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Abstract 

Next-generation DNA sequencing ( NGS ) in short-read mode has recently been used for genetic testing in various clinical settings. NGS data 
accuracy is crucial in clinical settings, and se v eral reports regarding quality control of NGS data, primarily focusing on establishing NGS se- 
quence read accuracy, ha v e been published thus far. Variant calling is another critical source of NGS errors that remains unexplored at the 
single-nucleotide le v el despite its established significance. In this study, we used a machine-learning-based method to establish an e x ome-wide 
benchmark of difficult-to-sequence regions at the nucleotide-residue resolution using 10 genome sequence features based on real-world NGS 

data accumulated in The Genome Aggregation Database ( gnomAD ) of the human reference genome sequence ( GRCh38 / hg38 ) . The newly 
acquired metric, designated the ‘UNMET score,’ along with additional lines of structural information from the human genome, allowed us to 
assess the sequencing challenges within the e x onic region of interest using con v entional short-read NGS. Thus, the UNMET score could provide 
a basis for addressing potential sequential errors in protein-coding e x ons of the human reference genome sequence GRCh38 / hg38 in clinical 
sequencing. 
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ntroduction 

early 20 years after its advent, massive parallel DNA se-
uencing, conventionally called ‘next-generation sequencing
 NGS ) ,’ has become a practical tool for analysing large vol-
mes of DNA sequences at a reasonable cost, speed, and ac-
uracy, and is being adopted for use in clinical diagnosis. How-
ver, using NGS for diagnostic purposes requires a benchmark
o validate the accuracy of NGS-based genetic testing results.
everal studies have tried to establish quality control meth-
ds to maintain high-quality NGS data and benchmarking
ethods for internal and external precision management of
GS systems ( 1–6 ) . Furthermore, clinical genetic testing must
rovide appropriate caveats regarding regions with low ac-
uracy , if any . Information on the sequencing accuracy of ge-
etic testing must be effectively communicated to clinicians.
his objective differs from benchmarking and requires provid-

ng details about the reliability of difficult-to-sequence regions
t the single-nucleotide level. Following recent best practice
uidelines for clinical sequencing ( 7 ) , any variants detected
n these unreliably sequenced regions warrant confirmation
hrough orthogonal means. From a practical standpoint, in-
icating the presence or absence of these difficult-to-sequence
egions within the target genes during clinical sequencing is
ecommended ( 7 ) . 

Variant calling using NGS is performed by mapping the ob-
ained NGS reads onto the human reference genome, i.e. a
re-sequencing’ approach. Base calling and mapping are two
ifferent sources of errors in variant calling. The Phred score
s widely regarded as the gold-standard measure of base call-
ng accuracy, with which low-quality NGS reads are filtered
ut to maintain a high-quality of NGS reads. In contrast,
apping accuracy is quantitatively estimated with a mapping
uality score. Nonetheless, the mapping quality score depends
n both the local human reference genome sequence used to
ap an NGS read of interest ( usually 100- to 150-nt long in

he case of short-read NGS ) as well as the quality of the NGS
ead, making it difficult to directly link the mapping quality
core to variant calling error rate. The mapping quality score
s reportedly affected by the presence of low-mappability re-
ions ( i.e. pseudogenes ) , tandem repeats, homopolymers, and
ther low-complexity regions ( LCRs ) ( 8 ) . However, because
ifficult-to-sequence regions using NGS have been discussed
n a different context in previous reports ( 9 ) , quantitative mea-
ures for assessing the contribution of each sequence feature
to variant calling errors in short-read NGS data have not been
established. 

The availability of extensive genome-wide short-read NGS
data has enabled the evaluation of variant-calling error dis-
tribution within the human genome through sequencing-by-
synthesis technology ( 4 ) . The Genome Aggregation Database
( gnomAD ) v3.1 is a representative database of this kind, with
data from 76 156 human genomes from unrelated individu-
als. This information was generated by multiple sequencing
centres using short-read NGS and mapped against the human
genome reference sequence. The raw data from multiple se-
quencing centres have been reprocessed to increase the con-
sistency of the variant calling results across sequencing cen-
tres in the gnomAD dataset. The filter information of variants
in the gnomAD dataset enables the illustration of the land-
scape of error-proneness of current gold-standard variant-
calling methods in the human genome by short-read NGS at
the nucleotide-residue resolution, which revealed a distribu-
tion of difficult-to-sequence regions via short-read NGS based
on experimental data. 

In this study, we generated a novel metric, termed the UN-
MET score, which allows the estimation of error-proneness
of each nucleotide residue in the human genome using ma-
chine learning of the filtered information of variant data in
gnomAD with 10 genomic sequence features. The UNMET
score enables the identification of genomic regions that have
a high possibility of sequence errors at the single-nucleotide
level with higher sensitivity than mappability alone. Using
the integrated genome viewer, the UNMET score would en-
able the accurate estimation of the analytical validity of ge-
netic testing via short-read NGS, together with other lines
of information, such as alternative genome sequences and / or
structural changes. From a practical viewpoint, the UN-
MET score would significantly contribute to the reporting
of appropriate caveats regarding sequencing accuracy, which
is recommended by the ACMG technical standard, 2021
revision ( 7 ) . 

Materials and methods 

Definition of reliable and unreliable variant call 
positions in gnomAD ( release 3.1 ) 

We used the genomic variant call data in gnomAD re-
lease 3.1 to classify whether a base position was in an
 aphical abstr act 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r



116 Nucleic Acids Research , 2024, Vol. 52, No. 1 

error-prone region and difficult to reliably call using short- 
read NGS equipment, i.e. an Illumina platform. The single 
nucleotide variant data with the filter information in all ex- 
ons with its 20-bp flanking regions in protein-coding genes 
were extracted from the gnomAD VCF files ( downloaded 

from the gnomAD website, https://gnomad.broadinstitute. 
org/downloads ). The exon and coding sequence (CDS) data 
were extracted from the RefSeq annotation in the human 

reference genome assembly GRCh38, which was obtained 

from NCBI Genome patch release 13 ( https://www.ncbi.nlm. 
nih.gov/ assembly/ GCF _ 000001405.39 ). Within the dataset, 
SNVs were identified in 18.5% (6335080 / 34313995) of the 
target base positions. This implies that, theoretically, a variant 
was observed approximately every 5–6 base positions (Fig- 
ure 1 A). 

To evaluate the difficulty of variant calls in genomic regions, 
we introduced two key indicators: variant density (VD) and 

variant filter rate (VFR). These indicators provide insights into 

the number of observed variants and the filtering process sur- 
rounding a specific variant site, thereby evaluating the relia- 
bility of variant detection at the base position. 

VD is defined as the count of variants observed within an N - 
bp stretch at both ends (2 N + 1 bp window size). Conversely, 
VFR, which represents the fraction of filtered variants within 

a specific segment, is calculated as the number of variants fil- 
tered out within the same window divided by the total num- 
ber of observed variants within that region (Figure 1 B). For 
instance, in a segment with a 25-bp window size, 8 variants 
were observed, with 2 of them being filtered out. This results 
in a VD of 0.32 (8 / 25) and a VFR of 0.25 (2 / 8). 

The values of VD and VFR depend on the number of vari- 
ants within a segment of a given window size; hence, we ex- 
amined how the number of variants within a segment changed 

as N varied from 2 to 24 (altering the window size from 5- 
bp to 49-bp). As the window size increased, the number of 
variants within a segment also increased. When the window 

size reached 25-bp, 95% of exon segments contained three or 
more variants ( Supplementary Figure S1 ). 

Therefore, in this study, we set N to 12 (resulting in a 25- 
bp window size). As a result, we expected to observe three or 
more variants in most variant sites. To evaluate the reliability 
of the 25-bp segment in variant detection, we examined the 
passed / filtered out information for other variants within the 
same segment. 

A segment was classified as unreliable when all variants sur- 
rounding a variant site that underwent filtration were also fil- 
tered out, indicated by VFR = 1.0. Conversely, it was consid- 
ered reliable when all variants within the segment surrounding 
a variant site that passed filters were retained, represented by 
VFR = 0.0. 

Considering its application in machine learning, our goal 
was to extract a ground truth dataset for training sets in- 
volving reliable / unreliable regions. Therefore, we deemed 

VFR = 0.0 and 1.0 as stringent criteria for this purpose. 
As most segments contain three or more variants, a vari- 
ant site with VD ≥ 0.12 (i.e. at least three variants ob- 
served within the 25-bp stretch) and VFR = 1.0 was classi- 
fied as an unreliable variant call region. In contrast, a vari- 
ant site with VD ≥ 0.12 and VFR = 0.0 was considered 

a reliable variant call region. The variant data within these 
reliable / unreliable regions were used in the machine learn- 
ing process to derive the UNMET score as the ground truth 

dataset. 

Sequence features for machine learning 

For the machine learning approach, the genomic characteris- 
tics described below were employed as features: 

1. Genome coverage depth (continuous) . The genome cov- 
erage depth of sequence reads for each base position was 
taken from the gnomAD data and downloaded from the 
gnomAD website. The coverage depth of each position 

was standardised by the mean and standard deviation of 
the coverage depth in each chromosome because of the 
difference in the mean of the coverage depth between au- 
tosomes and non-PARs (pseudo-autosomal regions) in 

the X chromosome. The absolute standardised values 
were used for the features. 

2. Mappability (continuous) . Genome mappability, which 

is a measure of how unique or repetitive regions are in 

the genome, for the human genome sequence was calcu- 
lated using GenMap version 1.2.0 ( 10 ). The parameters 
of length ( K ) and errors ( E ) were set to 100 and 2, re- 
spectively. For the calculation in PAR, the sequence data 
of PARs in the Y-chromosome were excluded. 

3. Homopolymer tract (binary) . The homopolymer tract (a 
sequence of consecutive identical bases) with a stretch of 
7 or more bp was extracted from the human genome se- 
quences. The homopolymer tract segment with adjacent 
12-bp flanking at both ends was considered. 

4. Tandem repeat (binary) . The tandem repeat region was 
sought using TandemRepeatFinder (TRF) version 4.0.9 

( 11 ), and all repeat data found were treated as tandem 

repeats. The region with adjacent 12-bp flanking at both 

ends was also considered a tandem repeat region. 
5. Inter sper sed repeat (RepeatMask er) regions (binary) . 

The interspersed repeat data were obtained from the Re- 
peatMasker data in the UCSC genome browser ( https: 
// genome.ucsc.edu/ ), SINE, LINE, LTR, micro-satellites, 
Low complexity repeats, Satellite repeats, RNA repeats. 

6. Segmental duplication (binary) . The segmental duplica- 
tions of > 1000 bases of non-repeat masked sequences 
in the human genome were downloaded from the UCSC 

genome browser ( https:// genome.ucsc.edu/ ). 
7. LCRs (binary) . The LCRs were computed using 

the DustMasker program ( 12 ) implemented in the 
BLAST + 2.6.0 package ( ftp:// ftp.ncbi.nlm.nih.gov/ blast/ 
executables/blast+ ). The level option was set to 30. 

8. Structural variation (binary) . The genome regions with 

structural variations, including copy number variations, 
were obtained from the Database of Genomic Variants 
(DGV) ( 13 ). 

9. GC content (continuous) . The %GC content of a se- 
quence of 25-bp in length was calculated using an in- 
house Python script. 

10. Sequence entropy (continuous) . The Shannon’s informa- 
tion entropy for a nucleotide position was calculated 

based on the base frequencies in the adjacent sequences 
25-bp in length. 

Training set 

The unreliable and reliable genome positions defined above 
were considered the positive and negative sets, respectively, 
for machine learning training. The selected positions were re- 
stricted to the CDSs because of homopolymers or LCRs that 
are enriched in intronic regions. The number of positions for 
the positive and negative sets were 51 715 and 5 069 698, 

https://gnomad.broadinstitute.org/downloads
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1140#supplementary-data
https://genome.ucsc.edu/
https://genome.ucsc.edu/
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+
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Figure 1. Statistics of single nucleotide variants in gnomAD version 3.1 in coding regions with filter inf ormation. (A) P roportion of genome positions with 
observ ed v ariants. (B) Breakdo wn of v ariant sites with filter inf ormation. Mix ed indicates that tw o or more v ariants are in the same position; and both 
‘passed’ and ‘filtered’ variants are observed. (C) Two-dimensional distributions of the variant filter rate (VFR; on the horizontal axis) and variant density 
(VD; on the vertical axis) for all the sites. 

respectively. Because the number of positions in the negative 
set significantly exceeded that of the positive set, the same 
amount of negative data was randomly sampled from the neg- 
ative set to balance the number in both sets. The dataset of 
103 430 base positions with the genomic features (51 715 

positive and 51 715 negative sets) were randomly split into 

two groups for training and testing sets in a ratio of 8:2, 
respectively. 

Model training 

To train the model, we employed a gradient-boosted decision 

tree algorithm (XGBoost) ( 14 ), one of the widely used ma- 
chine learning algorithms, implemented in Python ( 15 ), since 
the trained model showed better performance than models 
trained with the other machine learning algorithms, namely 
logistic regression and random forest, as described later. The 
hyperparameter set of the model (max_depth = {3, 4, 5, 6}, 
learning_rate = {0.1, 0.01, 0.001}, gamma = {0, 0.1, 0.01}, 
subsample = {0.5, 0.8, 1}, and colsample_bytree = {0.5, 
0.8, 1}) was optimized using a grid search and 5-fold cross- 
validation with the training set. The best parameter set was 
selected when it led to the highest accuracy. The model was 
trained using the training set with the best hyperparameter 
set and evaluated using the test set. Model accuracy was eval- 
uated using the area under the receiver operating characteris- 

tic curve (AUC) and Matthew’s correlation coefficient (MCC). 
The MCC is defined as: 

MCC = ( C PU × C PR − PU × PR ) / 
√ 

( CP U + P U )( CP U + P R )( CPR + PU )( CPR + PR ) 

where CPU, CPR, PU and PR are the ‘correctly predicted 

unreliable region as unreliable,’ ‘correctly predicted reliable 
region as reliable,’ ‘predicted reliable region as unreliable,’ 
and ‘predicted unreliable region as reliable,’ respectively. The 
model accuracy trained with XGBoost was AUC = 0.994 and 

MCC = 0.964, which was higher than either that with logistic 
regression (AUC = 0.989 and MCC = 0.949) or with random 

forest (AUC = 0.993 and MCC = 0.959). 

Problematic regions for sequencing 

The data for genomic regions known to cause analysis arte- 
facts for common sequencing downstream analysis, such as 
alignment, variant calling, or peak calling, were obtained from 

the UCSC Genome Browser. The data originated from three 
datasets: (i) ENCODE Blacklist projects ( 16 ), which contains 
a comprehensive set of regions that are troublesome for high- 
throughput NGS aligners; (ii) Genome-in-a-Bottle project ( 1 ), 
which contains defined regions in which it is difficult to make 
a confident call due to low coverage, systematic sequencing 
errors, and local alignment problems and (iii) NCBI Genetic 
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Figure 2. Workflow of the derivation of the UNMET score. The CDS sites on which genomic variants were located were classified into unreliable and 
reliable sites. Ten genomic feature vectors of the sites were used for training in machine learning to build a model that discriminates unreliable sites 
from reliable sites. All CDS sites were evaluated with the classifier model, and the percentile rank score of the raw score for each site was assigned as 
the UNMET score. 

Testing Reference Materials (GeT-RM) ( 17 ), which contains 
highly homologous gene- and exon-level regions difficult or 
impossible to analyse with standard Sanger or short-read NGS 
approaches and are relevant to current clinical testing. Since 
those datasets were mapped on the genome build hg19, the 
genomic coordinates for the regions were converted to those 
in the genome build hg38 using CrossMap software ( 18 ). 

Test exome sequencing 

Genomic DNA (NIST ID, HG005; RM Number, RM8393; 
Coriell ID, NA24631), purchased from the National Institute 
of Standards and Technology (Gaithersburg, MD), was used 

for NGS library construction using a NEXTflex Rapid DNA- 
Seq Kit 2.0 (PerkinElmer, Inc., Waltham, MA). Exome regions 
were enriched via hybridization with an IDT exome panel (In- 
tegrated DNA Technologies, Inc., Coralville, IA; The xGen Ex- 
ome Research Panel v2). NGS was performed on an Illumina 
NextSeq2000 with a 150 nt-paired-end mode. Variants were 
detected using a Genome Analysis Toolkit (GATK) version 3 

following the GATK Best Practices ( 19 ). The detected vari- 
ants were evaluated by comparing them to the ground truth 

variant set using Haplotype Comparison Tools version 0.3.15 

( https:// github.com/ Illumina/ hap.py ), and each variant was la- 
belled as true positive (TP), false positive (FP), or false negative 
(FN). 

Results 

Derivation of the UNMET score 

The accuracy of variant calling in high-quality NGS reads 
is determined by their mapping accuracy onto the refer- 
ence genome sequence. Genome mappability, a measure of 
the uniqueness of regions of interest in the genome, is one 
of the most critical factors affecting the accuracy of vari- 
ant identification via short-read NGS, but its degree of cor- 
relation with NGS accuracy is not clear ( 8 ,20 ). Thus, a 

reductionistic approach to define difficult-to-sequence re- 
gions would be inappropriate. Instead, we tried to spec- 
ify difficult-to-sequence regions using an inductive approach 

based on experimentally accumulated NGS data as described 

below. 
We used the gnomAD variant dataset, which consists of 

genome sequencing data from > 76 000 people with more than 

6 million single nucleotide variants (SNVs) in the coding re- 
gions with allele frequency and variant quality values. We first 
analysed the SNV data and its quality information in gno- 
mAD version 3.1. To simplify the analysis, we adopted the 
FILTER flag (to pass or filter out data following the quality 
check rule of gnomAD). As the first step, we focused only on 

protein-coding sequences (CDS), which resulted in 34 313 995 

base positions in the GRCh38 human genome annotation for 
further analyses (Figure 1 A). Of these positions, 6 335 080 

sites (18.5%) were identified to have at least one SNV regard- 
less of the pass / filtered flags. Among the sites with variants, 
approximately 94% consisted of only passed variants while 
5.3% contained filtered-out variants, and 0.7% contained re- 
current filtered-out variants. The distribution of the VD and 

VFR within the 25-bp window size is shown in Figure 1 C. The 
mean value of VD was 0.194, where 4.85 variants were ob- 
served within the flanking region, and the mean value of VFR 

was 0.013, indicating that an average of 1.3% of the variants 
observed in the same regions were filtered out. Approximately 
83% of the variant sites had a VFR of 0, with no variants fil- 
tered out within both 12-bp flanking regions, indicating that 
the position could identify variants with high reliability. Con- 
versely, 56 639 variant sites in CDS regions (0.8% of the vari- 
ant sites) had a VFR of 1.0, indicating that all variants around 

these sites were filtered out, making the variants in these re- 
gions difficult to identify via short-read NGS alone. To obtain 

a benchmark reflecting the accuracy of variant identification 

using short-read NGS for each position of all CDSs at single- 
nucleotide resolution, we employed a machine learning ap- 
proach to generate a metric designated ‘ UN ified MET ric for 

https://github.com/Illumina/hap.py
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Table 1. The feature importance of the XGBoost model 

Feature Importance 

GenMap mappability 0.444 
Segmental duplication 0.250 
gnomAD coverage-depth 0.177 
Tandem repeats 0.068 
Structural variations 0.023 
Homopolymers 0.019 
GC content 0.007 
Low complexity 0.006 
Sequence entropy 0.003 
RepeatMasker 0.003 

unmappable, undetectable, and unreliable genomic loci’ (UN- 
MET) score for short-read NGS. 

The workflow of the derivation of the UNMET score to dis- 
criminate unreliable sites from reliable sites is shown in Fig- 
ure 2 . To train and test the score, we selected two sets of vari- 
ant sites: (i) the positive set (‘unreliable sites’), which consisted 

of 51 715 variant sites with a VFR = 1.0 and VD ≥ 0.12. 
These sites had at least three variants observed within the 25- 
bp stretches of the sequence, and none of the variants passed 

the quality control filters. (ii) The negative set (‘reliable sites’), 
which comprised an equal number of randomly selected vari- 
ant sites with a VFR = 0.0 and VD ≥ 0.12. We did not ob- 
serve any difference in the proportion of global minor allele 
frequency (gMAF) of the variants between the positive and 

negative sets ( Supplementary Table S1 ). We randomly split the 
dataset into 80% for training and 20% for testing the ma- 
chine learning protocol. We extracted 10 sequence-based fea- 
tures, such as genome mappability, homopolymers, tandem- 
repeat information as well as the standardised genome cover- 
age depth in gnomAD data as the feature vectors (see Materi- 
als and methods for the details; Figure 2 and Supplementary 
Figure S2A ). We implemented a gradient boost decision tree 
algorithm, XGBoost ( 14 ), to train the model to discriminate 
between unreliable and reliable sites. Eventually, by evaluat- 
ing the model with the testing set, we observed that the clas- 
sifier could split the sites with high accuracy (AUC and MCC 

of 0.994 and 0.962, respectively; Supplementary Figure S2B ). 
The most important feature of the model was mappability 
(0.44), followed by segmental duplication (0.25), genome cov- 
erage depth of gnomAD data (0.18), and tandem repeat (0.07) 
(Table 1 ). 

To evaluate the contribution of individual sequence fea- 
tures to the performance of discrimination, we performed a 
univariate analysis. Among the single features, genome cov- 
erage depth and mappability showed the best performance, 
followed by segmental duplication and structural variation 

features ( Supplementary Table S2 ). This shows that these fea- 
tures are highly correlated with each other ( Supplementary 
Figure S2 ). The remaining six features, including tandem re- 
peat, homopolymer tract, and %GC content, showed poor 
performance. Nevertheless, none of the single features outper- 
formed the model trained with all the features. 

Because highly repetitive sequences were frequently in- 
cluded in the regions of low mappability, the 25-bp stretches 
around the variant sites with high sequence similarity might 
have been contained in both the training and test sets, which 

may have caused information leakage in the training pro- 
cess. Thus, we verified this using a test set that excluded 

variant sites with 80% or more sequence similarity within 

the 25-bp stretches compared to those in the training set 
( Supplementary Table S3 ). The AUC and MCC of the test 
set were 0.991 and 0.952, respectively. The slightly lower ac- 
curacy metrics indicated that information leakage due to se- 
quence similarity around the sites was minimal. 

We then applied the prediction model to all CDS positions 
to assign the prediction scores, which were converted to nor- 
malised percentile rank scores, defined as UNMET scores, 
with a value close to 1.0, indicating that the base position 

was unfavourable for accurately identifying variants with high 

confidence. 

Evaluation of the reliability of the UNMET score 

Next, we evaluated the reliability of the UNMET score by 
comparisons with established measurement scores for the 
quality of each variant or dataset in genomic regions known 

to be difficult for sequencing or detecting genome variants. 

1. Allele-specific variant quality score log-odds 
(AS_VQSLOD) 
For evaluating the reliability of the UNMET score, we first 
compared the UNMET scores for each genomic position to 

the other measurements for variant quality. First, we com- 
pared the UNMET score to the AS_VQSLOD score, a vari- 
ant quality measurement adopted in gnomAD v3. As ex- 
pected, the UNMET score displayed an inverse correlation 

to the AS_VQSLOD score (Figure 3 A). The AS_VQSLOD 

values decreased as the UNMET score reached close to 1, 
and most variants with an UNMET score > 0.98 were fil- 
tered out, whereas most variants at positions with an UNMET 

score < 0.90 had passed, suggesting that the CDS positions 
with a high UNMET score, especially > 0.97, were unreliable 
for genomic variant identification using short-read NGS. 

2. The genome in a bottle consortium (GIAB) benchmark re- 
gions 
We analysed the distribution of UNMET scores in the CDS 
positions inside the benchmark and difficult-to-sequence re- 
gions in the human reference genome DNA described previ- 
ously ( 1 ,3 ). We compared the distribution of UNMET scores 
in the benchmark regions provided by GIAB with the diffi- 
cult regions where genomic variants are not reliably identi- 
fied owing to technical difficulties, such as repetitive sequences 
(Figure 3 B). The UNMET scores in the benchmark regions 
were broadly distributed but most were < 0.96. Notably, the 
score in the difficult regions showed a bimodal distribution, 
and one of the peaks had an UNMET score between 0.98 and 

1.0, indicating that the score reasonably captured the genomic 
regions where false or misidentified genomic variants were 
prevalent. However, the other peak skewed towards lower 
UNMET scores for these difficult regions. 

To further explore these variations, we examined the UN- 
MET score distributions within each stratification of GIAB 

difficult regions, including regions with: (i) low mappability 
and segmental duplication, (ii) tandem repeats and homopoly- 
mers, (iii) bad promoters, (iv) other difficult regions and (v) 
%GC content < 25% or > 65% (Figure 3 B). Notably, the 
distribution within low mappability or repeat regions was 
biased towards higher UNMET scores, indicating reliabil- 
ity in these regions. In contrast, regions with low and high 

%GC content were skewed towards the lower side. In line 
with the gnomAD dataset, the frequently filtered-out variants 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1140#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1140#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1140#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1140#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1140#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1140#supplementary-data
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Figure 3. Evaluation of the reliability of the UNMET score. (A) 2D distribution plot of the UNMET score (x-axis) and AS_VQSLOD score (y -axis). T he main 
panel depicts boxplots of AS_VQSLOD distributions in each UNMET score bin. (B) UNMET distribution in the benchmark (upper) and difficult regions 
designated by the GIAB dataset (lower). The datasets are as follows: Low mappability & Segmental duplications, regions with low mappability or 
segmental duplications; TRs & Homopolymers, merged all tandem repeats and homopolymers with 5-bp flanking regions; B adP romoters, transcription 
start sites or first e x ons that ha v e sy stematically lo w co v erage; Other dif ficult regions, miscellaneous dif ficult regions, including highly v ariable cop y 
numbers in the population, such as major histcompatibility complex (MHC), T-cell and B-cell receptors, and killer-cell immunoglobulin-like receptors 
(KIRs); GCcontent < 25% or > 65%, %GC content < 25% or > 65% with 50-bp flanking regions. (C) UNMET distribution in CDS position with variant 
density = 0. (D) UNMET distribution in the stratified problematic regions for NGS in the six datasets from the ENCODE Blacklist ( 16 ), GIAB ( 22 ) and 
NCBI GeT-RM ( 17 ), which were implemented in the UCSC Genome Browser ( https:// genome.ucsc.edu/ ). 

were not enriched in the regions with low and high %GC 

content compared to those with low mappability or repeats 
( Supplementary Figure S3 ). This indicates that these regions 
may not be inherently unreliable for variant identification. 
Although low and high %GC regions are known to cause 
underrepresented sequencing reads / counts in short-read NGS 
( 21 ), our results indicate that they do not substantially affect 
the sequencing error rate. Therefore, it appears reasonable to 

include these regions within benchmark areas, rather than cat- 
egorising them as difficult regions. 

3. No variant detected regions in gnomAD 

Third, we analysed the CDS positions with a VD = 0 (956 205 

base positions in approximately 2.7% of all the CDS posi- 
tions), which denotes positions with no identified SNVs in the 
gnomAD v3.1 dataset. There are three possible explanations 
for regions to have a VD = 0: first, the region could be essen- 
tial for some biological functions, making its sequence rela- 
tively conserved. Second, a larger population size ( > 76 000) 
could be required to observe variants in these regions. Third, 
SNVs in these regions could be completely undetectable using 
short-read NGS. All three situations may occur in real-world 

data. As per the definition, VFR could not be calculated for re- 
gions with VD = 0; therefore, these regions were not included 

in the training set. We observed a skewed UNMET score dis- 
tribution toward higher scores in the VD = 0 regions (Figure 
3 C), with ∼30% of positions having an UNMET score > 0.96 

and consistently overlapping to low mappability and segmen- 
tal duplication, suggesting that variants in these regions could 

not be properly identified owing to technical reasons. How- 
ever, without information on VD = 0 regions, the training set 
may underestimate regions with lower UNMET scores. 

4. Pre viousl y reported ‘difficult-to-sequence’ regions 
We analysed the distribution of UNMET scores at nucleotide 
residues in regions previously reported as problematic for 
NGS or Sanger sequencing. These regions were provided 

by the UCSC Genome Browser ( https:// genome.ucsc.edu/ ), 
including ENCODE Blacklist ( 16 ), NIST GIAB ( 22 ), and 

NCBI GeT-RM ( 17 ) (Figure 3 D). Among the problematic 
regions, the median values of the UNMET scores ranged 

around 0.97, indicating that this value was a threshold of 
error-proneness. Although the classification of GIAB bench- 
mark regions and difficult regions did not illustrate a sharp 

https://genome.ucsc.edu/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1140#supplementary-data
https://genome.ucsc.edu/
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Figure 4. (A) Distribution of UNMET scores on indel sites. All the indels in CDS sites were observed in the gnomAD v3.1 database (left), and two or 
more indels were observed but all of them were filtered out (right). (B) Practical evaluation of the UNMET score with exome sequencing data of the 
platinum genome sample. The violin plots display the distributions of the UNMET scores for sites with true positive (TP), false positive (FP) and false 
negative (FN) variants, respectively, when those sites were compared with the ground truth variants in the GIAB benchmark set. 

discrimination of UNMET scores, it was consistent with 

the threshold of the determined UNMET score (Figure 3 B). 
The genomic regions longer than 50-nt contiguous bases 
with an UNMET score ≥0.97 are listed in Supplementary 
Table S4 , which can be considered a list of ‘difficult-to- 
sequence’ regions. The list consists of 14121 CDS exons from 

1133 genes, and of those, 147 were disease-associated genes 
( Supplementary Table S4 ). 

5. Indel variant sites in gnomAD 

Next, we focused on CDS positions with small 
insertion / deletion variants in the gnomAD dataset be- 
cause the indel variants were also expected to affect the 
mapping quality of the short reads. We identified 336 812 

indel variant sites in the CDS regions, regardless of whether 
they were passed or filtered out, and 7955 sites out of those 
had two or more indel variants filtered out (Figure 4 A). The 
mean UNMET score in the sites with recurrently filtered out 
indel variants (0.73 S.D. ± 0.30) was significantly higher than 

that in the remaining indel variant sites (0.53 S.D. ± 0.31; 
t -test, P -value < 1.0 × 10 

−300 ), indicating that the UNMET 

score could also discriminate the CDS positions with falsely 
detected indel variants. 

6. Real exome data of GIAB reference genome (HG005) 
We further evaluated the UNMET scores for real exome se- 
quencing of an individual sample and observed that it mim- 
icked a practical clinical sequencing situation. We used an up- 
dated short-read NGS (NextSeq2000, Illumina) because the 
gnomAD data were an aggregation of different sequencing 
conditions by different sequencing centres. Since the recent 
short-read NGS operates in a 2-colour mode, it is important 
to consider the possibility of a transition in detection fluores- 
cent colour mode, as the previous NGS system used a 4-colour 
mode. Thus, we performed exome sequencing of one of the in- 
dividual samples provided by the GIAB project designated as 
HG005 (Coriell ID, NA24631; NIST RM Number, RM8393), 
and the genomic variants were identified using a standard pro- 
tocol assisted by the GATK v3 variant caller also used in the 

gnomAD dataset. We then verified the variants observed in 

the GIAB benchmark region with the variants confidently de- 
tected using various sequencing methodologies ( 22 ). 

Following the reported variant data of HG005 ( 23 ), the 
ground truth variants in the benchmark region consisted of 
6913 homo- and 10 073 hetero-SNVs. We compared the SNVs 
that we identified independently using the ground truth SNV 

data and labelled them as TP , FP , and FN. For homo-SNVs, 
most of the variants exhibited high QUAL values and were 
correctly detected in our exome sequencing ( Supplementary 
Figure S4 and Supplementary Table S5 ). However, the QUAL 

values were slightly lower for hetero-SNVs than those for 
homo-SNVs, and the numbers of false-positive (209 SNVs) 
and false-negative variants (14 SNVs) were increased, indi- 
cating that the base positions with FP and FN variants were 
in error-prone sequence regions. The distribution of UNMET 

scores for the sites with heterozygous SNVs was significantly 
different among the TP , FP , and FN variants (Figure 4 B). No- 
tably, the sites of FP variants with high QUAL values also 

showed high UNMET scores. These results demonstrated that 
the UNMET score could predict the variant calling accuracy 
for each CDS position in the updated practical settings of ex- 
ome sequencing. 

Visualization of UNMET scores for evaluation of 
‘error-proneness’ of genomic residues in the exome 

regions for clinical NGS applications 

The UNMET score does not directly indicate sequencing er- 
ror rates like the Phred value; thus, we classified the UNMET 

score into ‘difficult-to-sequence, ’ ‘error-prone, ’ and ‘reliable’ 
regions via short-read NGS as described above. The UNMET 

score is defined as a normalised percentile rank score and thus 
cannot offer a clear boundary between error-prone and reli- 
able residues. To provide a quantitative rationale, we com- 
pared the distribution of UNMET scores in two datasets. The 
first dataset includes regions from the NGS DeadZone dataset 
provided by Mandelker et al. ( 24 ), where short reads can- 
not be unambiguously mapped to any positions in an exon 

or large stretches considered to be ‘highly error-prone.’ The 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1140#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkad1140#supplementary-data
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Figure 5. Examples showing the visualization of ‘difficult-to-sequence’ genes on IGV. All data required for visualization on IGV as well as the session file 
are a v ailable from Zenodo: https:// doi.org/ 10.5281/ zenodo.10061054 , aside from actual NGS e x ome data, which are included for confirmation of the 
consistency of the UNMET score with the actual NGS data under the running conditions emplo y ed at each laboratory. Panels exhibit examples of 
high-confidence genes ( IDS , panel A) and ‘difficult-to-sequence’ genes (panel B, IKBKG ; panel C, MUC1 ; panel D, RPGR ). 

second dataset encompasses the GIAB benchmark regions, 
where all variants are expected to be reliably detected. Ap- 
proximately 85% of the base positions in NGS DeadZone had 

an UNMET score ≥0.97, while 99% of the base positions in 

the benchmark regions had an UNMET score < 0.93. Consid- 
ering this situation, we visualized the UNMET score as a heat 
map, where difficult-to-sequence ( ≥0.97), error-prone (0.93–
0.97), and reliable ( < 0.93) residues are shown in red, yellow, 
and green, respectively, using Integrated Genomics Viewer 
(IGV, Figure 5 ) ( 25 ,26 ). In IGV, we also show several lines of 
information on genomic features together with the heat map 

of the UNMET score for helping users understand the reason 

why the region is scored as such: (i) gnomAD median cover- 
age absolute z-value, (ii) gnomAD exome coverage (lift over 
from hg19), (iii) GenMap mappability (window size, 150 nu- 
cleotides long; max number of mismatches, 2), (iv) tandem 

repeat, (v) homopolymeric region ( > 7 ×), (vi) LCRs and (vii) 
gene expression level in each exon obtained from the GTEx 

database ( https:// gtexportal.org/ ), which might improve rare 
variant interpretation ( 27 ). Additionally, we recommend vi- 
sualizing actual exome data obtained by each laboratory to 

confirm the consistency of the UNMET score with actual data 
under updated NGS conditions. For example, the exome data 
obtained in our NGS system (GIAB reference genome DNA, 
HG005, sequenced on a NextSeq2000 (Illumina)) are also pre- 
sented, as shown in the middle columns of Figure 5 . In the 

bottom part of Figure 5 , the following lines of information are 
given as supplements: exon–intron structure of genes, alterna- 
tive loci, structural variants, and segmental duplications (clas- 
sified by sequence similarity). Because a part of the informa- 
tion delivered by the bottom part is not reflected on the UN- 
MET score but is useful for considering the analytical validity 
of genes of interest via short-read NGS, we consider it highly 
informative to obtain these lines of information in a one-stop 

snapshot: structural variations, including recombination, du- 
plication, and large deletion, that could cause diseases in some 
cases although UNMET scores derived from short-read NGS 
data of healthy donors do not inform about these possibilities. 

Figure 5 demonstrates typical examples of visualization of 
analytical validity of genes that contain highly homologous 
regions to pseudogenes (Figure 5 B, for IKBKG ), tandem re- 
peats (Figure 5 C, for MUC1 ), or LCRs (Figure 5 D, for RPGR ). 
These results indicate that this visualization tool makes it 
easy to overview the landscape of the error-prone regions at a 
glance and helps understand the cause of sequencing difficulty. 

Discussion 

gnomAD is an indispensable data resource for human genet- 
ics, produced by the aggregation and harmonization of variant 
calls made by a well-controlled bioinformatics pipeline from 

a variety of large-scale sequencing projects. The variant data 

https://doi.org/10.5281/zenodo.10061054
https://gtexportal.org/


Nucleic Acids Research , 2024, Vol. 52, No. 1 123 

of gnomAD v3.1 was accumulated from 76156 genomes from 

unrelated individuals and generated using multiple short-read 

sequencing platforms at different sequencing centres. Thus, 
using variant calling data from gnomAD v3.1 was suitable for 
the evaluation of intrinsic variant calling errors, considering 
the local genome sequences and polymorphic nature of pri- 
vate genomes. This approach helps minimize the contribution 

of accidental NGS technical issues, as the extensive accumula- 
tion of data in gnomAD reduces their contribution. Although 

the occurrence of NGS errors has been vaguely explained by 
linking several plausible causes (mapping errors and specific 
features of genome sequence, etc.), the gnomAD dataset en- 
abled us to draw a solid picture of NGS error distribution via 
short-read NGS of the genome and sequence feature effects on 

NGS accuracy. 
When utilising NGS for diagnostic purposes, it is common 

to assess its analytical validity specifically for the genomic 
regions of interest. To address this, we devised the UNMET 

score, which is derived through machine learning using real- 
world human NGS data from over 70 000 healthy individ- 
uals in gnomAD v3.1. However, it is important to note that 
the UNMET score is considerably dependent on the version 

of the reference human genome sequence, aside from NGS 
running conditions (e.g. read length and DNA insert size in 

the library). Several variant-calling discrepancies of exome se- 
quencing exist owing to reference genome differences between 

GRCh37 / hg19 and GRCh38 / hg38 ( 28 ). Moreover, both ref- 
erence genome sequences contain false duplications even in 

medically relevant genes as clarified by analysis of haplotype- 
resolved whole genome assembly of the HG002 genome ( 29 ). 
Because the training and validation data of gnomAD used in 

this study was based on the human reference genome ver- 
sion GRCh38 / hg38, the current UNMET score is specific for 
this version of the human reference genome. Thus, UNMET 

scores for the false-duplicated regions in each genome assem- 
bly must be re-evaluated using an appropriate genome se- 
quence as a reference. If we accept the small uncertainty of 
reliability of the obtained UNMET score, we can calculate 
the UNMET score from only 10 genome sequence features 
using machine learning data in this study. Another limitation 

is that we focused specifically on protein-coding exons, de- 
spite whole genome sequencing gaining popularity. An UN- 
MET score for whole genome sequencing would require a new 

training dataset for machine learning because the intergenic 
and intronic sequence features are quite different from those 
in the coding regions. 

Accurate clinical applications of NGS gene testing would 

require the identification of unexplored or undetermined re- 
gions by NGS in advance. However, because of the broad 

target sequences to be tested, it is difficult for clinicians and 

patients to estimate the missing regions by NGS in genetic 
testing. The UNMET score would make it easy to identify 
difficult-to-sequence regions in a gene of interest and thus 
judge whether we should carry out additional ancillary anal- 
yses to confirm the sequences of these regions. In conclusion, 
the UNMET score can serve as a reliable measure for assessing 
the sequencing validity of genetic testing through short-read 

NGS at the single-nucleotide resolution. 

Data availability 

The UNMET score mapping data can be visualized in 

Integrated Genome Viewer (IGV), and the session file 

is freely available from Zenodo: https:// doi.org/ 10.5281/ 
zenodo.10061054 . The exome sequencing data of human ref- 
erence genome DNA (HG005) were deposited to DDBJ Se- 
quence Read Archive (DRA, https:// www.ddbj.nig.ac.jp/ dra/ 
index.html ) under the run accession ID of DRR415794 (Sub- 
mission Accession ID, DRA015095). 
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