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Abstract 

To gain a better understanding of the complexity of gene expression in normal and diseased tissues it is important to account for the spatial 
context and identity of cells in situ . State-of-the-art spatial profiling tec hnologies, suc h as the Nanostring GeoMx Digital Spatial Profiler ( DSP ) , 
no w allo w quantitativ e spatially resolv ed measurement of the transcriptome in tissues. Ho w e v er, the bioinf ormatics pipelines currently used to 
analyse GeoMx data often fail to successfully account for the technical variability within the data and the complexity of experimental designs, thus 
limiting the accuracy and reliability of the subsequent analysis. Carefully designed quality control w orkflo ws, that include in-depth experiment- 
specific in v estigations into technical v ariation and appropriate adjustment f or such v ariation can address this issue. Here, w e present standR , an 
R / Bioconductor package that enables an end-to-end analysis of GeoMx DSP dat a. W ith four case studies from previously published experiments, 
we demonstrate how the standR workflow can enhance the statistical power of GeoMx DSP data analysis and how the application of standR 

enables scientists to de v elop in-depth insights into the biology of interest. 
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uantitative gene expression analysis of disease systems us-
ng technologies such as bulk RNA-seq have led to many
iomarker discoveries and mechanistic insights through the
pplication of differential expression, transcriptional network
nd pathway analysis methods ( 1 ,2 ) . Single-cell RNA se-
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quencing added further resolution to transcriptomics stud-
ies by enabling the investigation of the whole transcrip-
tome at a single cell level, fueling the identification of many
novel cell states ( 3 ,4 ) . New generation spatial molecular
measurement platforms that incorporate spatial information
with existing imaging and sequencing technologies allow
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in-depth and fine-grained analyses, such as cell–cell interac-
tions, cellular neighbourhood analysis and cell type decon-
volution ( 5 ,6 ) . Further, these technologies enable spatially
resolved questions, such as the identification of differen-
tial expression between different parts of a tumour, between
tissues with and without a particular cellular infiltrate, or
of tissues adjacent to and distant from certain anatomical
features. 

Amongst the spatial platforms, Nanostring’s GeoMx Digi-
tal Spatial Profiler ( DSP ) ( 7 ) is one of the more robust plat-
forms for Formal-Fixed Paraffin-Embedded ( FFPE ) tissues
( 8 ) , providing regions of interest ( ROIs ) level-selection meth-
ods, with ROIs ranging from tens to hundreds of cells. The
FFPE compatibility allows the GeoMx DSP to be applica-
ble to clinical and pathological investigations using banked
FFPE archival tissues, thus enabling retrospective clinical co-
hort studies. However, the generation of DSP data involves
placing tissue samples on glass slides, where different slides
may introduce technical variations to the data, becoming a
source of batch effects. Batch effects can dominate the vari-
ation in the data, hindering the identification of biological
variations of interest, leading to false discovery ( 9 ) . Besides
the sampling biases, like unbalanced cell count and segment
( area of interest ) size, other technical factors may also in-
clude variability of FFPE materials or tissue segments from
patients, including factors such as the age of materials as well
as other technical variation during tissue fixation, such as fix-
ation time and tissue preparation, all of these could lead to un-
wanted sample-to-sample variations. Taking these factors to-
gether with other technical variations that are commonly seen
in bulk or mini-bulk RNA-seq experiments ( e.g. sequencing er-
rors and sequencing depth or library size ) ( 10 ) , it is necessary
to perform data quality control ( QC ) and filtering and ap-
propriate normalization or batch correction when analysing
GeoMx DSP data. Moreover, it has been long-established that
linear-based methods such as Limma ( 11 ,12 ) and edgeR ( 13 )
are more appropriate for carrying out differential expression
( DE ) analysis compared to traditional T-test ( 14 ) , especially
for datasets with limited sample size. Methods must also cor-
rectly account for the complexity of experimental designs in
spatial data, where multiple samples may be taken from one
patient, or adjacent regions in a single tissue. Taken together,
it is essential to construct a computational workflow that can
carry out comprehensive QC, data normalization and can be
compatible with complex experimental designs and sophisti-
cated DE methods. 

Based on our literature review of publications with Ge-
oMx DSP transcriptome datasets from 2020 to July 2022
( Figure 1 A ) , the current most generic approaches rely heav-
ily on the default quality control of the platform as well as
standard paired T-tests ( Figure 1 D ) , which may be inade-
quate to handle the complexity of the experiment. To this
end, we have developed a Bioconductor R package standR
( S patial t ranscriptomics a nalyses a n d d ecoding in R ) to as-
sist the QC, normalization and batch correction, differential
expression analysis, and downstream analysis of Nanostring
GeoMx transcriptomics data. Here we introduce standR and
describe the package’s workflow and utility in analysing Ge-
oMx DSP datasets. We have also performed a comprehensive
comparison of results from each stage between the standR and
the current generic GeoMx DSP workflow on four publicly

available GeoMx datasets. 

 

Materials and methods 

Nanostring GeoMx DSP data pre-processing 

The Nanostring GeoMx datasets used in this study are 
publicly available and were downloaded from Nanostring’s 
Spatial Organ Atlas ( https:// nanostring.com/ products/ geomx- 
digital- spatial- profiler/spatial- organ- atlas/). As the default 
read-out from the GeoMx experiment, probeQC count is used 

as the input for both the generic and standR workflow. Ini- 
tial data processing and sample-based QC were conducted us- 
ing standR , any ROIs that were assigned with QC flags indi- 
cating low qualities (including ‘Low Percent Aligned Reads’,
‘Low Percent Stitched Reads’, ‘Low Surface Area’, ‘Low Nu- 
clei Count’) were excluded from further analysis. Negative 
probes are also removed from the dataset in the analyses since 
they were used in the generation of probeQC count with an 

outlier-detection strategy. 

Count data transformation 

ProbeQC count is transformed into log-transformed counts- 
per-million (logCPM) count. Compared to raw count, the 
logCPM count offers several advantages, such as stabilizing 
the variance across different expression levels and simplifying 
the interpretation of fold changes between samples, and it is 
required for the statistical modelling of limma voom to allow 

standard linear modelling ( 11 ,12 ), which is used in the standR 

pipeline. The transformation is done by using the cpm func- 
tion from the edgeR package ( 13 ) with a default prior count 
of 0.25 to avoid log of zero. 

Quality control 

For the gene filtering, the generic workflow removes genes 
with raw count smaller than the ROI-specific limitation of 
quantification (LOQ) in all ROIs, while the standR workflow 

first calculates a threshold by taking the logarithm of the sum 

of a minimal count (default is 5) divided by the median of li- 
brary size and 2 divided by the mean of library size within 

the standR package’s addPerROIQC function. This function 

removes genes which have logCPM count smaller than the cal- 
culated threshold in 90% of the ROIs. The default criterium 

for filtering used is 90% of all ROIs which aims to identify 
genes that are not expressed in most of the ROIs. The as- 
sumption is that these low expressing genes makes minimal 
contributions to the downstream statistical analyses (e.g. DE),
and removing them would improve the statistical power of 
the analyses. The QC results were assessed by visualizing the 
mean-variance distribution of genes (Figure 2 B), generated us- 
ing voom from the limma R package with the linear modelling 
equation: model.matrix( ∼0 + TissueGroups) . 

For sample filtering: In the standR workflow, the distribu- 
tion of both library size and cell count were taken into ac- 
count, we used a common library size threshold of 50 000 and 

cell count threshold of 50 so that lower-quality ROIs with very 
small library sizes and very small cell count in the distribu- 
tion histograms can be removed. To quantify the differences 
between the original ROIs, filtered ROIs and retained ROIs,
we fit a linear model between log-scaled mean expression and 

the variance of the gene expressions, and the fitted data were 
then used to calculate the residual sum of squares (RSS). To 

verify the genes filtered by the generic workflow in the brain 

dataset, brain tissue-specific (including cerebellum, cerebral,

https://nanostring.com/products/geomx-digital-spatial-profiler/spatial-organ-atlas/
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Figure 1. Literature R e vie w and the standR w orkflo w. ( A ) Bar plot shows the increasing trend of publications with Nanostring GeoMx DSP datasets. 
( B–D ) Bar plots show the preferential choices of QC, normalization and differential expression methods in publications. ( E ) Diagram demonstrates the 
comparison between standR and generic w orkflo ws. ( F ) Flow diagram shows the standR workflow. 
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ippocampal and midbrain) regionally elevated genes were
btained from the Human Protein Atlas ( 15 ). 

ormalization 

ifferent normalisation methods are available in the standR
ackage via the geomxNorm and geomxBatchCorrection
unctions. When performing RUV4 batch correction, we first
dentified 200 negative control genes using the findNCGs
unction from the standR package. The geomxBatchCorrec-
ion function was then applied where the parameter k, which
ndicates the unwanted factor to be used, was set to 3 for the
iabetic kidney and brain data, and 2 for the lymph node data.
he weight matrices from RUV4 were then included in the de-
ign matrix of the linear model as covariates when performing
E analysis. 

ssessing normalisation performance 

o perform PCA and RLE analysis, the drawPCA and plotR-
Expr functions from the standR package were used with de-

ault settings. To calculate the similarity statistics for assess-
ng normalizations, adjusted rand index, jaccard index, mirkin
istance and silhouette coefficient were calculated using the
lotClusterEvalStats function from the standR package be-
ween the first two principal components of the data and their
lide and tissue type annotations, which indicate batch effect
nd biological effect, respectively. 

ifferential expression analysis 

n the generic workflow, we performed differential expression
DE) using either the paired T-test from the R package stats ,
r the linear-mixed model from the R package lmerTest ( 16 )
with model matrix: expression ∼ Group + (1 | SlideName)).

e follow DE with a multiple testing adjustment using the
Benjamini-Hochberg correction to identify statistically signif-
icant (FDR < 0.05) DE genes. In the standR workflow, dupli-
cateCorrelation from the limma R package were first used to
calculate the consensus correlation across patients to account
for patient variation as a random effect. The linear model was
then fitted to the appropriate experimental design containing
the biological factors of interest. DE was then performed for
specific contrasts of interest, including comparing abnormal
glomeruli in diabetic kidney ( n = 60) to glomeruli in normal
kidney ( n = 12); comparing B cell zone ( n = 24) to T cell zone
( n = 24) in lymph node; comparing longitudinal muscle layer
( n = 8) to circular muscle layer ( n = 20) in colon; and com-
paring cortical layer II / III ( n = 18) to hippocampus CA1 areas
( n = 13) in brain tissues. The resulting statistic was an em-
pirical Bayes moderated t -statistic, followed by multiple test-
ing adjustment was carried out with the Benjamini–Hochberg
procedure to identify statistically significant (FDR < 0.05) DE
genes. 

Gene-set over representation analysis 

The Molecular Signatures Database (MSigDB) gene-sets
( 17 ,18 ) data was obtained via the R package msigdbr . C5 and
the Hallmark gene-sets was then used in the over representa-
tion analysis. The enricher function from the R package clus-
terProfiler ( 19 ) was then used to perform the over represen-
tation analysis. Gene-sets with adjusted P -value smaller than
0.05 were considered as significantly enriched gene-sets. 

Implementation and availability 

The vignette includes a quick introduction of the standR
package is available in Bioconductor. A more complete
guide of using functions standR to analyse GeoMx dataset
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Figure 2. Gene and sample filtering by standR retains tissue rele v ant genes while removing low quality samples. Gene filtering (A, B), sample filtering 
(C, D). ( A ) Mean e xpression-v ariance of the genes across all the samples in each GeoMx dataset, colors denote if genes are remo v ed b y the gene 
filtering process of the standR or generic w orkflo w. Blue contour lines indicate data density. ( B ) limma-voom mean–variance relationship plots of genes 
across different biological groups in four GeoMx datasets (see methods). red line: lowess regression, legend as per in (A). ( C ) plot of cell count against 
total detection for each ROI in the diabetic kidney dataset, colors depicting the distributions of ROIs for individual slide annotation of the R OIs. R OIs with 
less than 50 0 0 0 tot al detection count (red dot ted line) filtered out. ( D ) Af ter sample filtering, the mean e xpression-v ariance plots of gene distribution 
bet ween st andR-filtered or ret ained samples (right) f or either diabetic kidne y (top) and colon (bottom) datasets w ere sho wn. T he linear regression of 
genes of filtered (blue), retained (green) or unfiltered samples were plotted showing the retained samples maintaining the mean–variance relationship in 
the data while those samples filtered are different. 

 

 

 

 

 

 

 

 

 

 

 

is hosted on Github via: https://davislaboratory.github.io/
GeoMXAnalysisWorkflow/. 

Results 

A comprehensive analysis workflow for Nanostring 

GeoMx DSP data: standR 

From a review of the published studies from January 2020 to
July 2022, we observed that there is a trend to use the com-
bination of ProbeQC and limitation of quantification (LOQ)
filtering strategy to conduct data quality control (QC) (Fig-
ure 1 B). ProbeQC is the default data processing method pro-
vided with GeoMx DSP data, where negative probes are used
to detect and remove outliers in the dataset. LOQ is a metric
calculated based on the distribution of negative probes and
is used as a proxy of the quantifiable limit of gene expres- 
sion for each tissue fragment ( 7 ). After QC, the data is typ- 
ically scaled using third quantile (Q3) normalization to ac- 
count for technical variation in the dataset (Figure 1 C). Most 
commonly, differential expression (DE) analysis is performed 

using standard t-test or linear mixed model (LMM) (Figure 
1 D). Based on these and for ease of comparison in this study,
we define a generic workflow composing these commonly 
used analysis steps: probeQC and LOQ filtering for data QC,
then a Q3 normalisation of the data, followed by identifica- 
tion of differentially expressed genes using a t-test or a LMM 

(Figure 1 E). 
In this study we proposed a refined analysis workflow for 

Nanostring GeoMx DSP data, which we believe is more suit- 
able for spatial contexture analysis and the complex exper- 
imental designs typically found in Nanostring GeoMx DSP 

https://davislaboratory.github.io/GeoMXAnalysisWorkflow/
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xperiments. Here we present the standR analysis workflow
hich consists of recommended strategies for each step (Fig-
re 1 F) in a sequential manner. 
The workflow is built upon the standard data infrastruc-

ure for spatial data within the R / Bioconductor community,
amely SpatialExperiment ( 20 ). This offers several distinct ad-
antages. Firstly, adopting the SpatialExperiment infrastruc-
ure provides users with a robust and reliable framework for
anaging and analysing spatial transcriptomics data. By lever-

ging the comprehensive functionalities of SpatialExperiment ,
tandR offer users the ability to explore the complex relation-
hips between gene expression and spatial location. Secondly,
sing the SpatialExperiment data structure ensures compati-
ility with a wide range of Bioconductor tools, allowing re-
earchers to incorporate state-of-the-art algorithms and an-
lytical approaches into their spatial transcriptomics work-
ows, enabling comprehensive exploration of different spatial
ranscriptomic landscapes of interest. 

First up in the workflow is QC. In this stage, our approach
ims to identify genes that are lowly expressed in over 90%
f the regions of interest (ROIs), such genes are then removed
rom the analysis because genes with constantly low expres-
ion are unlikely to be determined as significantly differen-
ial expressed genes given their inadequate significance power
 21 ). Subsequently, ROIs with low cell count and / or low total
etection count are considered as low-quality tissue fragments
nd filtered from the analysis to avoid bias due to sample qual-
ty in the downstream comparisons. 

After QC, suitable normalization method is required due to
ariation within the Nanostring GeoMx data can be driven by
arious complex factors, including the desired biological fac-
or such as diseased and control groups or different tissue / cell
ype groups, or unwanted technical factors such as slide vari-
tions (datasets may have each slide containing individual or
ultiple patient samples), tissue microarray cores differences,
ifferent experiment runs or sequencing depth variation (Sup-
lementary figure S1). In such cases where batch effects are
bserved, it is recommended to apply an appropriate batch ef-
ect correction method in the workflow to remove unwanted
ariation so that fair comparisons between biological groups
an be established. Finally, in the standR workflow, DE work-
ows such as limma-voom ( 11 ,12 ) or edgeR ( 13 ) are preferred
nstead of standard t-test or LMM, as these methods have been
hown to be more appropriate for obtaining accurate DE re-
ults from complex experimental designs ( 14 ). 

omparison between standR and a generic 

orkflow of commonly used analytical processes 

o demonstrate the advantages of using the standR analysis
orkflow, here we applied both standR and generic work-
ows to analyse four publicly available Nanostring GeoMx
SP datasets from the Spatial Organ Atlas ( 22 ). Results gener-

ted at corresponding stages from two workflows are system-
tically compared. The public datasets used are from human
iabetic kidney, lymph node, colon and brain tissues, respec-
ively, using the whole transcriptome atlas (WTA) panel for
eoMX DSP ( > 18000 genes). 

tandR gene filtering approach retains tissue relevant genes 
he basic principles of gene filtering in both workflows are

he same: a gene is removed when its expression is smaller
han a certain threshold. However, the generic workflow uses
the distinct LOQ, which is calculated based on the geometric
mean of the negative probes measured in the tissue fragments
of each ROI separately, while standR calculates an overall ex-
pression threshold based on both the library size and the min-
imum count requirement for all genes. Comparing the filter-
ing results for all four datasets tested, the generic workflow
tends to remove more genes from the analysis than standR
(Figure 1 A and B, supplementary figure S2 and supplemen-
tary file 1). In the diabetic kidney and lymph node datasets,
standR removed markedly fewer genes than the standard fil-
tering, though the genes it did remove were largely also re-
moved by the generic workflow. However, in the other two
datasets (colon and brain), the generic removed a substantial
proportion of genes, (5.94% and 37.33% respectively), while
standR did not remove any genes (Supplementary figure S2B).
Our comparison also shows that genes filtered by standR are
outliers across all ROIs for the mean expression-variance dis-
tribution while the generic workflow may also remove genes
with medium level of mean expression and variance (Figure
2 A). For example, in the brain dataset, the generic work-
flow removed some tissue-relevant genes, such as MDGA1
and CLMP (Supplementary figure S3), which may lead to loss
of meaningful biological insight. Based on the brain-specific
RNA-seq data from the Genotype-Tissue Expression (GTEx)
database ( 23 ), both MDGA1 and CLMP are expected to be
expressed in the cerebral region of human brain (Supplemen-
tary figure S3). Notably, CLMP is a membrane protein coding
gene where the expression of the CLMP gene was reported
in the developing cerebral neocortex and other brain areas
and might regulate aspects of synapse development and func-
tion in the brain ( 24 ,25 ). Similarly, MDGA1 gene encodes a
membrane protein, which has a role in cell adhesion, migra-
tion, and axon guidance and, in the developing brain, neu-
ronal migration ( 26 ,27 ). We used linear models to investigate
if the standR -filtered genes are biologically significant (Fig-
ure 2 B). By taking into account biological factors as covari-
ates in the model, it can be seen that genes filtered by both
methods (including standR -filtered) are not highly variable be-
tween the groups. However, in the brain dataset specifically,
there are genes filtered by generic only which are highly vari-
able and potentially DE while no genes were filtered by the
standR workflow . Not unexpectedly , MDGA1 and CLMP are
amongst them (Supplementary figure S4B labelled), indicat-
ing that these two generic-filtered brain-related genes might be
differentially expressed between the biological groups in the
data. Furthermore, we used the Human Protein Atlas Brain
dataset ( 15 ) to identify genes that are removed by the generic
workflow in the brain dataset, resulting in a set of 231 (out
of 413) genes that are brain-specific regionally elevated genes.
This reinforce the strength of the standR workflow to be able
to retain tissue-relevant genes for downstream analysis. 

standR sample filtering is able to remove 

low-quality samples 

During Nanostring GeoMx experiments, low-quality ROIs,
such as those with low cell count, might be acquired during
the tissue sampling. In order to detect and flag such ROIs,
the Nanostring GeoMx NGS pipeline has pre-set cut-offs,
such as sequencing read count, sequencing saturation, mini-
mal nuclei count and minimal size of segment area ( 7 ,22 ). As
such, the generic workflow does not apply any further sam-
ple filtering. However, some low-quality ROIs might not be
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captured by these pre-defined cut-offs, we therefore included
a ROI QC step in the standR workflow, which uses the rela-
tionship between the cell count and the total detection dis-
tribution of each ROI to identify low-quality ROIs (Figure
2 C and supplementary figure S5). In this study we applied
a common threshold of 50000 total detection counts and 50
cells to identify low-quality ROIs for the four datasets, remov-
ing 11 ROIs in both the diabetic kidney and colon datasets
(Supplementary file 2). The mean-variance distribution of the
genes for the ROIs that were filtered suggests that genes within
them are lowly expressed and less variable compared to the
retained ROIs (Figure 2 D). Additionally, the residual sum of
squares (RSS) (see Materials and methods) between the fil-
tered ROIs and the unfiltered data (36341.41 and 96879.5)
is much higher than the RSS between the retained ROIs and
the unfiltered data (0.1185 and 4.371) (Figure 2 D), indicat-
ing that standR filtered ROIs that are very different from the
other ROIs in these two datasets. Taken together, this suggests
that the standR ROI QC strategy provides an additional fil-
ter for low-quality ROIs, supporting a more-accurate down-
stream analysis. 

Comparison of normalization results 

Data normalization can adjust data to a comparable scale by
removing undesired biases, such as library size differences,
batch variations and other technical factors, allowing a bet-
ter estimation of the data. In the case of GeoMx data, the
experiments are usually composed of multiple slides and pa-
tient samples, which can lead to batch effects caused by dif-
ferences between slides. Furthermore, the heterogeneity and
density of cells in the selected ROIs can also lead to varia-
tion in library size. Other factors including the age of sam-
ples, or sample preparation steps can also introduce varia-
tion. It is therefore crucial to perform suitable normalization
to allow comparative analysis, such as differential expression
analysis, between groups. Technical variations can be visu-
alised in QC plots, such as relative log expression (RLE) plots,
which are sensitive to technical variations ( 28 ), and principal
component analysis (PCA) plots, which visualises the varia-
tion in the data by dimension reduction and investigate how
these variations are related to the factors in the experiment.
In the standR package, we provide implementations of differ-
ent normalization methods, including the ‘ trimmed mean of
the M values’ (TMM) from the edgeR ( 13 ) and the ‘ median
of ratios’ from DESeq2 ( 29 ), both of which are established
data normalization method for bulk RNA-seq data. Similarly,
established batch correction methods including ‘Removal of
Unwanted Variation 4 

′′ (RUV4) ( 30 ), ‘ Remove Unwanted
Variation Using Control Genes ’ (RUVg) ( 31 ) and ‘ Remove
Batch Effect ’ function in limma ( 11 ) are also implemented
in standR. 

PCA was performed on the raw data of the four GeoMx
dataset tested. We identified confounding batch effects due to
slide differences in the brain, lymph node and diabetic kidney
datasets, while no batch effects were identified in the colon
(Supplementary figure S6). The generic workflow uses Q3 nor-
malization, which is a method using the 75th quantile as nor-
malised factor for each ROI. In the batch-confounded datasets
(i.e. brain, lymph node and diabetic kidney), the PCA of Q3-
normalised data suggest that the batch effect due to the differ-
ent slides has not been removed, nor is the variation explained
by tissue types (Figure 3 A, left and supplementary figure S7). 
Using the standR implemented normalisation functions,
RUV4 normalization was applied to batch affected datasets 
(i.e. diabetic kidney, lymph node and brain), while TMM nor- 
malization was applied to the colon dataset. Results as shown 

in Figure 3 A (right) suggested improved grouping based on 

tissue type (bottom, biological) in the brain dataset while re- 
ducing the grouping based on slide (top). Results for RUV4 

normalisation on diabetic kidney and lymph node datasets are 
shown in Supplementary figure S7. These suggest that by using 
appropriate methods provided by standR , batch effects can be 
appropriately addressed. Further evidence of appropriate nor- 
malisation outcomes can be found in the RLE plots, which 

shows less technical variations for standR-normalised data as 
compared to Q3-normalised data from the generic workflow 

(Figure 3 B). This applies to all four-dataset tested, including 
the colon dataset, where batch effects are not observed (Sup- 
plementary figure S8). 

To quantify the performance of the normalization methods,
we calculated similarity statistics between the first two prin- 
cipal components of the data and data annotation (Figure 3 C 

and Supplementary figure S9, see Materials and methods). It is 
clear that normalised data from the standR workflow consis- 
tently score high in the statistics comparing biology (i.e. tissue 
types) and consistently score low when comparing batch (i.e.
slide differences). This suggests that application of the appro- 
priate normalization strategy based on the standR workflow is 
able to adjust the data to retain the biological variations in the 
data, while minimising unwanted technical batch variations. 

Comparison of DE results 

DE analysis aims to detect statistically significant genes that 
are differentially expressed between groups of interest, which 

are used for the biological interpretation of the GeoMx DSP 

data and downstream analysis, such as pathway enrichment 
analysis and network analysis. Instead of applying a tradi- 
tional paired T-test and LMM in the generic workflow to iden- 
tify DE genes (which assumes that all genes are independent 
and can be strongly influenced by outliers), the standR work- 
flow recommends the limma-voom DE pipeline, which bor- 
rows information between genes to allows a more precise es- 
timation of biological variation ( 11 ,12 ). Moreover, the limma- 
voom pipeline ( 12 ) uses linear modelling which allows greater 
degrees of freedom and more statistical power and is more 
useful in the analysis of data from the complex experimental 
designs typical of GeoMx experiments. 

Comparing the DE results between the generic and standR 

workflows, we define one comparison for each of the four 
datasets: kidney—comparing abnormal glomerulus in dia- 
betic kidney to abnormal glomerulus in normal kidney; lymph 

node—comparing B cell zone to T cell zone in lymph node; 
colon—comparing longitudinal muscle layer to circular mus- 
cle layer; and brain—comparing cortical layer II / III to hip- 
pocampus CA1 areas (Supplementary file 3). By comparing 
the DE genes from the three methods, we observed that 
amongst the four datasets, the DE genes from the lymph 

node dataset analysis are substantially similar across the three 
methods (Supplementary Figures S10 and S11). However,
varying degrees of overlaps were observed for the DE genes 
from the other datasets, suggesting many of the DE genes 
identified were method-specific (Supplementary Figure S10).
Notably, the performance of LMM was found to be less ro- 
bust in the kidney dataset, potentially due to the significantly 
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Figure 3. Normalization and batch correction using standR and generic w orkflo ws in the brain dataset. ( A ) PCA plots of data normalised using either the 
generic (left) or standR (right) w orkflo ws. Panels denotes annotations by either ROIs (top) and tissue str uct ures (bottom). standR normalisation and 
batch correction was able to reduce slide effects while improving separation of biology. ( B ) RLE plots of the raw (top), Q3-normalised (middle) and 
RUV4-normalised (bottom) data show RUV4 gives the best removal of technical variations. ( C ) Summarised statistics of raw, Q3-normalised and 
RUV4-normalised data comparing performance in terms of the biology (top) or batch factor (bottom). RUV4 performed the best across the statistics in 
terms of biology and batch (in general). 
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mbalanced sample sizes between the two groups ( n = 60 ver-
us n = 12). Overall, the standR workflow detected a higher
umber of DE genes compared to the generic workflow either
sing t -test (for all comparisons) or using LMM (all compar-
sons except for colon dataset) (Supplementary Figure S11). 

By plotting the fold-change and mean expression of genes in
 comparison (i.e. MA plots) ( 32 ), even dispersion relative to
he fold-change are observed in the genes with low average ex-
ression in all four comparisons, with the dispersions becom-
ng tighter with higher expression genes (Figure 4 A and Sup-
lementary Figure S12). A skewness of the overall distribution
toward negative (in the diabetic kidney data) or positive (in
the colon data) log-fold-change can also be seen. This trend is
more obvious in the results generated from the generic work-
flow, suggesting that the log-fold-change is not independent
to the expression of the genes, i.e. higher expression comes
with higher / lower log-fold-change, which may indicate false
positive outcomes. 

To assess how well the DE genes identified in either work-
flow are representative of biological systems and processes,
we perform gene-sets over-representation analysis for the up
and down-regulated DE genes identified by both or unique to
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Figure 4. Differential expression analysis results using standR or generic workflows. ( A ) MA plots visualising differential expressing genes in the diabetic 
kidney, lymph node, colon and brain dataset, respectively from the top to bottom using either generic with t -test (left), generic with LMM (middle) or 
standR with limma-voom (right). Differential expression genes generated using the voom-limma pipeline with duplicationCorrelation and applying t -tests 
relative to a threshold (TREAT) criterion with absolute fold change > 1.2 with adjusted P -value < 0.05. ( B ) Upset plots of biologically relevant gene-sets 
that were identified for each workflow and each dataset. Overall, standR was able to identify more biological relevant gene-sets. 
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ither workflow (Supplementary File 4). In all four datasets,
ore biologically relevant gene-sets were found by the standR
orkflow using the limma-voom method (Figure 4 B) com-
ared to those identified by the other two methods. For both
idney and lymph node datasets, all the relevant genesets were

dentified from DE genes from both limma and t -test meth-
ds. For the colon and brain datasets, 12 and 11 tissue-specific
ene-sets (respectively) were found to be enriched only in the
E genes from the standR workflow with the limma-voom
ethod and not from the other methods. Taken together, these
ndings suggest that the standR workflow is able to identify
pecific and biologically relevant DE genes that might other-
ise have been missed. 

iscussion 

patial transcriptomics analysis allows for a greater under-
tanding of the cellular context of disease biology ( 33 ). As
ne of the key pioneering platforms of this technology, the
anostring GeoMx DSP offers the ability to study whole-

enome spatial transcriptome, with over 18 000 genes for
uman (22 000 genes for mouse) in a high-throughput man-
er from both Formalin-Fixed Paraffin-Embedded (FFPE) and
resh frozen materials ( 7 ,22 ). It is crucial to process and anal-
se the Nanostring GeoMx transcriptome data carefully to
dentify differential expressed genes with high confidence,
eading to a better understanding of spatial transcriptome pro-
les in the tissues of interest. Here we described standR , a Bio-
onductor package providing quality control, normalization
nd assessment, and visualization functions for GeoMx tran-
criptomic data, and recommended a workflow incorporat-
ng the well-established limma-voom differential expression
ipeline to identify DE genes from GeoMx experiments. 
There are key issues that differentiates the standR work-

ow from generic workflow, one of which is the gene filtering
pproach. In the generic workflow, the LOQ was meant for
odelling the expression background in each tissue segments

o allow removing genes with false signals. However, because
OQ is calculated based on the expression of negative con-

rol probes, it will be affected by the cell count and size of
ach ROI, as well as stickiness or other physical features re-
ated to the tissue. In our investigations of the brain dataset,
he cell count per segment is negative correlated with the seg-
ent area, while the LOQ per segments are positively corre-

ated with the area (Supplementary Figure S12). In this case,
ltering genes based on LOQ threshold will remove genes
ith medium expression level and variance (Figure 2 A and B,

eneric only), which may be of biological relevance. This was
ound in the analysed brain dataset where brain tissue-related
enes such as MDGA1 and CLMP were removed by generic
nly (LOQ). On the other hand, for the standR workflow, the
ene filtering threshold is more targeted, using direct calcula-
ion based on the expression, while accounting for the library
ize variation of each ROI. As such, this threshold is relatively
table, and genes with extremely low expression and variation
an be accurately detected (Figure 2 A, B). 

GeoMx data are typically acquired in batches based on
quipment throughput, a comprehensive understanding of po-
ential biological and technical variation factors within the
ataset is crucial in order to determine appropriate normal-
zation strategies. To facilitate this exploration, the standR
ackage provides the plotSampleInfo function, which allows
sers to visualize the variation factors using an alluvial plot
(see Supplementary Figure S1). Using this tool, researchers
can interrogate the distribution of samples across the differ-
ent batches, enabling the identification of any batch-related
variation in the expression data. The standR workflow fur-
ther recommends using PCA in tandem with the alluvial plot
to visualize data variation contributed by different factors
both before and after normalization. This approach max-
imises the chance that the appropriate normalization tech-
niques are employed, thereby preserving the integrity of down-
stream analyses. These systematic approaches encourage in-
formed decision-making in selecting the most suitable normal-
ization method for GeoMx data. 

In this paper, we have established that the use of paired
t-tests and LMM approaches on GeoMx data is inadequate
to handle the complexity of the spatial dataset experimental
designs. There are currently several Bioconductor packages
available analysis of GeoMx spatial data, including GeoMx-
Tools, GeoDiff and GeoMxWorkflows ( 34–36 ). These pack-
ages perform DE analysis using LMM-based methods to allow
for modelling the individual as a random effect. This is a useful
approach in cross-individual experiments, and in particular,
GeoMxTools have been used in a recent study on breast can-
cer GeoMx data to identify DE genes ( 37 ). However, as shown
in our benchmarking, the LMM-based approach is still limited
to singular gene comparisons similar to the paired t-test, and
requires a large number of replicates in the experiment to in-
crease the degree of freedom and statistical power ( 38 ). To ad-
dress the issue with cross-individual comparisons, the standR
workflow recommends using the limma-voom pipeline with
the duplicateCorrelation strategy, which not only borrows in-
formation from all genes using an empirical Bayes method to
improve the statistical comparison, but also account for the
correlation between individuals by computing consensus cor-
relation between replicates for each gene using restricted max-
imum likelihood (REML) ( 39 ). 

While standR leverages on the use of limma-voom pipeline
for its performance in bulk RNA-seq data analyses, particular
for scenarios with limited samples, there are other approaches
that may also be applicable based on the data and project team
preference and thus a thorough evaluation is recommended
to determine the optimal approach. One other potential ap-
proach of note is to use a negative binomial mixed effect re-
gression model, such can that implemented in the R pack-
age glmmTMB ( 40 ) which is originally designed for single-cell
RNA-seq analyses. These existing alternatives emphasize the
need for comprehensive investigations to select the appropri-
ate methodology tailored to the specific characteristics of in-
dividual datasets and research objectives. It can also be benefi-
cial to refer to positive control data from relevant experiments
if they are available, for example micro-dissected bulk RNA-
seq data, if available, can serve as a valuable benchmark for a
particular experimental system, enabling the evaluation of dif-
ferent analysis choices in QC, normalisation, batch correction,
and so on. Resources like the MSigDB ( 18 ), also contain cen-
tralized archives of differential expression results from diverse
tissues, cells, and stimuli in the form of gene expression signa-
tures. Integrating MSigDB for downstream functional anal-
ysis post-differential expression is typical, and usually highly
informative, enhancing the interpretation of research findings.

The standR package and workflow is designed for the anal-
ysis of the GeoMx transcriptome data. For GeoMx protein
data, the quality control and normalization strategies will
be different as the protein panel often contains fewer than
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100 markers, with additional housekeeping and IgG markers
as negative control markers. Considering the usage of Nanos-
tring GeoMx protein data in the long term and its potential
to aid in therapeutics and screening, there is a necessity to de-
velop a comprehensive workflow for analysing both protein
and transcript data. With the rapid development of higher plex
and finer resolution spatial technologies, specialised analysis
workflows and packages, such as standR , are essential for en-
suring appropriate data QC and processing. While Nanostring
GeoMx DSP is reaching maturity as a technology platform,
more complex and data rich technologies such as the Nanos-
tring CosMx single molecular imaging platform (CosMx SMI)
( 41 ) are now being released. These platforms will also require
specialised analysis pipelines and software in order to fully
harness the power of spatial location and neighbourhood at
the single cell level. 

In conclusion, we describe our GeoMx analysis package,
standR. We analyse the literature describing GeoMx experi-
ments in order to identify common analytical steps and con-
struct from the most common of these a generic analysis work-
flow. Then we compare the results from each step between
the standR workflow and the generic workflow for four pub-
licly available GeoMx WT A datasets. W e provided evidence
that standR’s application improves on the detection of biolog-
ically meaningful and nuanced results within spatial datasets
in comparison to the generic workflow. Overall, we show
that the standR workflow provides a comprehensive and rea-
sonable quality control process, a better normalization strat-
egy, and a more sophisticated differential expression analysis
pipeline. 

Data availability 

Supplementary Data are available at NAR online. The GeoMx
DSP datasets used in this paper are available in the Nanos-
tring’s Spatial Organ Atlas ( https:// nanostring.com/ products/
geomx- digital- spatial- profiler/spatial- organ- atlas/). The
standR package is available in Bioconductor ( https://www.
bioconductor.org/ packages/ release/ bioc/ html/ standR.html ). 
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Supplementary Data are available at NAR Online. 
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