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Abstract

Purpose of Review—To review the role of ocular surface epithelial (corneal and conjunctival) 

ion transporters in the pathogenesis and treatment of dry eye disease (DED).

Recent Findings—Currently, anti-inflammatory agents are the mainstay of DED treatment, 

though there are several agents in development that target ion transport proteins on the ocular 

surface, acting by pro-secretory or anti-absorptive mechanisms to increase the tear fluid Film 

volume. Activation or inhibition of selected ion transporters can alter tear fluid osmolality, driving 

water transport onto the ocular surface via osmosis. Several ion transporters have been proposed 

as potential therapeutic targets for DED, including the cystic fibrosis transmembrane conductance 

regulator (CFTR), calcium-activated chloride channels (CaCCs), and the epithelial sodium channel 

(ENaC).

Summary—Ocular surface epithelial cell ion transporters are promising targets for pro-secretory 

and anti-absorptive therapies of DED.
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Introduction

The most recent model of ocular surface ion transporters was published in 2012 [1]. 

Since then, new therapies and targets have been identified. This review will highlight these 

developments and put forth an updated model to account for potential novel drug targets.

Ion Transporters

Ion transporters are proteins that lie in the apical and basolateral membranes of epithelial 

cells and facilitate the influx and efflux of ions, playing a crucial role in the maintenance 

of cell homeostasis. The movement of ions across the epithelium establishes transepithelial 

chemical, electrical, and osmotic gradients that in turn influence water movement [2].

Mechanisms of Ion Transport

Ion channels use a variety of mechanisms to move ions across the cell membrane. 

Active transport uses the energy input of ATP hydrolysis to transport molecules between 

extracellular and intracellular environments against an electrochemical gradient. Passive 

transport utilizes the potential energy in a concentration or electrochemical gradient. 

This includes simple diffusion, membrane carrier-mediated facilitated diffusion, and the 

movement of water through membrane pores, such as aquaporin (AQP). Osmosis is 

movement of water stimulated by transepithelial osmotic gradients [2].

Systemic Diseases Due to Ion Transport Dysfunction

Dysfunction of ion transporters can lead to a variety of diseases, and a key example of such 

is cystic fibrosis (CF). CF is a genetic disease characterized by loss of function mutations 

in cystic fibrosis transconductance membrane regulator (CFTR), a cAMP-activated chloride 

channel expressed in many tissues [3]. Dysregulation of CFTR leads to abnormally viscous 

mucus that results in a variety of comorbidities such as chronic pulmonary inflammation 

and infection, pancreatic exocrine insufficiency, and male infertility, among others [3]. Of 

note, some CF patients exhibit low tear film stability on the ocular surface due to the 

impaired CFTR chloride secretion [4]. As opposed to the loss of function of CFTR in 

CF, the enterotoxins of Vibrio cholerae (producing cholera) and certain Escherichia coli 
strains (traveler’s diarrhea) hyperactivate CFTR causing secretory diarrhea characterized 

by enhanced salt and water loss in feces [2, 5]. CFTR, along with multiple other ion 

transporters (Table 1), are expressed on the ocular surface epithelium and play a role in tear 

production and ocular surface epithelial protection [1, 6, 7••, 8••].

Dry Eye Disease

The Tear Film and Ocular Surface Society Dry Eye Workshop II (TFOS DEWS II) defines 

dry eye disease (DED) as, “a multifactorial disease of the ocular surface characterized by 

a loss of homeostasis of the tear film, and accompanied by ocular symptoms, in which 

tear film instability and hyperosmolarity, ocular surface inflammation and damage, and 

neurosensory abnormalities play etiological roles” [9]. DED can be classified as evaporative 

(e.g. meibomian gland dysfunction), aqueous deficient (e.g. Sjögren’s syndrome (SS)), 
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or mixed. DED is estimated to affect 6.8% of adults in the United States. The global 

prevalence is estimated to be as high as 50%, with estimations reaching as high as 75% 

in specific populations [10]. Tear hyperosmolarity and instability are major offenders in 

DED by damaging the epithelia directly, inducing inflammation, and causing insufficient 

tear production and excessive tear evaporation [10]. Most FDA-approved therapies for DED 

target only the inflammation and have limited clinical efficacy [11–13]. The ocular surface, 

comprised of the cornea and conjunctiva, is lined by stratified epithelial cells expressing ion 

transport proteins that facilitate fluid secretion or absorption to regulate tear fluid volume 

and osmolarity. These ocular surface ion transporters thus present an attractive target to 

develop drugs to treat DED.

Ocular Surface Ion Transporters

Major ion channels that are functionally expressed in ocular surface epithelial cells 

include the CFTR chloride channel and the epithelial sodium channel (ENaC) on the 

apical membrane, which are involved in fluid secretion and absorption, respectively [14–

18]. Additional ion channels expressed on the apical membrane include calcium-activated 

chloride channels (CaCCs), and potassium channels. The basolateral membrane (facing the 

corneal stroma) expresses potassium channels, an electroneutral Na+/K+/2Cl− cotransporter 

(NKCC1), and a sodium-potassium pump (Na+/K+-ATPase), the latter providing the 

energy to drive fluid secretion. There is paracellular ion transport as well. To create the 

electrochemical driving force for apical chloride secretion, and hence fluid secretion into 

the tear film, the basolateral membrane transporters act in concert to maintain a cell interior 

negative membrane potential and a high concentration of potassium in the cytoplasm, a low 

concentration of sodium, and a concentration of chloride that is above its electrochemical 

equilibrium potential for its transport onto the ocular surface when CFTR or CaCCs are 

open [7••].

Our updated diagram of ion transporters on the ocular surface epithelium includes the 

original ion transporters recognized in 2012 with the addition of P2Y2, ASIC, Clc-2, and 

additional potassium channels (Table 1 and Fig. 1A) [1]. Transporter gene names, locations 

(apical or basolateral), and putative functions are listed in Table 1. The roles of CFTR and 

ENaC in tear fluid secretion and absorption, respectively, are well established. However, 

less is known for the other ion transporters. NHE8, a Na+/H+ exchanger expressed on the 

basolateral membrane, is suggested to play a role in tear production and ocular epithelial 

protection [19]. Clc-2, a non-CFTR cAMP-activated chloride channel expressed on the 

apical membrane, may play a similar chloride secretory role to CFTR in many tissues, 

including the eye [20]. ASIC, a voltage-insensitive acid-sensing cation (mainly sodium) 

channel, is implicated in increasing tear and blinking rates and reducing ocular neuropathic 

pain [8••]. While their exact etiologic roles remain unclear, various potassium channels (e.g. 

voltage-gated, cAMP-activated, and calcium-activated) are expressed in the ocular surface 

epithelium and may also play a role in lacrimal gland secretion [21].
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Therapeutic Ocular Surface Ion Transport Targets

Currently, there are no FDA-approved drugs for DED that target ion transporters. However, 

there are several drugs in various stages of clinical development including drugs approved 

outside the USA. Pro-secretory drugs include VSJ-110, a small-molecule triazine CFTR 

activator with nanomolar potency currently in phase 2 clinical trial. VSJ-110 stimulates 

secretion of chloride from the apical membrane and has been shown to increase tear 

secretion and reverse epithelial damage in mice and rabbits [22•, 22–26]. Another pro-

secretory drug is diquafosol, a purinergic P2Y2 agonist currently approved in Japan, 

which indirectly stimulates chloride secretion via activation of CaCCs [27–29]. Diquafosol 

submitted New Drug Approval (NDA) to the FDA in 2003 but was denied FDA approval 

following phase 3 clinical trial where it failed to meet its primary endpoints of reduced 

corneal staining and increased corneal clearing [30]. A phase 4 clinical trial for diquafosol 

is currently recruiting. An anti-absorptive drug in development, P-321 (SHP-659), is an 

ENaC inhibitor that increased tear production in normal and DED mice [31, 32]. A phase 2 

clinical trial from 2016 failed to show a significant difference between P-321 and placebo on 

various outcome measures. Notably, ENaC inhibition with amiloride demonstrated minimal 

electrophysiological effect in our recent in vivo human pilot study, which may explain the 

apparent lack of efficacy of P-321 in the USA clinical trials [7••]. See Table 2 for additional 

details on therapeutic ocular surface ion transport targets.

Experimental Approaches

A variety of mechanisms are used to measure ion transport and elucidate the location of ion 

transporters on the ocular surface. Likewise, a variety of clinical tests are used to measure 

the tear film.

Ocular Surface Potential Difference (OSPD) Measurement

Clinical evaluation of ocular surface health typically involves slit lamp examination with 

fluorescein and lissamine green (LG) staining, tear breakup time (TBUT), Schirmer’s test, 

corneal sensation, MMP-9 levels, and tear fluid osmolarity. As a direct measure of ocular 

surface function, we exploited the millivolt (mV) electrical potentials generated by ion 

transport across the ocular surface epithelium. The concept of ocular surface potential 

difference (OSPD) was originally introduced for studies of sodium and chloride transport 

in experimental animals [16, 72], and more recently, applied to humans [7••]. The OSPD 

signal arises from the activities of various ion transporters in ocular surface epithelia, 

as depicted in Fig. 1A and Table 1. By manipulating experimental conditions, such as 

using selective transport modulators (activators or inhibitors), ion substitution, or genetic 

knockout/knockdown, it is possible to systematically characterize the ion transport pathways 

in vivo. Quantitative interpretation of OSPD data can be facilitated by mathematical 

modeling [16]. The OSPD method has broad potential applications in studying normal 

ocular surface physiology and disease, characterizing ocular surface ion transport pathways, 

and testing investigational drugs in animals and humans.
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OSPD is measured using a high-impedance voltmeter/bioamplifier connected to a computer 

system using an analog-to-digital converter. A head stage is used to connect the measuring 

and reference electrodes to the bioamplifier. The measuring electrode contacts the ocular 

surface using a perfusion catheter whose tip is immersed in fluid bathing the ocular surface 

while the reference electrode is inserted subcutaneously. Solution exchange is accomplished 

using a gravity or peristaltic pump perfusion system (Fig. 1B). We adapted the system to 

measure OSPD in human subjects in which the head is stabilized using a slit lamp, with 

the tip of the perfusion catheter positioned under direct visualization in a fluid pocket 

created by eversion of the lower lid without contacting the ocular surface [7••]. Unlike nasal 

PD studies that often have considerable noise due to difficulty achieving and maintaining 

optimal measuring electrode positioning, the OSPD system provides a low-noise, robust 

signal that is related quantitatively to the activities of ion transport pathways at the ocular 

surface.

Our group has used OSPD measurements from sequential perfusion exchanges to study 

chloride transport pathways on the ocular surface (Fig. 1C). After determination of 

baseline OSPD using a high chloride solution that mimics the tear film, five solution 

exchanges are done to isolate ENaC, CFTR, and CaCCs functions. A high chloride solution 

containing the ENaC inhibitor, amiloride, produces minimal depolarization, suggesting 

minimal ENaC activity. A low chloride solution that probes basal transcellular and 

paracellular chloride transport pathways produces a rapid, modest hyperpolarization. Adding 

the cAMP agonist, forskolin, produces a more gradual but larger hyperpolarization due to 

activation of CFTR and potentially other cAMP-dependent ion channels. The potent and 

selective CFTR inhibitor, CFTRinh-172, produces a rapid and near complete reversal of 

the forskolin-induced hyperpolarization. Finally, the calcium agonist, ATP, produces a rapid 

hyperpolarization followed by slow depolarization due to transient elevation in cytoplasmic 

calcium, which activates CaCCs and calcium-activated potassium channels.

Short-Circuit Current (Isc) Measurement

The transport of ions from the basolateral and apical sides of epithelial membranes creates 

a transepithelial voltage (Vte), generally recorded using an Ussing chamber. Measurements 

of Vte are often referred to as open-circuit recordings and can be useful for studying the 

secretory and absorptive channels such as CFTR and ENaC, respectively. When Vte is held 

constant at 0 mV, it is possible to measure the charge flow, known as short-circuit current 

(Isc) [73]. In animal corneal and conjunctival specimens, Isc demonstrated the activating and 

inhibiting effects to forskolin and CFTRinh-172, respectively, on CFTR channels [27, 74, 

75].

Whole-Cell Patch-Clamp Measurement

Whole-cell patch clamp measurements yield biophysical information about single 

ion channel function by characterizing current flow through voltage and ligandgated 

ion channels. These measurements offer functional information regarding specific 

pharmacological agents by capturing the effect on ionic current following their 

administration [76]. Recordings are obtained by inserting a glass pipette into the cell 

Lindgren et al. Page 5

Curr Ophthalmol Rep. Author manuscript; available in PMC 2024 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



membrane and applying suction, forming a seal between the pipet and membrane thus 

creating the whole-cell configuration. Pipettes contain an ionic solution that mimics the 

intracellular environment and connects to a recording electrode [77]. After achieving whole-

cell configuration, cells are pulsed with hyperpolarizing and depolarizing voltages to induce 

currents. This technique was recently utilized to identify the modulatory activity of novel 

CFTR activator compounds relative to that produced by maximal forskolin activation [64•].

cAMP Measurement

As a secondary messenger, cAMP has numerous downstream effects including CFTR-

mediated chloride secretion and activation of protein kinase A (PKA). Therefore, cAMP 

measurements offer insight into the mechanism of therapeutic agents on the ocular surface. 

Effective measurements can be obtained using commercial kits [78]. These kits utilize a 

competitive enzyme immunoassay which can be used to measure cAMP levels in tear fluid, 

ocular surface epithelial cells, and the lacrimal gland [66].

Immunohistochemistry (IHC)

Immunohistochemistry (IHC) utilizes antibodies to target and localize antigens in a 

particular tissue [79]. IHC can localize ion transporters to the apical or basolateral 

membranes of epithelial cells based on the pattern of staining. For example, using 

immunofluorescence microscopy, chloride channels such as CFTR and Clc-2 have been 

identified in the apical membrane of human corneal epithelium [18].

Tear Film Osmolarity

The ocular environment needs regulated tear flow, which is driven by osmolarity. 

Measurements of tear film osmolarity, usually acquired by measuring the freezing point 

depression or tear fluid electrical conductivity, have been historically difficult to acquire 

[80]. Despite the challenge of measuring tear osmolarity, tear hyperosmolarity is a hallmark 

feature of DED [81]. Tear osmolarity is considered one of the best predictors of DED 

severity when compared to Schirmer’s test, meibomian gland grading, TBUT, and corneal 

and conjunctival staining [82, 83]. Measurements have been facilitated through development 

of technologies such as the I-PEN Tear Osmolarity System (I-MED Pharma: Quebec City, 

Canada). This device detects and measures tear film osmolarity on orbital tissues bathed in 

tear film, such as the palpebral conjunctiva, in approximately two seconds. Another method 

for determining tear film osmolarity is the TearLab Osmolarity System (TearLab: San Diego, 

CA), which requires only 50 nL of tear film to determine osmolarity. Both systems indirectly 

measure tear film osmolarity based on electrical impedance.

Tear Volume

Schirmer’s test evaluates aqueous tear production. The test is carried out by applying paper 

strips to the inferior temporal aspect of both conjunctival sacs of the patient. After 5 minutes, 

the length of the wetted paper is measured [84]. A measurement of less than 5 mm of 

strip wetting after 5 minutes is diagnostic for aqueous deficiency [85••]. The phenol red 

thread (PRT) test is less invasive than Schirmer’s test. It involves placing a soft thread 
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treated with phenol red (phenolsulfonphthalein), a pH indicator, on the ocular surface for 15 

seconds. The thread will turn red when contacted by alkaline tears, and the length of the 

red (wet) portion of the thread is measured. A length of 20 mm in 15 seconds is considered 

normal and anything less than 11 mm is criteria for DED [84]. Another effective way to 

quantitatively gauge aqueous production is the measurement of the tear meniscus height and 

cross-sectional volume of tears. Tear meniscus heights between 0.1-0.2 mm indicate mild 

DED and values <0.1 mm indicate moderate to severe DED [85••].

Corneal Fluorescein Staining

Corneal fluorescein staining provides insight into the severity of DED and the structural 

condition of the epithelium by highlighting loss of tight junctions. Fluorescein is a dark 

orange dye applied to the lower cul-de-sac of the eye and distributed across the ocular 

surface via blinking. The eye is subsequently examined under cobalt blue light where the 

density and extent of staining are assessed [64•]. Staining is commonly scored with the 

Oxford or National Eye Institute (NEI) scale [86].

Animal Models

Animal models are useful to elucidate the pathology of DED and develop therapeutic 

agents. Dry eye can be experimentally induced in mice via subcutaneous injection of 5 

mg/mL of scopolamine hydrobromide three times per day for 14 days while placed in a 

desiccating environment with continuous airflow (15 L/min), 35% humidity, and a constant 

temperature of 25°C [64•]. Using this scopolamine-induced DED model, tear volume levels 

are significantly reduced with resultant increased corneal staining scores [64•, 65•]. Another 

method of inducing DED is lacrimal duct cautery (LDC). The extraorbital lacrimal gland 

is exposed via linear skin incisions and the lacrimal duct is ablated with high temperature 

cautery. LDC produces a DED model with an instant and marked decrease in tear volume 

with concomitant increase in corneal staining [22•, 23]. Models can also be induced through 

genetic knockdown of AQP expressed in the corneal epithelium, specifically AQP1, AQP3, 

and AQP5 [87, 88].

In addition to DED mouse models described, there are also multiple mouse models specific 

to SS. Mice deficient in thrombospondin-1 (TSP-1), a matricellular glycoprotein that 

modulates cell migration and plays a critical role in wound healing, develop SS and the 

accompanying ocular surface dryness [89–91]. TSP-1 mice lines are generated through 

homologous recombination in embryonic stem cells that disrupt TSP-1 genes [92]. A recent 

review evaluated multiple SS animal models and determined the non-obese diabetic (NOD) 

model, which demonstrates decreased glandular secretion and lymphocytic infiltration, to be 

most optimal for studying SS pathogenesis and drug testing [89, 93].

Conclusion

DED remains a major unmet need, with a significant USA and global prevalence. Current 

therapies primarily target inflammation despite tear film homeostasis and osmolarity playing 

key etiological roles. The modulation of ion transporters on the ocular surface epithelium 
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therefore represents an attractive target for the development of pro-secretory and anti-

absorptive therapies that aim to increase tear fluid secretion. We have summarized the 

current limited knowledge of ocular surface ion transport mechanisms and promising ion 

transport-related therapeutic targets. The full extent of ion transport mechanisms on the 

ocular surface remains to be elucidated. Methods such as OSPD measurements are exciting 

novel approaches to further investigate and identify ion transporters and their respective 

modulators.
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Fig. 1. 
A Schematic diagram of membrane proteins in the ocular surface epithelium (cornea and 

conjunctiva) involved in the movement of ions via ion channels, pumps, transporters, and 

receptors [1, 16]. See Table 1 for detailed descriptions. B Schematic of OSPD setup showing 

the multi-syringe perfusion system to deliver fluid to bathe the ocular surface and the 

electrical system with measuring electrode in contact with the ocular surface (through the 

perfusate), subcutaneous reference electrode, and high impedance bioamplifier to measure 
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the mV electrical potential. C Representative OSPD tracing showing PD changes from 

sequential perfusion exchanges in a typical protocol to study chloride transport
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