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MOTIVATION Preclinical pain testing suffers from poor reproducibility, low throughput, and a restricted
focus on reflex responses. To address the first two problems, we sought to replace manual stimulation
and response measurement with a pain-testing robot. To address the third problem, the robot collects
video amenable to the latest machine-learning-based analysis tools to quantify non-reflexive behaviors.
Last, to facilitate creation of large datasets, we developed software to store and organize collected data.
SUMMARY
Pain in rodents is often inferred from their withdrawal from noxious stimulation. Threshold stimulus intensity
or response latency is used to quantify pain sensitivity. This usually involves applying stimuli by hand and
measuring responses by eye, which limits reproducibility and throughput. We describe a device that stan-
dardizes and automates pain testing by providing computer-controlled aiming, stimulation, and response
measurement. Optogenetic and thermal stimuli are applied using blue and infrared light, respectively. Precise
mechanical stimulation is also demonstrated. Reflectance of red light is used to measure paw withdrawal
with millisecond precision. We show that consistent stimulus delivery is crucial for resolving stimulus-depen-
dent variations in withdrawal and for testing with sustained stimuli. Moreover, substage video reveals ‘‘spon-
taneous’’ behaviors for consideration alongside withdrawal metrics to better assess the pain experience. The
entire process was automated using machine learning. RAMalgo (reproducible automated multimodal algo-
metry) improves the standardization, comprehensiveness, and throughput of preclinical pain testing.
INTRODUCTION

Measuring withdrawal from noxious stimuli in laboratory rodents

is amainstay of preclinical pain research.1–4 Testing is often con-

ducted on the hind paw, in part because many chronic pain

models are designed to increase paw sensitivity through manip-

ulations of the paw or the nerves innervating it.4–7 Measuring

evoked pain with withdrawal reflexes has been criticized8

because ongoing (non-evoked) pain is a bigger clinical problem,9

but tactile and thermal sensitivity are altered in many chronic

pain conditions,10 and allodynia and spontaneous pain tend to

be correlated in human studies11,12 and in some13 but not all14

mouse studies. Furthermore, sensory profiling is useful for strat-

ifying patients in clinical trials,15,16 and altered sensitivity is often

diagnostic.17 Ongoing pain should be assessed in addition to,

not instead of, evoked pain.18 But the most problematic aspects

of this testingmust be rectified; for instance, outcomes of the hot

water tail flick test depend more on who conducts the testing

than on any other factor.19 This has received scant attention
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compared with other factors, such as sex.20 Outdated technol-

ogy and poorly standardized testing protocols contribute to the

oft-cited reproducibility crisis21 and are overdue for transforma-

tive improvements.

Preclinical pain tests typically measure withdrawal threshold

using brief repeated (incrementing) stimuli such as von Frey fila-

ments or sustained stimuli such as radiant heat. The stimulus in-

tensity (force or skin temperature) at which withdrawal occurs is

assumed to be the lowest intensity perceived as painful (i.e., pain

threshold), notwithstanding certain caveats.22 Withdrawal might

not always be triggered by pain, and focusing on threshold fails

to consider pain intensity over a broader stimulus range. Recent

studies have quantified responses to suprathresholdmechanical

stimulation using high-speed video,23–25 but despite precise

response measurement, stimuli were delivered by hand, and

throughput was low. Resolving subtle changes in pain sensitivity

requires that stimulus-response relationships be measured with

high resolution (which requires reproducible stimulation and pre-

cise response measurement), over a broad dynamic range, and
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Figure 1. Overview of equipment

(A) Mice are kept separately in enclosures on a

plexiglass platform (or on a metal grate for me-

chanical stimulation; see Figure 5B). The stimulator

remains at a fixed distance below the platform and

is positioned by hand (or by motorized actuators;

see Figure 7).

(B) Enclosure design.Mice are transferred from their

home cage to the platform in a clear plexiglass tube,

which is placed vertically on the platform and slid

into an opaque cubicle.

(C) Top view of photostimulator. Blue and IR light is

used for optogenetic stimulation and radiant heat-

ing, respectively. Red light is used to help aim and to

detect paw withdrawal. All wavelengths are com-

bined and delivered to the same spot, but their in-

tensities are independently controlled by computer.

See Figure S1 for details.

(D) Sample frames from substage video (Video S1)

before the stimulator is properly aimed (a), after

aiming (b), and after paw withdrawal (c). Red trace

shows the intensity of reflected red light measured

by the photodetector.

See also Table S1 and Video S1.
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with reasonable efficiency (throughput). Improvements in one

factor may come at the expense of other factors. The best

compromise depends on the particular experiment, but

improving reproducibility and throughput would be a huge

benefit.

Optogenetics has provided an unprecedented opportunity to

study somatosensory coding, including nociception. Expressing

actuators such as channelrhodopsin-2 (ChR2) in genetically

defined subsets of afferents allows those afferents to be selec-

tively activated or inhibited with light applied through the skin

(transcutaneously) or directly to the nerve or spinal cord using

more invasive methods.26,27 Afferents can be optogenetically

activated in combinations not possible with somatosensory stim-

ulation; for instance, mechanical stimuli that activate Ad high-

threshold mechanoreceptors (HTMRs) normally also activate

low-threshold mechanoreceptors (LTMRs), so it is only by ex-
2 Cell Reports Methods 3, 100650, December 18, 2023
pressing ChR2 selectively in HTMRs that

HTMRs can be activated in isolation.28

Causal relationships between afferent

co-activation patterns and perception/

behavior29 can be thoroughly tested in this

way. Elucidating those relationships is key

to understanding physiological pain and

howpathology disrupts normal coding.Op-

togenetics has been used for basic pain

research but, despite its potential, has not

yet been adopted for drug testing.30 Trans-

cutaneous photostimulation is amenable to

high-throughput testing but, like tactile and

thermal stimuli, is hard to apply reproduc-

ibly in behaving animals.

We sought to improve preclinical pain

testing by developing a device able to

deliver optogenetic, thermal, and mechan-
ical (tactile) stimuli consistently and measure withdrawal latency

automatically with millisecond precision. Using this device, we

show that withdrawal latency correlates inversely with the inten-

sity of optogenetic pulses, and that optogenetic ramps reveal

differences not seen with pulses. With a clear view of the mouse

from below, a neural network was trained to recognize the paw

and aim the stimulator, thus fully automating the testing process.

The substage video provides a wealth of data about non-reflex-

ive behaviors for consideration alongside withdrawal measure-

ments to more thoroughly assess the pain experience.

RESULTS

Mice are kept individually in enclosures on a clear platform with

the stimulator underneath (Figure 1A). A wire grate floor is used

when testing mechanical stimuli (see Figure 5B). Different
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enclosures were tested including a newly developed design in

which the mouse is transferred from its home cage in a clear

plexiglass tube, which is then turned vertically and slid into an

opaque ceilinged cubicle for testing (Figure 1B). Tube/tunnel

handling is less stressful than other handling methods.31–33 For

high-speed video, which required the mouse to face left to

view the stimulated paw in profile, we used a narrow rectangular

chamber with clear walls on the front and left side.

Figure 1C shows the stimulator viewed from above. Blue light

for optogenetic activation using ChR2, infrared (IR) light for ther-

mal stimulation (radiant heating), and red light for aiming and

response measurement are combined into a single beam using

dichroic mirrors (Figure S1). The beam is directed vertically

and focused to a spot 5 mm in diameter on the platform above.

An adjacent camera collects video from below (substage), while

a photodetector measures red light reflected off the paw (Fig-

ure 1C). A near-IR light-emitting diode (LED) helps improve light-

ing during high-speed video. The stimulator is translated manu-

ally or by motorized actuators (see Figure 7) using substage

video to aim. For mechanical stimulation, a computer-controlled

indenter is positioned below the wire grate floor (see Figure 5B)

but manual or motorized/automated aiming is the same as

described above.

As all wavelengths converge on the same spot, red light is

turned on prior to initiating photostimulation (with blue or IR light)

to verify where photostimuli will hit, thus providing visual feed-

back to optimize aiming (Figure 1D; Video S1). Rodents are typi-

cally assumed not to see red light34; though some evidence con-

tradicts this,35,36 we never observed any behavioral response to

red light, suggesting that the aiming phase does not provide

mice any visual cue about the forthcoming photostimulus.

Reflectance of red light off the paw is measured by the adjacent

photodetector (red trace). Maximization of the reflectance signal

can be used to optimize aiming (compare frames a and b). This

reflectance signal is stable while the paw and stimulator are

immobile but changes when the paw is withdrawn (frame c),

thus enabling measurement of withdrawal latency (see Figure 3).

Though too slow to accurately measure fast withdrawals, stan-

dard video provides a visual record to rule out gross errors in

reflectance-based latency measurements and enables assess-

ment of slower behaviors (see Figure 6).

Reproducible stimulation
Unaccounted for variations in stimulation fundamentally limit the

precision with which stimulus-response relationships can be

characterized. LEDs and lasers offer stable light sources but

the amount of light hitting a target can vary over time or across

trials depending on the accuracy and precision of aiming.

When applying light by handheld fiber optic (as typically done

for transcutaneous stimulation), stability of the tester and differ-

ences in aiming technique across testers are important. To

gauge the importance of aiming, we measured how the amount

of light hitting a target depended on the fiber optic’s positioning

in the x-y plane and its distance (z) below the platform. Light was

delivered through a paw-shaped cut-out to a photodiode facing

downward on the platform (to simulate stimulation of a mouse

paw) while controlling fiber optic position with linear actuators.

Figure 2A shows that light delivery is sensitive to positioning in
all three axes, especially in z (because light rays diverge from

the fiber optic tip).

To explore the practical consequences of this, we measured

light delivery while 13 testers applied a 10-s-long photostimulus

by handheld fiber optic (Figure 2B, blue traces). The signal-to-

noise ratio (SNR = mean2/SD2) of 23.5 ± 2.0 dB (group mean ±

SEM) was significantly less than the 55.6 dB obtained with the

stimulator (red trace) (T12 = 15.8, p < 0.001, one-sample t test).

The mean stimulus intensity also differed across testers, with

an inter-tester coefficient of variation (CV = SD/mean) of

18.8%, which is even larger than the average intra-tester CV of

8.9%. In other words, during a sustained photostimulus, tempo-

ral variations in light on target arise from each tester’s instability,

but this variability is compounded by differences in aiming tech-

nique across testers.

The same issues affect short (pulsed) stimuli but manifest as

trial-to-trial variations. To measure variability across trials, five

testers used a handheld fiber optic or the photostimulator to

deliver ten 100-ms-long pulses to a photodiode (Figure 2C);

each pulse was triggered independently. Trial-to-trial deviation

of each tester from their individual mean dropped from 26.3 ±

3.0 mW (mean ± SEM) with the handheld fiber optic to 6.4 ±

0.7 mW with the stimulator (T98 = 6.42, p < 0.001, unpaired

t test), which represents a 75.6% reduction in intra-tester vari-

ance. Deviation of each tester from the group mean fell from

44.5 ± 18.2 mWwith the fiber optic to 9.7 ± 2.0 mWwith the pho-

tostimulator (T8 = 1.94, p = 0.093), which represents a 78.2%

reduction in inter-tester variance. In other words, using the pho-

tostimulator increased reproducibility of stimulation across tes-

ters and within each tester.

Even if stimulation is reproducible, behavior is still variable,

especially in response to weak stimuli. Threshold is defined as

the stimulus intensity at which withdrawal occurs on 50% of tri-

als. Figure 2D shows determination of optogenetic threshold.

Reliable aiming combined with precisely controllable LEDs

(whose output can be varied in small increments over a broad

range) allows one to measure threshold and characterize the

broader stimulus-response relationship, assuming responses

can be measured precisely.

Precise response measurement
High-speed video is the gold standard for measuring fast behav-

iors, but acquiring and analyzing those data are complicated and

costly. We sought to replace high-speed video by detecting

changes in the amount of red light reflected off the paw (see Fig-

ure 1D) using a low-cost photodetector. To validate our method,

response latency was determined from high-speed video for

comparison with latency determined from the reflectance signal

on the same trials (Figure 3A). The stimulated paw was identified

(purple dot in sample frames) using DeepLabCut37 and paw

height was measured from each frame (Video S2). Latency was

determined independently for each signal based on the time

taken for that signal to cross a threshold defined relative to the

pre-stimulus baseline (see STAR Methods); after choosing a

threshold value in pilot tests, the same value was applied for all

subsequent measurements. Each data point in Figure 3B shows

the reflectance-based and height-based latency measurement

from a single trial plotted relative to one another; data are from
Cell Reports Methods 3, 100650, December 18, 2023 3



Figure 2. Reproducible photostimulation
For (A)–(C), on-target light was measured by stimulating a photodiode facing down on the platform with a paw-shaped cut-out over its surface.

(A) Importance of fiber optic positioning. Fiber optic was mounted on linear actuators to control x-y position; the x axis aligns with the long axis of the paw, with

0 position centered on the maximal response. Measurements were repeated for two distances (z) below the platform.

(B) Stability of light delivery during 10-s-long photostimuli. Signal-to-noise ratio (SNR=mean2/SD2) when using the stimulator (55.6 dB; red trace) was significantly

higher than for the handheld fiber optic (23.5 ± 2.0 dB, group mean ± SEM; blue traces, 1 for each of 13 testers) (T12 = 15.8, p < 0.001, one-sample t test).

(C) Trial-to-trial variability of light delivery during 100-ms-long pulses. Filled symbols show individual trials with a handheld fiber optic (blue) or stimulator (red) (n =

5 testers, 10 trials/tester/method); black lines represent intra-tester averages. Average trial-to-trial deviation from each tester’s average was significantly larger

for handheld fiber optic (26.3 ± 3.0 mW; mean ± SEM) than for photostimulator (6.4 ± 0.7 mW) (T98 = 6.42, p < 0.001, unpaired t test). Open symbols represent

intra-tester averages; colored lines represent group average. Tester-to-tester deviation from group average was larger for handheld fiber optic (44.5 ± 18.2 mW)

than for stimulator (9.7 ± 2.0 mW) (T8 = 1.94, p = 0.093). Red dotted line and shading show average light intensity ± SD across 10 trials without moving the

photostimulator.

(D) Example input-output curve from onemouse. Five 100-ms-long blue pulses were delivered at each of 5 intensities. Threshold is intensity at 50% probability of

withdrawal, as inferred from fitted curve.

Article
ll

OPEN ACCESS
6mice given 100-ms-long blue pulses with intensities spanning a

broad range. The regression line (green, slope = 1.007) follows

the equivalence line (dashed, slope = 1). Transforming these

data to a Bland-Altman plot (Figure 3C) shows there is no fixed

bias and that any proportional bias is inconsequential. Further-

more, the error rate is low (<2%) for each method (Figure S2).

Beyond avoiding an expensive high-speed camera and the chal-

lenges of filming the mouse in profile to assess paw height, the

reflectance signal can be processed in real time to enable

closed-loop (automated) termination of photostimuli once paw

withdrawal is detected; this was implemented in most experi-

ments using prolonged stimuli, as noted in relevant figure leg-

ends. Though not essential for latency measurements, high-

speed video can provide additional information.24

Characterizing stimulus-response relationships
Minimizing variability in stimulus delivery and responsemeasure-

ment maximizes discrimination of small biological differences;

indeed, an input-output relationship is obscured by poorly
4 Cell Reports Methods 3, 100650, December 18, 2023
controlled input or poorly measured output adding noise respec-

tively to the x- and y-positions of constituent data points. To

explore how well our device reveals stimulus-dependent varia-

tions in withdrawal latency, we titrated the intensity of 100-ms-

long pulses of blue light to determine the optogenetic threshold

in each of 10 mice. Then, using intensities at defined increments

above each mouse’s threshold, we measured withdrawal la-

tency as a function of photostimulus intensity (Figure 4A). Re-

sponses evoked by near-threshold intensities (blue) occurred

with long latencies (>75ms), but small increments in intensity (or-

ange and green) evoked responses whose latencies were bimo-

dally distributed and larger increments (red and purple) evoked

short-latency (<75 ms) responses. The proportion of slow and

fast responses varied significantly with photostimulus intensity

(c2 = 105.0, p < 0.0001, excluding purple data points). Browne

et al.38 reported a similar bimodal distribution of latencies but

did not relate this to photostimulus intensity; instead, fast or

slow responses occurred randomly in their experiments,

perhaps because their ultra-short pulses (3 ms) activated



Figure 3. Precise measurement of with-

drawal latency

(A) Paw withdrawal latency was measured by two

methods. Paw height (purple) was extracted from

high-speed video (1,000 fps) and is plotted

alongside intensity of reflected red light (red)

measured by the substage photodetector (1 kHz).

Sample frames are shown before (a), during (b),

and after (c) stimulation with position of stimulated

paw (as tracked by DeepLabCut) summarized by a

purple dot (Video S2). Withdrawal latency was

determined as delay from stimulus onset until

signal crossed threshold (dotted line) defined

relative to baseline (solid line) (see STAR

Methods). The same threshold value was used for

all trials.

(B) Comparison of latencies measured from each

signal. Data points, each representing a single

trial, fell along a line representing equivalence

(dashed, slope = 1), yielding a regression line

(green) with slope = 1.007. Data are shown on a log

scale. Data here are from 6 Advillin-ChR2 mice

each tested with a range of stimulus intensities.

Starting with 218 trials, 7 trials were excluded

(3.2%) based on errors identified by visual in-

spection of raw data (see Figure S2).

(C) Bland-Altman plot using data from (B). For

each trial, the difference in latency between

methods (i.e., reflectance � paw height) is plotted

against the average across methods. The average

difference of �0.4 ms does not deviate signifi-

cantly from 0 (T210 = �0.8992, p = 0.374, one-

sample t test), meaning that there is no fixed bias.

Green line and shading show regression line and

95% prediction band. Its slope (0.021) deviates

significantly from horizontal (T209 = 2.31, p =

0.021), suggesting a proportional bias, but the

errors are inconsequential: for a short-latency

response of 25 ms, latency by reflectance is on

average 0.9 ms shorter than latency by paw height

(a 3.6% error) whereas for a long-latency response

of 150ms, latency by reflectance is on average 1.7ms longer (a 1.1% error) (see red highlights). Histogram shows bimodal distribution of latencies and the relation

with stimulus intensity (see Figure 4).

See also Video S2.

Article
ll

OPEN ACCESS
neurons more variably despite their high intensity (47 mW/mm2,

which is >100 times stronger than thresholds wemeasured using

100-ms-long pulses). Response latencies within each group

decreased with increasing photostimulus intensity.

To date, all reports of withdrawal from transcutaneous optoge-

netic stimulation used a pulse of blue light or pulse trains,28,38–49

with one exception, which used sustained light to activate kerati-

nocytes.50 Yet different photostimulus waveforms may reveal

different information about the neural control of behavior (see dis-

cussion), so testing with different waveforms will provide greater

information than testing with any one waveform. Therefore, capi-

talizing on the stability of our stimulator (see Figure 2B), we tested

slowly ramped photostimuli (and pulses) in two transgenicmouse

lines: Advillin-ChR2 mice express ChR2 in all somatosensory af-

ferents,51 whereas NaV1.8-ChR2 mice express ChR2 selectively

in nociceptors.52,53 Whereas NaV1.8-ChR2 mice responded

consistently with a latency of 1.1 ± 0.2 s (mean ± SD), Advillin-

ChR2 mice responded with much longer latencies on some trials

(Figure 4B, top). The difference was due mostly to intra-mouse
variability, with individual Advillin-ChR2 mice responding with a

broad range of latencies rather than some mice being consis-

tently slow and others being consistently fast. By comparison,

both genotypes exhibited a similar bimodal latency distribution

when tested with pulses (Figure 4B, bottom). Latencies are nearly

three orders of magnitude slower for ramp-evoked responses

than for pulse-evoked responses, meaning ‘‘slow’’ pulse-evoked

responses are still much faster than ‘‘fast’’ ramp-evoked re-

sponses. Our goal here was not to compare pulse and ramp stim-

uli but, rather, to show that one stimulus waveform might reveal

differences (e.g., between genotypes) that are not revealed by

other waveforms, attesting to the value of testing with different

stimulus kinetics in addition to different stimulus intensities (see

Figure 4A) and modalities (see below).

Additional stimulus modalities
Despite focusing hitherto on optogenetic stimuli, our device can

deliver more conventional stimuli and automatically measure

withdrawal. Radiant heat is applied with an IR laser (see
Cell Reports Methods 3, 100650, December 18, 2023 5



Figure 4. Stimulus-response characterization

(A) Impact of photostimulus power. Threshold intensity for 100-ms-long blue photostimuli was determined in 5 Advillin-ChR2 mice (crosses) and 5 TRPV1-ChR2

mice (circles) by two experimenters. Photostimuli were applied at increments above threshold (3 trials/mouse/suprathreshold intensity except for highest in-

tensity, which was tested only once) and withdrawal latency was recorded. Horizontal variations in blue data points reflect intensities used for threshold

determination (and are accentuated by the log scale); horizontal variations for other colors reflect inter-animal variability in threshold. Inset shows data on linear

scales. Latencies exhibit a bimodal distribution (see histogram on right) with a preponderance of slow (>75 ms) responses at low intensities and fast (<75 ms)

responses at high intensities (see stacked bars at top); proportions varied significantly with stimulus intensity (c2 = 105.01, p < 0.0001). Black and gray lines show

separate linear regressions for fast and slow responses, respectively, and correspond to exponential curves on linear scales (see inset). Fast, y = 49.8x�0.17. Slow,

y = 254.8x�0.29.

(B) Photostimulus ramps. NaV1.8-ChR2 mice (n = 5, green) and Advillin-ChR2 mice (n = 4, orange) were tested (7 trials/mouse) with 15-s-long ramps (top; Video

S3). Each mouse is represented by a different symbol. Latencies are summarized by their cumulative probability distribution. Ramp-evoked responses were

significantly more variable in Advillin-ChR2mice (D = 0.714, p = 3.673 10�8, two-sample Kolmogorov-Smirnov test). Variability occurs within each mouse; intra-

mouse coefficient of variation (=SD/mean) was significantly higher in Advillin-ChR2 mice (T7 = �6.575, p < 0.001, two-sample t test). Insets report mean ± SEM.

Unlike their dissimilar responses to ramps, both genotypes exhibited a similar bimodal latency distribution to pulses (bottom). Distributions differed significantly

between genotypes (D = 0.403, p = 0.009) but primarily due to the different ratio of short- and long-latency responses. Intra-mouse coefficient of variation was

high in both genotypes, but slightly higher in Nav1.8-ChR2 mice (T7 = 2.71, p = 0.030).

See also Video S3.
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Figure 1C). Laser intensity was adjusted in pilot experiments to

evoke withdrawal after �8 s, as in a standard Hargreaves test.

Heating was automatically terminated upon detection of paw

withdrawal or after a 20 s cutoff. Withdrawal latency was signif-

icantly reduced after injecting 0.5% capsaicin into the hind paw

(Figure 5A; Video S4). Mechanical stimulation is applied with a

computer-controlled, force-feedback indenter (Figure 5B, inset).

With the mouse positioned on metal grate floor (instead of plex-

iglass), the indenter tip is aimed via substage video before being

raised at a fixed rate (Figure 5B; Video S5). Withdrawal is evident

from the rapid drop in force as sensed by the indenter (at 1 kHz)

and verified by high-speed video (at 1,000 fps), thus precluding

the need for reflectance-based latencymeasurements. Mechan-

ical threshold is taken as the peak force immediately prior to

withdrawal.
6 Cell Reports Methods 3, 100650, December 18, 2023
Additional response measures
For all stimulus modalities, the substage video enables slower,

non-reflexive behaviors to be analyzed. For example, video of

withdrawals reported in Figure 5A revealed that thermal stimula-

tion triggered significantly more licking, guarding, and flinching

after capsaicin (Figure 6A). By plotting the occurrence or

absence of these non-reflexive behaviors against latency of the

preceding withdrawal, logistic regression revealed that guarding

was not correlated with withdrawal latency under baseline con-

ditions but, after capsaicin, was significantly more likely

following short-latency withdrawals (Figure 6B) (logistic regres-

sion, p = 0.605 on the basis of 22 baseline trials vs. p =

0.00985 on the basis of 32 +capsaicin trials). Equivalent analysis

for licking and flinching is reported in Figure S3. One may

cautiously interpret this to mean capsaicin causes heat to be



Figure 5. Additional stimulus modalities

(A) Thermal stimulation. Radiant heat was applied via infrared laser (Video S4). Latency dropped from 7.18 ± 0.74 s (mean ± SEM) at baseline to 3.88 ± 0.49 s after

injecting 0.5% capsaicin into the left hind paw (T7 = 4.64, p = 0.002, paired t test, n = 8mice, 3 trials/mouse for baseline, 3–5 trials/mouse for +capsaicin). Thermal

stimulation was automatically terminated after detection of withdrawal or after 20 s cutoff.

(B) Mechanical stimulation. Top left image shows configuration of equipment. Tip of indenter arm is aimed using substage video. Height of indenter arm is ramped

up by computer control while monitoring (at 1 kHz) the force exerted on the paw. Withdrawal causes an abrupt drop in force. Threshold is taken as the peak force

preceding withdrawal. Sample frames extracted from the standard-rate video used for aiming (top) and the high-speed (1,000 fps) video used for validation

(bottom) illustrate aiming (a), stimulation (b), and withdrawal (c) phases (Video S5). Yellow highlights the target paw, which has moved out of view in (c).

See also Videos S4 and S5.
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perceived as more painful, triggering faster withdrawal, whereas

short-latency responses occasionally occur under baseline con-

ditions but not because certain trials are more painful than other

trials, providing clues as to where variability arises.54

We similarly analyzed responses to optogenetic ramps

because the high intra-mouse variability in withdrawal latency af-

fords an ideal opportunity to test if short- or long-latency with-

drawals in the same mouse are more or less painful. Plotting

the amount of time spent licking or guarding (during a �2 min

post-stimulus period) against withdrawal latency (Figure 6C) re-

vealed that long-latency withdrawals were associated with

significantly more licking (T55 = 5.06, p = 4.963 10�6, one-sam-

ple t test on slope) but not more guarding (T55 = �1.62, p =

0.111). This suggests that failure to withdraw promptly, for rea-

sons that remain unclear, results in the stimulus causing more

pain, as inferred from licking. Interestingly, plotting time spent

licking against time spent guarding on a trial-by-trial basis shows

that mice tend to exhibit one or the other behavior on a given trial

(Figure 6D). Interpretations warrant caution but automated anal-

ysis can expedite and help standardize future investigation along

these lines.

Fully automated testing
Next, we mounted the stimulator on linear actuators (Fig-

ure 7A) so that aiming could be controlled remotely by joystick

(i.e., without the tester operating in close proximity to the

mice) or automatically using machine learning. For the latter,

a neural network was trained with substage video using

DeepLabCut to recognize the paws and other points on the

mouse. The computer is then fed substage video and

DeepLabCut-Live55 uses the trained network to position the

photostimulator by minimizing x- and y-error signals (to within

3 pixels) so that the target paw is positioned in the crosshairs

for stimulation (Figure 7B; Video S6). Stimulation initiates
automatically once the paw has remained stationary for a min-

imum period and terminates automatically upon detection of

paw withdrawal or after a pre-set cutoff. Automated aiming

delivered stimuli even more reproducibly than manual aiming

with the same device (Figure 7C). This testing was conducted

using a neural network trained to recognize the paw-shaped

cut-out over the photodiode; neural networks trained to

recognize real paws may differ in performance, though post

hoc analysis of video records suggests excellent performance

identifying the center of the paw and targeting that point for

stimulation. For mechanical stimulation, the metal grate

floor partially obscures the mouse but automated aiming is

still possible with an appropriately trained neural network

(Video S7).

After completing a trial, the device automatically proceeds to

the neighboring mouse. By interleaving trials, other mice are

tested during the inter-stimulus interval required for eachmouse,

thus expediting the overall testing process. The order of testing

can easily be randomized, which is difficult for an experimenter

to keep track of. Meta-data (mouse identification, date, time,

stimulus parameters), raw data (video, reflectance signal) and

measurements (latency, threshold) are automatically saved (Fig-

ure 7E; Data S1). Non-reflexive behaviors such as those

analyzed in Figure 6 can also be detected and quantified auto-

matically using unsupervised methods (Figure 7F; Video S8).

Although not yet implement, automated real-time classification

of posture can be integrated into withdrawal testing so that stim-

uli are applied contingent on certain postures; for example,

guarding and rearing can influence withdrawal latencies38,56

and stimulation could, therefore, be delayed until the mouse as-

sumes a preferred posture. Even without closed-loop control,

video records enable post hoc correlation of withdrawal latency

with the pre-stimulus posture. Standardized high-throughput

testing without the potential errors, systematic differences,19
Cell Reports Methods 3, 100650, December 18, 2023 7



Figure 6. Additional behavior measurements

(A) Non-reflexive behaviors after radiant heat. Sample frames from Video S4 illustrate licking, guarding, and flinching (same experiments reported in Figure 5A).

These behaviors were significantly more common after capsaicin (red; n = 34 trials) than at baseline (black; n = 24 trials). p values on graph report c2 tests. These

behaviors were rare in the pre-stimulus period.

(B) Correlation between guarding and withdrawal latency. Extending analysis in (A), occurrence of guarding on a given trial (yes/no) was plotted against with-

drawal latency. According to logistic regression, guarding was significantly more likely after shorter latency responses in the +capsaicin condition (p = 0.0098) but

not at baseline (p = 0.605). Shading indicates bootstrapped 95% confidence interval. See Figure S3 for analysis of licking and flinching.

(C) Non-reflexive behaviors after optogenetic ramps. In 5 TRPV1-ChR2 mice given 15-s-long optogenetic ramps (9–12 trials/mouse), withdrawal latency was

plotted against the time spent licking or guarding during the subsequent post-withdrawal period (2 min duration + time remaining in ramp after withdrawal).

p values on graphs show strength of correlation, which trended in opposite directions. Optogenetic stimulation was automatically terminated after detection of

withdrawal.

(D) Guarding vs. licking. Plotting guard time against lick time on a trial-by-trial basis reveals that mice typically exhibit one or the other behavior on a given trial, not

both.

See also Video S4.
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and animal stress57 associated with human testers is thus

realized.

DISCUSSION

We developed a device able to reproducibly deliver photostimuli

of different wavelengths, intensities, and kinetics (waveforms). A

photometer detects paw withdrawal and measures withdrawal

latency with millisecond precision based on changes in the

reflectance of red light. The accuracy of this approach was vali-
8 Cell Reports Methods 3, 100650, December 18, 2023
dated by comparison with high-speed video. Closed-loop con-

trol of stimulation is made possible by real-time detection of

paw movement. We also demonstrate computer-controlled me-

chanical stimulation and automated detection of touch-evoked

withdrawal. Building on computer-controlled stimulation and

response measurement, we automated video-based aiming by

using neural networks to track the paw plus motorized actuators

to move the stimulator. Whereas aiming by joystick prevents the

tester from working in close proximity to the mice, which

stresses them,57 automation removes the human element



Figure 7. Fully automated testing

(A) Motorized photostimulator. Unlike the manually aimed version (see Figure 1), this version is mounted on linear actuators that allow its computer-controlled

translation in the x and y axes. Aiming is controlled by joystick or automatically with machine learning.

(B) Automated aiming. A neural network identifies the paws, snout, and tail base from substage video. Deviation of the target paw from the crosshairs is measured

(a) and then minimized by translating the stimulator (b). In other words, x- and y-errors are reduced until the center of the target paw (red dot) is within 3 pixels of

the screen center, which is aligned with the stimulation zone. Once the paw has remained stable inside the crosshairs for a minimum (user-defined) period,

photostimulation is initiated (c), and withdrawal latency is measured and recorded. The stimulator then moves to the adjacent mouse. See Video S6 for an

example of fully automated testing with radiant heat. Automated aiming is also compatible with the wire grate floor used for mechanical stimulation (Video S7).

(C) Automated aiming (10 trials), quantified as in Figure 2C, was significantly less variable than manual aiming (5 testers, 10 trials each) of the photostimulator

(T58 = 3.03, p = 0.004, unpaired t test). Stability of prolonged photostimulation (cf. Figure 2B) is equivalent regardless of aiming method. Graph reports mean ±

SEM.

(D) Graphical user interface. Figure S4 shows enlarged view with description.

(E) Sample of spreadsheet to all which data and metadata from each trial is automatically saved with linked graphs and videos. See Data S1 for a sample

spreadsheet with data and linked videos for fully automated testing of optogenetic pulses and ramps.

(F) Automated, non-supervised classification of ongoing behavior. Colored dots show latent space embedding of behavioral state determined at regular intervals

from Video S8. Screenshots corresponding to labeled points illustrate specific behaviors.

See also Data S1 and Videos S6, S7, and S8.
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altogether, with significant benefits for standardization, objectiv-

ity, and throughput. Video records allow non-reflexive behaviors

to be quantified and correlated with withdrawal measurements.

Automation also facilitates standardized recording of data and

metadata, which is crucial for creating large datasets amenable

to mining.

Capitalizing on identification of gene expression patterns to

distinguish subtypes of somatosensory afferents,58 optoge-

netics affords an unprecedented opportunity to study somato-

sensory coding by activating or inhibiting specific afferent sub-

types. Testing the behavioral response to synthetic activation

patterns allows one to explore causal relationships, comple-

menting efforts to characterize co-activation patterns evoked

by natural stimuli.59 This does not require that optogenetic

stimuli mimic natural, somatosensory stimuli. Optogenetic stim-

uli are patently unnatural—and the evoked sensations probably

feel unnatural, like paresthesias evoked by electrical stimula-

tion—but their ability to evoke behavior allows one to start

inferring how they are perceived, and how those sensations

relate to neural activation patterns. Doing this requires tight

control of the stimulus and precise measurement of the

response.

Technical advances have been made in delivering photosti-

muli to the CNS or peripheral nerves for optogenetic manipula-

tions.60 This technology is invaluable, but stimulating the nerve

does not reproduce somatotopically organized stimulation. Pho-

tostimulating receptive fields in the skin is preferable in that re-

gard, and is also less invasive. However, transcutaneous stimuli

are difficult to apply reproducibly to behaving animals. Sharif

et al.48 solved this bymounting the fiber optic to the head to stim-

ulate the cheek, but a comparable solution is infeasible for stim-

ulating paws. These technical challenges explain why past

studies focused on whether mice responded to optogenetic

stimulation, without carefully varying stimulus parameters or

measuring subtler aspects of the response. Past studies have

varied the number, rate, or intensity of pulses, but in the supra-

threshold regime, with consequences for the amount of licking,

jumping, or vocalization. To our knowledge, only one study61

titrated the intensity of transcutaneous photostimuli to determine

threshold (see Figure 2D), and another43 titrated pulse duration

and spot size. Moreover, scoring responses by eye, though still

the norm for many tests, must be replaced with objective met-

rics. Schorscher-Petcu et al.43 recently described a device that

uses galvanometric mirrors to direct photostimuli and high-

speed substage video to measure withdrawal. Their device is

very elegant, but reliance on high-speed video to detect with-

drawals likely precludes closed-loop control, and nor is their de-

vice fully automated or high-throughput. Our device delivers

reproducible photostimuli and automatically measures with-

drawals using the red-reflectance signal complemented by reg-

ular-speed substage video, which is also used for automated

aiming.

Non-painful stimuli may trigger withdrawal, which is to say

that the threshold stimulus (or the probability of withdrawal)

may not reflect painfulness.24 In that respect, testing with

stronger stimuli is informative. The study by Browne et al.38

stands out for its use of high-speed video to thoroughly quan-

tify responses to optogenetic stimulation. Like us (see Fig-
10 Cell Reports Methods 3, 100650, December 18, 2023
ure 4A), they observed a bimodal distribution of withdrawal

latencies; however, they observed this despite using high-in-

tensity pulses, most likely because their pulses were extremely

brief (3 ms) and might, therefore, have activated afferents prob-

abilistically. By varying the intensity of longer (100 ms) pulses,

we observed that stronger stimuli evoke faster withdrawals,

evident as a continuous shift in latency as well as a switching

from long- to short-latency responses. A putative explanation

for the bimodal latency distribution—consistent with Browne

et al.38 and with the double-alarm system proposed by Plaghki

et al.62 based on different rates of heating—is that slow and

fast responses are mediated by C- and A-fibers, respectively.

Building from that, our data suggest that C-fibers are recruited

first (i.e., by weaker photostimuli) and that slow responses

speed up as more C-fibers get recruited, but a discontinuous

‘‘switch’’ to fast responses occurs once A-fibers get recruited,

and fast responses speed up as more A-fibers are recruited.

Further investigation is required but resolving the stimulus-

response relationship sufficiently to even pose such questions

is notable.

Browne et al.38 also noted that the withdrawal response was

not limited to the stimulated limb and, instead, was more wide-

spread. Although not quantified here, a widespread response

was evident in substage video and sometimes included vocal-

izing, facial grimacing, jumping, and orienting to the stimulus fol-

lowed by licking, guarding, or flinching of the stimulated paw (see

Figure 6). A complete analysis of each trial ought to consider not

only the reflexive component (i.e., did withdrawal occur and how

quickly), but also whether signs of discomfort were exhibited af-

terward and for how long. Those signs are obvious when

applying strong stimuli but become harder to discern with

near-threshold stimuli, which makes objective quantification all

the more important. Regular-speed video is sufficient to capture

all but the fast reflex (which can be measured by other means;

see Figure 3) and the bottom-up view is well suited for ma-

chine-learning-based quantification of ongoing behaviors.63,64

We recommend that video be recorded for all trials if only to allow

analysis of those data in the future. There has been an explosion

of artificial intelligence (AI)-based methods for extracting key

points on animals37,65,66 and algorithms for extracting higher-

level behaviors from key point63,64,67 or raw pixel68 data. Appli-

cation of such tools is yielding impressive results.69 Other hard-

ware has been recently developed to facilitate such analysis but

does not include stimulation capabilities.70 By capturing video

before and after stimuli, our device enables users to quantify be-

haviors in addition to measuring reflexive withdrawal using tradi-

tional metrics.

Withdrawal responses are known to be sensitive to posture

and ongoing behavior at the time of stimulation.38,56,71 Such dif-

ferences may confound latency measurements but may also

provide important information; either way, they should be ac-

counted for. Waiting for each mouse to adopt a specific posture

is onerous for a human tester but can be done by computer if

automated stimulation is made contingent on the mouse being

in a certain state. Before that, to better understand the relation-

ship between themouse’s pre-stimulus state and its subsequent

stimulus-evoked withdrawal (and post-stimulus state), its

state at stimulus onset could be classified from video (like in
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Figure 7F) and correlated with the evoked response on that trial

(as for post-stimulus behaviors in Figures 6B and 6C). Other

comparisons would also be informative, like correlating the

pre- and post-stimulus states and treatment status. In short,

more data can be acquired and more thoroughly analyzed than

is typically done in current protocols; others have also advocated

for this.23–25 More comprehensive analysis need not entail

expensive equipment or reduced throughput.

Nearly all past studies involving transcutaneous optogenetic

stimulation used single pulses or pulse trains.28,38–49 In the one

exception, Baumbauer et al.50 activated ChR2-expressing ker-

atinocytes with sustained light. Single pulses and pulse trains

are just some of the many possible waveforms, especially as

LEDs can be so easily controlled. Notably, just like pulsed elec-

trical stimuli lost favor in pain testing because of the unnaturally

synchronized neural activation they evoke,1 pulsed optogenetic

stimuli warrant similar scrutiny and should not be the only

waveform tested. Indeed, different rates of radiant heating

differentially engage C- and A-fibers,62 thus enabling the role

of different afferents to be studied. By testing photostimulus

ramps, we uncovered genotypic differences that were not

evident with pulses (see Figure 4B). The basis for the genotypic

difference requires further investigation but we hypothesize that

co-activation of non-nociceptive afferents in Advillin- and

TRPV1-ChR2 mice (but not in Nav1.8-ChR2 mice) engages a

gate control mechanism that tempers effects of nociceptive

input, consistent with Arcourt et al.,28 who showed that acti-

vating Ad-HTMRs in isolation evoked more guarding, jumping,

and vocalization than co-activating Ad-HTMRs and LTMRs.

By testing different photostimulus waveforms, one can start

to delineate the underlying interactions. Photostimulus kinetics

influence how optogenetic actuators such as ChR2 respond

(e.g., whether they desensitize, thus producing less current

for a given photostimulus intensity), but one must also consider

how neurons respond to those photocurrents. Specifically,

pulsed stimuli tend to evoke precisely timed spikes,38 leading

to spikes that are synchronized across co-activated neurons,72

which may or may not accurately reflect the spiking patterns

evoked by somatosensory stimuli. Artificial stimuli need not

mimic natural stimuli to be informative; indeed, deliberately

evoking spiking patterns not possible with natural stimuli offers

new opportunities to probe somatosensory coding, including

the role of synchrony. In that respect, optogenetic testing

should include but not be limited to pulsed photostimuli. Inter-

estingly, some studies44,45 have tested if ChR2-expressing

mice avoid blue-lit floors, which they do. In these cases, the

floor light was continuous, unlike the pulses typically applied

by fiber optic; it is therefore notable that mice avoided the

blue floor but did not respond to it with reflexive withdrawal,

paw licking, or other outward signs of pain, as they did to

pulses. In the one case where the floor light was pulsed,47 re-

flexive withdrawal was observed. These results highlight the

underappreciated importance of stimulus kinetics.

To summarize, we describe a device capable of reproducible,

automated, multimodal algometry, or RAMalgo. Aiming, stimula-

tion, and measurement are fully automated, which improves

standardization and increases throughput, among other bene-

fits. A video record of the animal before, during, and after stimu-
lation allows one to extend analysis beyond traditional response

metrics (i.e., threshold and latency) to consider if evoked and

ongoing pain behaviors are correlated.
Limitations of the study
Thoughwe have demonstrated computer-controlledmechanical

stimulation, we did not compare this against von Frey filaments,

for instance, by comparing intra- and inter-tester variability in

stimulus delivery like we did for photostimulation. There is still

room to improve automated mechanical stimulation and to add

other stimulus modalities. Many other conceivable scenarios

have not yet been tested; for instance, in vivo electrophysiology

and calcium imaging could be precisely synchronized with stim-

ulation and behavioral response measurements using this tech-

nology. Unlike home-cage monitoring, mice must be transferred

to an unfamiliar environment for testing. Best practices must be

applied when handling mice, acclimating them, testing at the

same time of day, etc., to minimize stress and the variability it

introduces.
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43. Schorscher-Petcu, A., Takács, F., and Browne, L.E. (2021). Scanned op-

togenetic control of mammalian somatosensory input to map input-spe-

cific behavioral outputs. Elife 10, e62026. https://doi.org/10.7554/ELIFE.

62026.

44. Daou, I., Tuttle, A.H., Longo, G., Wieskopf, J.S., Bonin, R.P., Ase, A.R.,

Wood, J.N., De Koninck, Y., Ribeiro-da-Silva, A., Mogil, J.S., and Séguéla,
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Mouse: Advillin Cre Zhou et al.51 N/A

Mouse: Nav1.8 Cre Agarwal et al. 53 N/A

Deposited data

Data for model training This paper Mendeley Data: https://doi.org/10.17632/gn2wbkh7j3.1

Software and algorithms

Computer code This paper GitHub: https://github.com/stofe95/ramalgo;

Zenodo: https://doi.org/10.5281/zenodo.10022925

Spike2 Cambridge Electronic Design RRID:SCR_000903

Python 3.8 The Python Software Foundation https://www.python.org/; RRID:SCR_008394

Matplotlib The Matplotlib community https://matplotlib.org/; RRID:SCR_008624

Seaborn The Seaborn community https://seaborn.pydata.org/; RRID:SCR_018132

Pandas The Pandas community https://pandas.pydata.org; RRID:SCR_018214

Numpy The Numpy community https://numpy.org/; RRID:SCR_008633

Scipy The Scipy community https://scipy.org/; RRID:SCR_008058

OpenCV The OpenCV community https://opencv.org/; RRID:SCR_015526

VAME Luxem et al. 64 https://github.com/LINCellularNeuroscience/VAME;

RRID:SCR_022477

DeepLabCut DeepLabCut developers Mathis et al.37 RRID:SCR_021391

DeepLabCut-live DeepLabCut developers Kane et al.55 https://github.com/DeepLabCut/DeepLabCut-live

PyTrinamic Trynamic Motion Control https://github.com/trinamic/PyTrinamic
RESOURCE AVAILABILITY

Lead contact
Further inquiries or requests can be directed to Steve Prescott (steve.prescott@sickkids.ca).

Materials availability
This study did not generate new unique reagents. A full parts list is provided in Table S1 which, together with details in Figure S1,

allows users to construct their own stimulator. The device will also be made commercially available in the near future.

Data and code availability
d All data reported in the paper are available upon request. Data used to train the mouse keypoint detection model using

DeepLabCut is available at Mendeley Data (https://doi.org/10.17632/gn2wbkh7j3.1). This includes the full output directory

from DeepLabCut, including 500 labeled frames used to train a Resnet-50 based model. Model performance depends on

various factors (camera angle, lighting, background, etc.) and so performance will differ if those factors differ. Users should

add their own training data representative of their testing conditions.

d Original code for running the device will be made available on GitHub upon publication (https://github.com/stofe95/ramalgo).

An archival DOI is reported in the key resources table.

d Any additional information required to reproduce the results reported in this study is available from the lead contact upon

request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All procedures were approved by the Animal Care Committee at The Hospital for Sick Children (protocol #53451) and were conduct-

ed in accordancewith guidelines from theCanadian Council on Animal Care. To express ChR2 selectively in different types of primary
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somatosensory afferents, we used Ai32(RCL-ChR2(H134R)/EYFP) mice (JAX:024109), which express the H134R variant of ChR2 in

cells expressing Cre recombinase. These were crossed with advillinCre mice (kindly provided by Fan Wang) to express ChR2 in all

sensory afferents, TRPV1Cre mice (JAX:017769) to express ChR2 in TRPV1-lineage neurons, or NaV1.8
Cre mice (kindly provided

by Rohini Kuner) to express ChR2 in nociceptors. 8–16 week old male (n = 28) or female (n = 11) mice were acclimated to their testing

chambers for 1 h on the day before the first day of testing, and each day for 1 h prior to the start of testing. Sex differences were not

observed and data were therefore pooled.

METHOD DETAILS

Photostimulator
The stimulator is summarized in Figure S1; A complete list of components (as numbered in Figure S1, with part # and supplier infor-

mation) is included as Table S1. Briefly, collimated light from a red (625 nm) LED and blue (455 nm) LED is combined using a 550 nm

cut-on dichroic mirror. Blue light is attenuated with a neutral density filter. This beam is combined with IR light from a 980 nm solid

laser using a 900 nm cut-on dichroic mirror. The IR beam is expanded to fill the back of the focusing lens. The common light path is

reflected upward with a mirror and focused to a spot 5 mm in diameter on the platform above. The surface area of the spot is

�20 mm2; photostimulus power values should be divided by this number to convert to light density (irradiance). Red light reflected

off the mouse paw is collected by a photodetector through a 630 nm notch filter. All light sources are controlled by computer via

appropriate drivers and a 1401 DAQ (Cambridge Electronic Design) using Spike2 (Cambridge Electronic Design) or custom software

written in Python using Numpy,73 Scipy,74 Pandas,75Matplotlib,76 andOpenCV.77 The photodetector samples at 1 kHzwith the same

DAQ, thus synchronizing stimulation and withdrawal measurement. A camera provides video of the mouse from below (substage).

Video is used for aiming with the help of visual feedback using the red light, which is turned on prior to photostimulation with blue or IR

light. A near-IR light source is useful to improve lighting during high-speed video. In themanual version of the device, the device is slid

by hand; leveling screws at the four corners of the breadboard have a plastic cap for smooth sliding. In the motorized version, the

breadboard it attached to linear actuators (TBI Motion) via 3-D printed connectors. Motors are controlled via custom software.

The user aims by keyboard or joystick, or fully automated aiming is left to a neural network trained to recognize the mouse paws.

Mechanostimulator
Computer-controlledmechanical stimulation was implemented using a 300C-I dual-mode indenter (Aurora Scientific). This stimulator

can control andmeasure both force and length (height). Our software controls height in the sameway LED/laser intensity is controlled

for photostimulation. The exerted force is simultaneously measured at 1 kHz and recorded to computer. Because withdrawal is

evident from changes in measured force, additional signals (e.g., reflectance, video) are not required for latency measurements.

Platform and enclosures
The platform and animal enclosures were custom made. Except when testing mechanical stimuli, the platform is 3 mm-thick clear

Plexiglass mounted on 203 20 mm aluminum rails, adjusted to the desired height above the stimulator. For mechanical stimulation,

plexiglass was replaced with a metal grate, specifically a stainless steel cooling rack. Various enclosure designs were tested. In the

final design, clear Plexiglass tubes (outer diameter = 65 mm, thickness = 2 mm) cut in 12.5 cm lengths were used in conjunction with

opaquewhite 3-D printed cubicle. The same tube used to transfer amouse from its home cage is placed on the platform vertically and

slid into a cubicle for testing (see Figure 1B). A notch cut into the base of each tube allows the experimenter to deliver a food reward,

to poke the mouse (to wake or orient it), or to clean feces or urine from the platform if required. Each cubicle is 3-D printed and con-

tains internal magnets that allow cubicles to be easily combined. Keeping the mice at fixed distances from each other is important for

automated testing, where the stimulator is automatically translated a fixed distance when testing consecutive mice. To view the

mouse in profile during high-speed video, we used a narrow rectangular chamber with clear walls on the front and left side (with a

notch under the latter) and opaque walls at the rear and right side. In some cases, a mirror was placed at a 45� angle near the left

wall to simultaneously capture a front view of the mouse.

Comparison with handheld fiber optic
Volunteer testers were instructed to use a fiber optic (multimode fiber optic patch cable, 1000 mm diameter core, NA = 0.48, SMA

endings attached to 455 nm fiber-couple LED, Thorlabs) to apply a photostimulus to an s170C photodiode attached to a PM100D

optical power meter (Thorlabs). The same photostimulus power was used for all trials, by all testers. The photodiode was covered

with a paw-shaped cutout and placed face down on the plexiglass platform to simulate aiming at a real paw standing on the platform.

The PM100D output was connected to a Power1401 data acquisition interface (Cambridge Electronic Design), sampling at 1 kHz. The

Power1401 was also used to deliver command voltages to the LEDD1B LED driver (Thorlabs).

Automated withdrawal detection and latency measurement
Pawwithdrawal is detected and its latencymeasured from the red reflectance signal using custom codewritten in Python. Red light is

initiated prior to photostimulation with blue or IR light. Baseline reflectance is measured over the 0.5 s epoch preceding photostimu-

lus onset. A running average across a 27 ms-wide window was used to remove noise. Withdrawal latency was defined as time
e2 Cell Reports Methods 3, 100650, December 18, 2023
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elapsed from photostimulus onset until the reflectance signal dropped below a threshold defined as 2 mV below baseline; the signal

needed to remain below threshold for >20 ms to qualify as a response, but latency was calculated based on the start of that period.

The 2 mV threshold value was chosen based on pilot experiments and then applied unchanged in all subsequent testing. Latencies

thus extracted from the reflectance signal were compared to latency values extracted from high-speed video of the samewithdrawal.

In the latter case, paw height was extracted from video (see below) using DeepLabCut; latency was taken as the time taken for paw

height to rise 6 pixels above baseline, defined as the mean height over the 0.5 s epoch preceding photostimulus onset. All latency

measurements reported in the manuscript are based on automated reflectance-based measurements unless otherwise indicated.

High-speed video
High-speed video was collected with a Chronos 1.4 camera (Krontech) using a Computar 12.5–75 mm f/1.2 lens sampling at 1000

fps. To synchronize video with stimulation, the camera was triggered with digital pulses sent from the DAQ. Videos were compressed

using H.264. Video was analyzed using DeepLabCut37 to label the hind paw in sample frames and train a deep neural network to

recognize the paw. This returned paw trajectories which were analyzed using custom code written in Python.

Pose estimation
DeepLabCut-Live was used to track mouse pose from substage video. While we stimulated only the left hindpaw, networks were

trained to recognize the snout, front paws, hind paws, and tail base. The extra keypoints were intended to force the network to as-

sume weights that would represent orientation well, and distinguish between the left and right paws. To train the neural network, we

collected one video with 9 mice on the photostimulator platform and panned the camera around under the mice using the linear ac-

tuators, collecting 9 min of video. 500 frames were labeled and 95% were used for training a ResNet-50-based neural network with

default parameters for 200,000 iterations. We validated on one shuffle and found a test error of 17.41 pixels (px) and train error of 2.62

px. These error values represent multiple keypoints; test error specifically related to the target hind paw is much lower (3.33 px). The

image size was 640x480. Importantly, hind paws were not labeled when the paws were turned in a guarding position. This meant that

the paws would not be recognized unless placed flat on the platform, and that stimulation would only occur when the paws were

correctly oriented. Training was done on a 32 GB NVDIA Tesla V100 GPU, while live inference for aiming was done on a 3 GB

NVIDIA Quadro K4000 or NVIDIA GeForce RTX 4070 Ti (see below).

Different networks were required for different applications. To analyze paw withdrawal height, a separate neural network was

trained using high-speed video of the mice in profile. DeepLabCut was used with the same parameters as above, training on 580

frames of high-speed video with a 1008x500 resolution. Test error = 5.05 px; train error = 2.32 px. For automated mechanical stim-

ulation, another neural network was trained that could recognize the mouse on ametal grate. Again, the same parameters were used

for DeepLabCut, but training on 100 frames with a 1280x800 resolution. Test error = 19.15 px; train error = 1.82 px. To validate photo-

stimulus reliability with automated aiming, a network was trained to recognize a paw-shaped cut out covering a photodiode (see

above). The same parameters were used as mentioned above, training on 200 frames with a 640x480 resolution, while labeling

the center of the paw-shaped cutout. Test error = 2.43 px; train error = 2.1 px.

Automated aiming
The substage camera was aligned with the linear actuators such that movements in the x- and y-directions on video could be inde-

pendently controlled by x- and y-linear actuators, respectively. The camera was also positioned such that the center of the framewas

aligned with the photostimulation zone. x- and y-error signals were then calculated by taking distances from the DeepLabCut-live-

based pose estimates for the target paw to the center of the frame (see Figure 7B for example frames). Inference for one frame on an

NVIDIA GeForce RTX 4070 Ti could be completed in <20 ms, which is less than the duration of each frame for standard-rate video

(1/30 fps = 33 ms). The x- and y-linear actuators were then independently driven with signals that were proportional to the error sig-

nals. Importantly, proportionality of the actuator speed to the error signal reduced translation speed as the target was approached,

preventing overshoot. Once the target was centered in the frame within a tolerance of 3 px, a timer begins for a user-defined period

(2 s for the data shown in Data S1) before stimulation is initiated. This delay assures that the mouse is immobile when initiating stim-

ulation. If the target pawmoves during the pre-stimulus interval, aiming is re-initiated and, once aligned, the timer is restarted. A sepa-

rate timer can be set to stop this sequence and move to the next mouse when a certain mouse is too active to stimulate reliably.

Behavior extraction
Substage videowas saved and compressed using H.264. DeepLabCut was used to identify the nose, left fore paw, right fore paw, left

hind paw, right hind paw, and tail base. These key points were then fed into the VAME framework64 using default parameters and 10

clusters to extract complex behaviors.

Capsaicin and heat hypersensitivity
A 0.5% w/v solution of capsaicin in mineral oil was prepared. Mice were lightly anesthetized using isoflurane and 5 mL of capsaicin

was injected into the left hind paw. Mice were allowed to recover for 15 min from anesthesia before thermal sensitivity was re-

assessed.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical testing was performed using Python 3.8 using SciPy 1.9.3,74 Statsmodels 0.13.2,78 or with SigmaPlot v11. T-tests were

used to compare means, Kolmogorov-Smirnov tests were used to compare distributions, and chi-square tests were used to test dif-

ferences in frequency of observed behaviors. Visualizations were made with Matplotlib,76 Seaborn,79 and SigmaPlot.
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