAST-N, Infer- 
nal and a secondary structure predictor such as RNAfold ( 31 ) 
for a fully automatic homology search. RNAcmap was further 
improved with additional iteration ( 32 ) and a large expansion 

of the sequence database ( 33 ) . 
One task for examining the usefulness of a language model 

is base pair prediction. Most previous techniques were built 
on benchmark databases of secondary structure from com- 
parative analysis, which may not be accurate or complete 
( 34 ) . Examples of these benchmarks are RNA STRAND ( 35 ) ,
ArchiveII ( 36 ) and bpRNA ( 37 ) . SPOT-RNA was the first end- 
to-end prediction of RNA secondary structure and tertiary 
base pairs by initial learning on bpRNA and transfer learn- 
ing on 3D structure-derived base pairs ( 34 ) . Using base pairs 
derived from RNA 3D structures is necessary because exper- 
imentally determined RNA structures are the only gold stan- 
dard dataset for base pair annotations at a single nucleotide 
resolution. Moreover, many base pairs such as non-canonial 
base pairs and pseudoknots are stabilized by tertiary inter- 
actions. Although a few deep learning methods have been 

published since SPOT-RNA [e.g. DMfold ( 38 ) , MXfold2 ( 39 ) 
and Ufold ( 40 ) ], SPOT-RNA and its latest improvement with 

evolutionary information [SPOT-RNA2 ( 41 ) ] remain the only 
two methods trained and tested purely with RNA structure- 
derived base pairs. Another downstreaming task for language 
model testing is solvent accessibility prediction. Three meth- 
ods, RNAsnap ( 42 ) , RNAsol ( 43 ) and RNAsnap2 ( 44 ) , were 
developed. The first method is based on support vector ma- 
chines, whereas the latter two are deep learning techniques,
all with evolutionary profiles as input. 

This work reports an RNA MSA-transformer language 
model ( RNA-MSM ) based on homologous sequences gener- 
ated from RNAcmap3, which has the advantage of using pre- 
dicted secondary structure for homology search and possesses 
significantly more homologous sequences than Rfam for train- 
ing a more expressive language model. RNA-MSM applied 

one learnable position-embedding layer to encode the row and 

column information, separately. Our results show that RNA 
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tructure information emerges directly in the output attention
aps and embeddings. Moreover, further fine-tuning led to

ignificantly improved performance on base pair prediction
nd solvent accessibility prediction over existing state-of-the-
rt techniques. in comparison, RNA-FM, a BERT-based RNA
anguage model, performs worse than one-hot encoding with
ts embedding in base pair and solvent-accessible surface area
 ASA ) prediction. 

aterials and methods 

SA generation and the training set for 
nsupervised learning 

e downloaded 4069 RNA families ( version 14.7 ) from
ttps://rfam.xfam.org on 09 / 04 / 2022. The fully automatic
NAcmap3 for homolog search and sequence alignment ( 33 )
as employed for these 4069 RNA families by using their co-

ariance models (CMs) for each family. Although the language
odel is unsupervised learning, we excluded the Rfam fami-

ies which contain RNA sequences with experimentally de-
ermined structures in order to minimize potential overfitting
or structural inference. This leads to a total of 3932 Rfam
amilies. The median value for the number of MSA sequences
or these families by RNAcmap3 is 2184. All sequences were
re-processed by replacing Ts with Us in RNA sequences and
ubstituting ‘R’, ‘Y’, ‘K’, ‘M’, ‘S’, ‘W’, ‘B’, ‘D’, ‘H’, ‘V’ and ‘N’
ith ‘X’, similar to previous work ( 19 ). The final vocabulary
f our model contains six letters: ‘A’, ‘G’, ‘C’, ‘U’, ‘X’ and ‘–’.
his dataset is called TR0 for unsupervised learning. 

raining and test sets for downstream models 

o perform downstream tasks, we prepared two datasets
ased on experimentally determined RNA structures, which
ave the gold standard information for base pairs and sol-
ent accessibility. All RNA-containing structures were initially
ownloaded from the PDB ( 45 ) website on 9 August 2021.
hey were randomly split into training (TR1, 80%), valida-

ion (VL1, 10%) and independent test (TS1, 10%), respec-
ively. Sequences with similarity of > 80% in VL1 and TS1
ere first removed using CD-HIT-EST ( 46 ) and then any se-
uences in TR1 with similar structures to the sequences in
L1 and TS1 [TM-score > 0.45, according to RNA-align

 47 )] were also removed. Similarly, any sequences in VL1 hav-
ng similar structures to sequences in TS1 were also removed.
inally, we obtained 405 RNAs for TR1, 40 RNAs for VL1
nd 39 RNAs for TS1. We updated the test set by download-
ng RNA structures deposited between 9 August 2021 and
4 July 2022 from the PDB website. We removed sequences
y using CD-HIT-EST (80%) and RNA-align (TM-score of
.45) against TR1, VL1 and TS1. This led to 31 RNA ter-
iary structures for TS2. The base pairs of all datasets (TR1,
L1, TS1 and TS2) were derived from their respective tertiary

tructures by using DSSR software ( 48 ). We combined TS1
nd TS2 to make the final independent test set with 70 RNAs
TS). It should be noted that the training set of RNA-MSM has
een filtered by excluding the Rfam families which contains
NA sequences with experimentally determined structures.
herefore, the RNAs used in downstream models would have
o overlap with those used for training RNA-MSM. More-
ver, we further prepared a HardTS set by testing our method
n unseen structures based on a TM-score threshold of 0.3,
gainst our training and validation sets. It includes nine newly
solved RNA structures (deposited between 14 July 2022 and
1 June 2023 from the PDB website) and 21 RNA structures
contained in the TS set. 

Network architecture 

As shown in Figure 1 , RNA-MSM mainly consists of two
modules: embedding and MSA transformer, as in the protein
MSA transformer work ( 23 ). The embedding module consists
of one initial embedding layer and two learnable position-
embedding layers (Figure 1 ). The position-embedding layers
encode rows (number of entries in the MSA) and columns (se-
quence length) of the MSA separately. A 1D sequence posi-
tion embedding is applied to the row of the MSA, allowing
the model to recognize the sequential order of nucleotides. In
addition, each column of the MSA is embedded with a sepa-
rate positional embedding, allowing the model to perceive the
entire MSA as a series of ordered sequences. 

We employed a similar configuration of the MSA trans-
former module (Figure 1 ) to the protein MSA transformer
work ( 23 ). Briefly, this module is made of a stack of MSA
transformer blocks. Each MSA transformer block has a
residue and sequence attention layer with 12 attention heads
with embedding size of 768, followed by a feedforward layer.
LayerNorm is applied either before or after the attention layer.
The residue attention layer captures interactions between nu-
cleotides and integrates all the sequence attention maps within
the MSA, resulting in a single attention map being shared by
all sequences to reduce memory usage. Moreover, sharing one
attention map among all input sequences might lead to learn-
ing the inherent structural information ( 23 ). Through the feed-
forward layer, the input is passed over fully connected layers
and activated using GELU activation functions. Specially, we
modified a few specific parameters as follows. The number of
blocks was changed from 12 to 10 due to the graphics process-
ing unit (GPU) memory limitation. We also changed the train-
ing precision from half-precision to 32-bit precision, which
demonstrated an improved performance. 

We define an input MSA as a matrix, N × L where N rep-
resents the number of entries in the MSA and L represents
the sequence length. After the embedding module, it was em-
bedded into a tensor N × L × 768 and fed into the MSA
transformer module. The final output contains two features:
an embedding of N × L × 768 that represents the last MSA
transformer block’s output and an attention map L × L ×
120 derived from all residue attention layers where 120 was
from multiplication of the number of attention heads by the
number of MSA transformer blocks ( 10 ). 

RNA-MSM model training and inference 

RNA-MSM was trained with a probability of 0.1 dropout af-
ter each layer. A total of 300 epochs were trained using eight
32G GTX V100 GPUs with Adam optimizer set to 0.0003,
warmup step set to 16 000, weight decay set to 0.0003, batch
size set to 1 and learning rate set to 0.0003. The training stage
stopped when the F1 value on validation set VL1 does not in-
crease in 10 consecutive epochs. For each input MSA, 1024
RNAs are randomly selected in addition to the query sequence
if the number of sequences of input MSA is larger than 1024.
It should be noted that the representative sequence is picked
every time. 

The maximum number of tokens is set to 16 384 because
of the memory limitation of 32G of each V100 GPU. We

https://rfam.xfam.org
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employed the BERT masked language modeling objective
function for training. Briefly, 20% tokens of the input MSA
were substituted by a special token [MASK] at random. Of
this 20%, 10% will be replaced by other words at random,
10% will be changed back to the original words and 80% will
remain as [MASK]. The model was trained to predict the orig-
inal tokens of the masked ones based on those tokens that are
not masked in the sequence. During the inference, we employ
the hhfilter ( 49 ) to sample the RNA sequences in the maxi-
mum diversity manner, as the number of RNA sequences in
some MSAs is huge. We experimented with the number of
sampled sequences from all MSAs and found that sampling
512 sequences is a good balance of performance and compu-
tational cost. 

RNA secondary structure prediction 

To establish a downstream task for RNA-MSM, we employed
a simple ResNet ( 50 ) similar to that utilized in Singh et al . ( 34 ).
As shown in Supplementary Figure S1, the architecture of the
model consists of 16 residual blocks followed by a fully con-
nected (FC) block. Each residual block consists of two convo-
lutional layers with a kernel size of 3 × 3 and 5 × 5, and with
a filter size of 48. We tested one-hot encoding, the embeddings
as well as the attention map obtained from RNA-MSM as the
input for the ResNet16 model. These input embeddings were
converted into a 3D tensor by the outer concatenation func-
tion as described in RaptorX-Contact ( 51 ). The model was
implemented in the Pytorch framework and uses the Nvidia
GPU to speed up training. The model trained by using the
Adam optimization function with a learning rate of 0.001,
and the cross entropy was used as loss function. We trained
the model on TR1 and the trained model was chosen based
on the performance on VL1. 

RNA solvent accessibility prediction 

The ASA reflects the extent that a nucleotide in an RNA chain
is exposed to solvents or other functional biomolecules. Unlike
secondary structure dominated by local interactions, solvent
accessibility is a measure of 3D structure in one dimension.
The ASA labels of TR1, VL1 and TS are calculated from their
individual 3D chain structures (instead of protein–RNA com-
plex structures) by the POPS package ( 52 ) with a probe radius
of 1.4 Å. All ASAs were normalized to relative accessible sur-
face areas (R S As). To be specific, we divided the ASA values
by the maximum ASA of each corresponding nucleotide (i.e.
A, G = 400 Å2 , U, C = 350 Å2 ) as mentioned in Yang et al .
( 42 ). 

We employed a simple network based on ResNet archi-
tecture to construct the RNA solvent accessibility prediction
model. As shown in Supplementary Figure S2, this network
mainly contains two blocks. The first block contains two
convolutional layers ( 53 ) to capture high-level feature maps
and one standard ‘Squeeze-and-Excitation’ (SE) module ( 54 ),
which defines model interdependencies between channels. The
second block contains one self-attention layer ( 55 ) and a sim-
ple multilayer perceptron (MLP) layer. The self-attention layer
is a core module in transformer architectures ( 55 ), which
jointly attend to different representation subspaces, and the
MLP layer fuses all the features and generates the outputs. 

The outputs yielded by the model are values ranging from 0
to 1 as predicted relative solvent accessibility (R S A). The pre-
dicted ASA values were obtained by converting the RSA val-
ues to actual ASAs with the above-mentioned normalization 

factors. The mean absolute error between the predicted R S A 

and the actual R S A was used as a loss function. The model was 
trained on TR1 and validated on VL1. During the training, the 
learning rate scheduler of ‘Cosine Annealing Warm Restarts’ 
( 56 ) was used to adjust the learning rate. The training iteration 

stops when the loss on the VL1 no longer decreases. 
We determined the hyperparameters (number of repetitions 

for each type of residual block = 1, width of the network = 64,
learning rate = 0.005, batch size = 16, head of self-attention 

layers = 8) of the network by optimizing the performance on 

the VL1 dataset using one-hot encoding. After designing the 
network, we performed a number of experiments to exam- 
ine whether the language embedding can improve the repre- 
sentations of sequence in ASA prediction. Different inputs for 
the ASA prediction model, including the same sequence profile 
as RNAsnap2, one-hot encoding, embeddings and attentions 
from the language models, were tested. 

Results 

RNA-MSM model 

The MSA transformer ( 23 ) originally developed for MSAs 
of homologous protein sequences was modified for MSAs of 
RNA sequences. The network architecture of RNA-MSM,
along with its downstream tasks, is illustrated in Figure 1 .
Specifically, the MSA generated from the RNA query sequence 
by RNAcmap3 was used as an input for the network. We did 

not employ Rfam MSAs because the median number of se- 
quences in Rfam families is only 45. Instead, we employed 

representative sequences from 3932 Rfam families, excluding 
those with experimentally determined structures (see the Ma- 
terials and methods for more details). The two-dimensional 
input passes through the embedding layer and the series of 
axial transformer modules, where the attention operates over 
both rows and columns of the input. The final outputs are 
a 1D MSA sequence representation and a 2D residue atten- 
tion map that were employed as the input for downstream 

tasks. The model was trained by the masked language model- 
ing objective function (see the Materials and methods for more 
details). 

Direct base pairing information in attention map 

With the self-attention mechanism of the transformer model,
pairwise interactions can be established between any positions 
within the sequence. In principle, multiple attention heads 
employed in the attention layers of the transformer module 
should capture a variety of features from the input sequence 
by focusing on different portions of the input sequence simul- 
taneously as demonstrated for proteins ( 57 ). Here, we exam- 
ined if the attention maps derived from the RNA-MSA trans- 
former module can serve as a base pairing probability map in 

the RNA sequence, using an independent TS test set. 
Figure 2 shows that some attention maps can be directly 

employed for predicting secondary structure with reasonable 
accuracy (the average harmonic mean of precision and re- 
call, F1 score, all larger than 0.5). Furthermore, top-K atten- 
tion maps were selected by F1 scores and combined to pre- 
dict the RNA secondary structure even more accurately. For 
example, Top-2 attention maps lead to an impressive perfor- 
mance with F1 score at 0.563 and the Matthews correlation 

coefficient (MCC) at 0.562 (Supplementary Table S1). These 
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Figure 1. The network architecture of RNA-MSM with downstream tasks for predicting secondary str uct ure and RNA solvent accessibility for one RNA 

sequence of length L along with N – 1 homologous sequences. The RNA-MSM model is stacked with 10 transformer blocks, each containing 12 
attention heads. The output embedding identifies all sequences in a 768-dimensional space. A total of 120 attentional maps were constructed by 
stitching the attention scores among the residues learned by the 12 attention heads. The feature gate used in the downstream tasks means a feature 
combination selection gate. 
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nsupervised results provided the evidence that some struc-
ural information was captured by some layers in the attention
aps. 

NA secondary structure prediction 

odel training 
o further improve the secondary structure prediction beyond
nsupervised learning, secondary structure prediction mod-
ls were trained, validated and tested on the secondary struc-
ure dataset derived from known 3D RNA structures. Briefly,
he validation and test sets were structurally different (TM-
core < 0.45) from each other and from the training set. In
ddition, the sequences in the test and validation sets were re-
ned with sequence identity of < 80% within each set. The
raining (TR1), validation (VL1) and test (TS) sets have 405,
0 and 70 RNAs, respectively. The secondary structure pre-
iction model was designed based on the ResNet model as
hown in Supplementary Figure S1 (details can be found in
he Materials and methods). 

eature comparison 

o illustrate the usefulness of the features from the language
odels, we compared it with various previously employed

eatures for secondary structure prediction. These features
nclude one-hot encoding (OH), contact maps from direct
oupling analysis (DCA) by gremlin ( 58 ), sequence profiles
rom MSA (SeqProf) ( 28 ), embedding from the RNA foun-
dation model (RNA-FM_Emb) ( 19 ), the logistic regression of
the attention map (RNA-MSM-ATN-LR), embedding (RNA-
MSM_Emb) and attention map (RNA-MSM_ATN) from our
RNA-MSM model. Some feature combinations were also ex-
amined. Figure 3 A compares precision–recall curves of differ-
ent input feature by using the same network on the indepen-
dent test set TS. The precision–recall curves were drawn by
moving the threshold value for defining base pairs accord-
ing to the probability output from the RNA-MSM model
and plotted by putting all RNAs together as a single set
for examining the performance of various methods. OH can
be considered as the baseline model for all features com-
pared. It is a bit surprising that the RNA-FM_Emb alone
or RNA-FM_Emb combined with OH was even worse than
OH alone when employed as the features for secondary struc-
ture prediction. The AUC_PR values for the TS set are 0.340
for RNA-FM_Emb, 0.334 for OH + RNA-FM_Emb and
0.377 for OH, respectively (Supplementary Table S2). In com-
parison, both sequence profile (SeqProf) and DCA provide
a boost in model performance when combined with OH,
with AUC_PR values at 0.377 for OH, 0.438 (OH + Se-
qProf), 0.501 for OH + DCA and 0.535 for OH + SeqProf
+ DCA, respectively (Figure 3 A; Supplementary Table S2).
The same is true for the features from the current model
(RNA-MSM_Emb and RNA-MSM_ATN). Combining them
with OH leads to AUC_PR values of 0.547 and 0.610, respec-
tively; i.e. combining OH with the attention map from RNA-
MSM yields the best model for secondary structure prediction.
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Figure 2. The normalized F1 scores of 120 attention maps from different la y ers and attention heads of RNA-MSM as input of RNA secondary str uct ure 
prediction on the independent TS test set. 

BA

Figure 3. Performance comparison on the test set (TS) given various features or feature combinations according to the precision–recall curve ( A ) and the 
distribution of F1 scores ( B ) for each RNA given by various features all trained with the same model network (Supplementary Figure S1). The features 
shown here are one-hot encoding (OH), sequence profiles generated by multiple sequence alignment (SeqProf), direct coupling analysis of covariation 
by gremlin (DCA), the embedding of RNA foundation model (RNA-FM_Emb), the logistic regression of the attention map (RNA-MSM-ATN-LR), and the 
embedding and attention map from this work (RNA-MSM_Emb and RNA-MSM_ATN). The best model is the combination OH + RNA-MSM_ATN based 
on either area under the precision–recall curve (A) or F1 score (B). 

 

 

 

 

 

 

Interestingly, the simple logistic regression training on atten-
tion maps can achieve AUC_PR at 0.516, only worse than
the models trained with attention maps (RNA-MSM_ATN) or
embedding (RNA-MSA_Emb). Model performance can also
be evaluated according to F1 score and MCC (1 for perfect
prediction and 0 for random prediction). The overall trends
are the same (Supplementary Table S2). Figure 3 B further 
shows the distributions of F1 score for each predicted RNA 

secondary structure by different features. The thresholds for 
these F1 scores were generated for the best F1 scores on the 
validation set. The model based on OH + RNA-MSM_ATN 

not only has the best average F1 score, but also has the nar- 
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owest distribution, with few poor predictions. This indicates
hat the model based on OH + RNA-MSM_ATN has the best
erformance for the majority of RNAs. 

omparison with traditional methods 
e compared our best secondary structure predictor (OH

 RNA-MSM_ATN) with traditional folding-based single
RNAfold ( 59 ) and linearPartitition ( 60 )] and multi-sequence-
ased [CentroidAlifold ( 61 )] techniques in Figure 4 A and B
nd Supplementary Table S2. Based on the same MSAs gen-
rated by RNAcmap3, the alignment-based CentroidAlifold
ith the CONTRAfold inference engine (IE) and a gamma

alue of 16 were employed for its best performance as before
 41 ). According to the precision–recall curves, OH + RNA-

SM_ATN has the best performance in AUC_PR (Figure 4 A)
nd in the distribution of F1 scores (Figure 4 B) for the TS set,
s well as the highest F1 score and MCC value (Supplemen-
ary Table S2). 

omparison with SPOT-RNA and SPOT-RNA2 

igure 4 C compares the best secondary structure predictor
OH + RNA-MSM_ATN) with two other RNA structure-
rained secondary structure predictors (SPOT-RNA and
POT-RNA2) using a reduced test set [48 RNAs, after re-
oving those RNA structures similar (TM-score > 0.45) to

he training set and validate set employed in SPOT-RNA
nd SPOT-RNA2]. According to the precision–recall curves,
POT-RNA2 has the second best performance, with AUC_PR
t 0.56, among the existing methods compared (Supplemen-
ary Table S2), compared with 0.6 by OH + RNA-MSM_ATN
or the reduced set. The conclusion is also true for the distri-
ution of F1 scores (Figure 4 D). Supplementary Table S2 pro-
ides a detailed comparison for AUC_PR, F1 scores and MCC.
ere, we did not attempt to compare with other deep-learning

echniques because they were not trained by 3D structure-
erived base pairs. 

he factors controlled the performance 
he wide distribution of F1 score shown in Figures 3 and 4

ndicates that the model OH + RNA-MSM_ATN performs
ell on some RNAs but not others. To provide a better un-
erstanding, we examined the dependence of F1 scores on the
equence length (Supplementary Figure S3A) and on the per-
ormance of RNAfold (Supplementary Figure S3B), because
NAfold was employed as the initial secondary structure

or homologous sequence search in RNAcmap3. We did not
nd any significant correlation between the F1 scores and se-
uence lengths. However, there is a strong correlation between
1 scores given by OH + RNA-MSM_ATN and that given
y RNAfold, with Pearson’s correlation coefficient (PCC) of
.774. Despite the influence from RNAfold prediction, most
1 scores given by OH + RNA-MSM_ATN are an improve-
ent over those from RNAfold (Supplementary Figure S3B),

xcept for those that already achieved a high performance (F1
core > 0.7 by RNAfold). 

ase pairs due to tertiary interactions 
upplementary Table S3 further examines the performance of
ifferent methods on canonical and non-canonical base pairs
ccording to F1 score, precision and recall. It shows that the
ethod based on the MSM language model remains the best

or both canonical and non-canonical base pairs. Although
redicting non-canonical base pairs is challenging, 82% im-
provement in F1 score over one-hot encoding is observed.
When compared with SPOT-RNA and SPOT-RNA2 for the re-
duced independent test set, the model OH + RNA-MSM_ATN
improves over SPOT-RNA by 28% and over SPOT-RNA2
by 7% in F1 score for canonical base pairs and over SPOT-
RNA by 136% and SPOT-RNA2 by 4% in F1 score for non-
canonical base pairs. Supplementary Table S4 further com-
pares the performance on pseudoknots, lone base pairs and
triplets. Interestingly, OH + RNA-MSM-ATN is the best for
lone base pairs but OH + SeqProf + DCA (F1 score = 0.278)
or SPOT-RNA (F1 score = 0.274 for the reduced TS set)
is the best for pseudoknots, whereas F1 score = 0.243 for
OH + RNA-MSM_ATN (F1 score = 0.176 for the reduced
TS set). 

Ensemble model 
An ensemble of four models (OH + SeqProf + DCA,
OH + RNA-MSM_Emb, RNA-MSM_ATN and OH + RNA-
MSM_ATN) can improve the performance over OH + RNA-
MSM_ATN by another 2% in terms of F1 score. The improve-
ment for canonical, non-canonical and pseudoknot base pairs
is shown in Supplementary Table S5. The largest improvement
is on pseudoknot base pairs, which now has the best perfor-
mance even on the reduced TS set, when compared with SPOT-
RNA and SPOT-RNA2 (Supplementary Table S4). 

Test on the HardTS set 
To further ensure the generalizable performance, we tested the
downstream base pair prediction model using the HardTS set
after excluding those RNAs having a TM-score > 0.3 with
those RNAs in the training set and validate set. RNA-MSM
continues to have the best performance when compared with
SPO T-RNA, SPO T-RNA2, R -scape, RNAfold, LinearPartition
and CentroidAlifold, as shown in Supplementary Figure S4
and Supplementary Table S6. The results confirm the gen-
eralizability of the model in predicting unseen base pairing
structures. 

Direct solvent accessibility information in 

embedding 

Given the fact that unsupervised attention maps contain base
pairing information (Figure 2 ), it is of interest to examine if the
RNA-MSM model can capture solvent accessibility directly
from the original MSA without supervised training. To an-
swer this question, we employed the original embeddings of
RNA-MSM for this analysis. The embedding represents the
MSA of a target sequence as L × 768 matrices where L is de-
noted as the length of RNA chain sequence. Each nucleotide
is represented by a vector of 768 channels. Here we examined
the correlation between weights in channels with relative sol-
vent accessibility (R S A) based on Spearman’s rank correlation
coefficient (SCC). 

Figure 5 A shows the sorted mean SCC values for the TS set
for different embedding channels. The result shows that the
highest positive SCC score is 0.407 and the lowest SCC score
is –0.448. The distribution of correlation coefficients shown in
Figure 5 B further reveals that there are quite a few channels
with weak correlations to R S A, indicating that some embed-
ding channels did capture the structural information of RNAs
without training. 
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Figure 4. ( A ) Comparison of precision–recall curves given by OH + RNA-MSM_ATN, R-scape, RNAfold, LinearPartition and CentroidAlifold on the TS test 
set. ( B ) Comparison of F1 score distributions given by OH + RNA-MSM_ATN, R-scape, RNAfold, linearPartition and CentroidAlifold. ( C ) Comparison of 
precision–recall curves given by OH + RNA-MSM_ATN, SPOT-RNA and SPOT-RNA2 using a reduced TS set after e x cluding similar str uct ures to the 
training set in SPO T-RNA / SPO T-RNA2. ( D ) Comparison of F1 score distributions given by OH + RNA-MSM_ATN, SPOT-RNA and SPOT-RNA2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RNA solvent accessibility prediction 

Model training 
The training, validation and test sets for secondary structure
predictions were employed for solvent accessibility prediction.
The metrics for the performance of different predictors are the
same as those used in RNAsnap2 ( 44 ), including the PCC of
individual chains between predicted and actual R S A values
and mean absolute error (MAE) of individual chains between
predicted and actual ASA values. Nucleotides that are missing
their neighbors in sequence were excluded during evaluation.

Comparison with previous methods 
Supplementary Table S7 summarizes the performance com-
parison among previous work and different feature com-
binations. OH alone yields a reasonable performance with
PCC = 0.387 and MAE of 31.85 on TS. Adding the se-
quence profile generated from MSA further improves the per-
formance. Surprisingly, the embedding from a previous lan-
guage model RNA-FM performed even worse than OH. This
is also true for the attention map from RNA-MSM. RNA-
MSM_ATN alone as a feature does not do as well as OH,
but its combination with OH is useful for going beyond OH.
The best performing method is based on the RNA-MSM em-
bedding (RNA-MSM_Emb). Its combination with OH yields
the lowest MAE and the highest PCC. RNA-MSM_Emb has 
a slightly lower PCC value and worse MAE than OH + RNA- 
MSM_Emb. Thus, we will choose OH + RNA-MSM_Emb as 
our final model for ASA prediction. The performance of the 
OH + RNA-MSM embedding alone is a 7% improvement in 

PCC and 3% in MAE over the previously developed method 

RNAsnap2_pro, which is based on sequence profile informa- 
tion. The improvement is statistically significant according to 

the distribution of PCC and MAE values for individual RNAs 
(Supplementary Figure S5A, B) and P -values (Supplementary 
Figure S5C–F). In order to compare our model with RNAs- 
nap2 and M2pred fairly, we refined the test set TS by removing 
similar structures to the sequences in the training and validat- 
ing set from RNAsnap2 and M2pred, with TM-score > 0.45 

or TM-score > 0.3. Therefore, new test sets TS* and TS** 

were obtained. On both new test sets, the model OH + RNA- 
MSM_Emb still had the best performance (Supplementary Ta- 
ble S8). This result confirmed that our model for ASA predic- 
tion can be applied to unseen structures. 

Ensemble model 
We further examined the usefulness of an ensemble model by 
simply averaging the outputs of individual models ( 62 ). We 
test two strategies for the ensemble. The Ensemble_T model 
is made of the top three models produced by the training 
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Figure 5. ( A ) The mean Spearman correlation coefficients (SCCs, y -axis) on the test set of 768 embedding channels ( x -axis) from the last layers of 
RNA-MSM, sorted according to the SCC values. ( B ) The distribution of SCC values. 
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tage according to the PCC on VL1. The Ensemble_F model is
ade of OH, RNA-MSM_Emb and OH + RNA-MSM_Emb.
s shown in Supplementary Table S8, both ensemble models

how improved performance on the testing set, with Ensem-
le_F having a slight edge. We found that Ensemble_F yielded
 PCC of 0.447 and an MAE of 31.10 for the TS set, exhibit-
ng 3% improvement in PCC and a 3% improvement in MAE
ver the best single model OH + RNA_MSM_Emb, separately.
nsemble_T achieved a PCC of 0.449 and an MAE of 31.23
n the TS set, exhibiting 4% and 2% improvement over the
odel OH + RNA_MSM_Emb, separately. In addition, both
odels exhibited varying degrees of enhancement in their per-

ormance on the TS* and TS** set (Supplementary Table S8).
hey also have a narrower distribution of PCC and MAE on

he TS set than the single model (Supplementary Figure S6). 

he factors controlling the performance 
he MAE of different RNA chains varies over a wide range
hen predicting their ASA; this phenomenon may be con-

rolled by some factors. The length of RNA chains may af-
ect the performance of the predictor. In addition, RNAfold
as employed to search and generate homologous sequences
y RNAcmap3. Thus, we examined the relationship between
SA prediction performance and F1 score of RNAfold. We

ound that the PCC has a negative correlation with RNA
ength (Supplementary Figure S7A) but a positive correlation
ith RNAfold F1 score (Supplementary Figure S7B). 

ener alization bey ond families tr ained 

ne interesting question is whether or not the prediction per-
ormance is robust for those families that are not in train-
ng or validation sets. Here, we examined the Rfam fami-
ies in the TS set that were not in both the training set and
alidation set. There were a total of eight families. Supple-
entary Table S9 shows the results of RNAs in these eight

amilies (RF01998, RF00080, RF00075, RF00028, RF01786,
F01084, RF00061 and RF01051). For secondary structure
rediction, the majority (6 / 8) have a high prediction accu-
acy (F1 score > 0.64). Those with a poor secondary struc-
ure prediction have a poor RNA-fold prediction (F1 score
y RNAfold < 0.26). For ASA, all have MAE values that are
ower than the average performance (33.45). This result in-
dicates that the method developed here can be generalized to
families outside the training and validation sets. 

Visualization 

Figure 6 shows one example with the average performance
of the secondary structure prediction by model OH + RNA-
MSM_ATN (Figure 6 C) and ASA prediction by model OH
+ RNA-MSM_Emb (Figure 6 B) for the bacterial SRP Alu do-
main (PDB 4WFM, Chain A). As shown in Figure 6 , this RNA
has a well-folded structure with a unique topology. The pre-
dicted ASA has a PCC value of 0.454 with MAE = 29.78,
whereas the predicted secondary structure captured most in-
ner base pairs, including the pseudoknots. The main missing
helix strand is the long-range contacts for |i–j| > 87. The F1
score is 0.74. 

Discussion 

We presented an RNA MSA-transformer language model
(RNA-MSM), based on homologous RNA sequences. RNA-
MSM takes the multiple aligned sequences as an input, and
outputs corresponding embeddings and attention maps. We
have demonstrated that these outputs contain the structural
information of the query sequence of the input MSA and eval-
uated our model on two structure-related downstream tasks,
namely RNA secondary structure prediction and RNA sol-
vent accessibility prediction. Interestingly, we found that dif-
ferent downstream tasks prefer different representation fea-
tures. Specifically, the attention maps outperformed embed-
dings for RNA secondary structure prediction, while the op-
posite is true for the RNA ASA prediction task. It is likely
that the attention maps of the 2D form contain the informa-
tion on the connections between nucleotides as demonstrated
in Figure 2 , whereas the embedding compressed the structural
information into one dimension, which is more suitable for
1D structural properties such as ASA. 

We employed RNAcmap3 to search and generate homolo-
gous sequences. Our original plan was to use Rfam families
( 29 ) but the median number of sequences in an Rfam family
( 44 ) is too low. Moreover, some RNA families relied on exper-
imentally determined secondary structure for seed alignment,
which would interfere with our goal to generate MSAs in the
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BA

C

Figure 6. An example (chain A in PDB ID 4WFM) for A S A and secondary str uct ure prediction with average performance. ( A ) The 3D str uct ure of 
4WFM_A. ( B ) The result of A S A prediction. The blue line denotes the actual ASA values calculated from the native str uct ure. The yellow line denotes the 
A S A values predicted by the model OH + RNA-MSM_Emb. ( C ). The base pairs of 4WFM_A represented by arc diagrams with canonical base pairs in 
blue color, pseduoknot base pairs in green color and wrongly predicted base pairs in magenta color (false positives). The predicted secondary str uct ure 
by model OH + RNA-MSM_ATN with F1 score 0.714, as compared with the native base pairing str uct ure for 4WFM_A RNA (Ground Truth). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

absence of any known experimental information. Thus, we
employed RNAcmap3, which produced many more homolo-
gous sequences by including not only the nucleotide sequences
in NCBI, but also those from RNAcentral ( 63 ), the genomic
sequences from Genome Warehouse (GWH) ( 64 ) and the ge-
nomic sequences from MGnify ( 65 ). Indeed, the median value
for the number of MSA sequences for Rfam families expands
to > 2000. Significantly more homologous sequences allow
a better training of the present RNA-MSM model. However,
one limitation of RNAcmap3 is the time-consuming nature
of obtaining the MSAs. It takes on average 9 h to obtain
an MSA for one RNA of length 60. Moreover, the method
needs a secondary structure predictor to provide an initial sec-
ondary structure for building the covariance model. RNAfold
was used here. This leads to the overall performance being
somewhat dependent on the performance of RNAfold. Fur-
ther studies are required to avoid the influence of the use of
an initial secondary structure predictor. 

Previous methods RNAsnap2_seq and RNAsnap2_pro
made use of RNA secondary structure as a feature to input.
We also examined the possibility of using predicted secondary
structure as an additional feature for improving RNA-MSM-
based models. We did find that some improvement was made
when combining the secondary structure with one-hot encod-
ing, but no significant improvement was observed when com-
bining with the feature of OH + RNA-MSM_Emb. This result
may be because the RNA-MSM model implicitly contains in-
formation on the secondary structure. Therefore, we did not 
include predicted secondary structure as a feature for our final 
model. 

After this work was completed, we noticed a new method 

called M 

2 pred published on RNA solvent accessibility predic- 
tion, which utilized multi-scale context features via a multi- 
shot neural network ( 66 ). We downloaded this evolution 

profile-based method from https:// github.com/ XueQiangFan/ 
M2pred/ and compared it with RNA-MSM. The result shows 
that M 

2 pred performs worse than our method (OH + RNA- 
MSM_Emb) not only on the newly released structures in the 
PDB (TS2) but also on the TS*, a subset of TS which removed 

structures similar to the sequences (TM-score > 0.45, accord- 
ing to RNA-align) in the training and validating set from 

their benchmark dataset. For this reduced set (TS*), the av- 
erage correlation coefficient is 0.389 by M 

2 pred and 0.436 by 
OH + RNA-MSM_Emb. The MAE is 32.56 by M 

2 pred and 

31.64 by OH + RNA-MSM_Emb. OH + RNA-MSM_Emb 

also shows a better distribution on TS2 and TS* in Supple- 
mentary Figure S5. This is true even after removing simi- 
lar structures according to TM-score > 0.3 (the TS** set,
Supplementary Table S8). Thus, OH + RNA-MSM_Emb re- 
tains the best performance, when compared with the latest 
method. 

One common problem of RNA language models including 
RNA-MSM is a limited sequence length due to the limited 

memory capacity of GPUs. The common reason for the high 

https://github.com/XueQiangFan/M2pred/
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emory consumption of these RNA language models is be-
ause the transformer requires a space of the magnitude of
he square of the input length. Even though we employed rel-
tively new GPUs V100, the sequence length of the input can
nly be set to 1024. This leads to the loss of relationships
etween long-distance nucleotides. The next version of the
odel should allow a better handing of sequences of arbitrary

ength using a method such as asymmetric cross-attention
 67 ). 

One pressing problem is whether deep learning models can
e generalized to the families that were not in the training
r validation sets ( 68 ). We have made our best effort to sepa-
ate training from validation and test by excluding structurally
imilar RNAs based on RNA-align with a strict threshold of
M-score > 0.3. We further showed that the accuracy of mod-
ls based on RNA-MSM features for several Rfam families
nseen by the secondary structure predictor and the ASA pre-
ictor during training are as high as other RNAs. This suggests
hat the model proposed here is able to go beyond the families
ontained in the training. 

Given recent success in protein structure prediction by Al-
haFold2 ( 13 ), it is of great interest to extend this success to
NA structure prediction. Several efforts have been applied

n bioRxiv ( 69 ). However, some of these efforts have failed in
ASP 15 RNA structure prediction, where the top four pre-
ictors remained traditional energy-based techniques without
sing deep learning techniques. In particular, the top method
Ichemy_RNA2 ( 70 ) is based on a statistical energy func-

ion tailored to RNA with orientation-dependent base pairing
nd stacking interactions plus a rotameric backbone ( 71 ). The
oor performance of AI-based techniques in tertiary structure
rediction is largely due to poor capability for going beyond
nown structures. Given the robustness of our model for pre-
icting unseen structures on base pairs and solvent accessibil-
ty, we are currently applying the RNA-MSM model to RNA
ertiary structure. 

ata availability 

ll source codes, models and datasets of RNA-MSM along
ith the RNA secondary structure predictor and ASA pre-
ictor are publicly available in Zenodo at https:// doi.org/ 10.
281/zenodo.8280831 . 

upplementary data 

upplementary Data are available at NAR Online. 
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