Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1942 Jan;28(1):8–15. doi: 10.1073/pnas.28.1.8

Radioactive Carbon as an Indicator of Carbon Dioxide Utilization

VIII. The Rôle of Carbon Dioxide in Cellular Metabolism

C B van Niel 1,2, S Ruben 1,2, S F Carson 1,2, M D Kamen 1,2, J W Foster 1,2,*
PMCID: PMC1078395  PMID: 16588517

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barker H. A., Ruben S., Beck J. V. Radioactive Carbon as an Indicator of Carbon Dioxide Reduction: IV. The Synthesis of Acetic Acid from Carbon Dioxide by Clostridium Acidi-Urici. Proc Natl Acad Sci U S A. 1940 Aug 15;26(8):477–482. doi: 10.1073/pnas.26.8.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barker H. A., Ruben S., Kamen M. D. The Reduction of Radioactive Carbon Dioxide by Methane-Producing Bacteria. Proc Natl Acad Sci U S A. 1940 Jun 15;26(6):426–430. doi: 10.1073/pnas.26.6.426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carson S. F., Foster J. W., Ruben S., Barker H. A. Radioactive Carbon as an Indicator of Carbon Dioxide Utilization: V. Studies on the Propionic Acid Bacteria. Proc Natl Acad Sci U S A. 1941 May 15;27(5):229–235. doi: 10.1073/pnas.27.5.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carson S. F., Ruben S. CO(2) Assimilation by Propionic Acid Bacteria Studied by the Use of Radioactive Carbon. Proc Natl Acad Sci U S A. 1940 Jun 15;26(6):422–426. doi: 10.1073/pnas.26.6.422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Elsden S. R. The effect of CO(2) on the production of succinic acid by Bact. coli commune. Biochem J. 1938 Jan;32(1):187–193. doi: 10.1042/bj0320187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Foster J. W., Carson S. F., Ruben S., Kamen M. D. Radioactive Carbon as an Indicator of Carbon Dioxide Utilization: VII. The Assimilation of Carbon Dioxide by Molds. Proc Natl Acad Sci U S A. 1941 Dec 15;27(12):590–596. doi: 10.1073/pnas.27.12.590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gaffron H. THE OXYHYDROGEN REACTION IN GREEN ALGAE AND THE REDUCTION OF CARBON DIOXIDE IN THE DARK. Science. 1940 May 31;91(2370):529–530. doi: 10.1126/science.91.2370.529. [DOI] [PubMed] [Google Scholar]
  8. Kleinzeller A. The formation of succinic acid in yeast. Biochem J. 1941 Apr;35(4):495–501. doi: 10.1042/bj0350495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Krampitz L. O., Werkman C. H. The enzymic decarboxylation of oxaloacetate. Biochem J. 1941 Jun;35(5-6):595–602. doi: 10.1042/bj0350595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Krebs H. A., Eggleston L. V. Biological synthesis of oxaloacetic acid from pyruvic acid and carbon dioxide. Biochem J. 1940 Nov;34(10-11):1383–1395. doi: 10.1042/bj0341383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Krebs H. A., Eggleston L. V. Biological synthesis of oxaloacetic acid from pyruvic acid and carbon dioxide. Biochem J. 1940 Nov;34(10-11):1383–1395. doi: 10.1042/bj0341383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Krebs H. A., Eggleston L. V. Biological synthesis of oxaloacetic acid from pyruvic acid and carbon dioxide: The mechanism of carbon dioxide fixation in propionic acid bacteria. Biochem J. 1941 Jun;35(5-6):676–687. doi: 10.1042/bj0350676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Krebs H. A., Eggleston L. V., Kleinzeller A., Smyth D. H. The fate of oxaloacetate in animal tissues. Biochem J. 1940 Sep;34(8-9):1234–1240. doi: 10.1042/bj0341234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Longsworth L. G., Macinnes D. A. Bacterial Growth at Constant pH: Apparent Oxidation-reduction Potential, Acid Production, and Population Studies of Lactobacillus acidophilus under Anaerobic Conditions. J Bacteriol. 1936 Nov;32(5):567–585. doi: 10.1128/jb.32.5.567-585.1936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ruben S., Kamen M. D., Hassid W. Z., Devault D. C. PHOTOSYNTHESIS WITH RADIO-CARBON. Science. 1939 Dec 15;90(2346):570–571. doi: 10.1126/science.90.2346.570. [DOI] [PubMed] [Google Scholar]
  16. Ruben S., Kamen M. D. Radioactive Carbon in the Study of Respiration in Heterotrophic Systems. Proc Natl Acad Sci U S A. 1940 Jun 15;26(6):418–422. doi: 10.1073/pnas.26.6.418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Smyth D. H. Vitamin B(1) and the synthesis of oxaloacetate by Staphylococcus. Biochem J. 1940 Dec;34(12):1598–1604. doi: 10.1042/bj0341598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Thimann K. V. THE ABSORPTION OF CARBON DIOXIDE IN PHOTOSYNTHESIS. Science. 1938 Nov 25;88(2291):506–507. doi: 10.1126/science.88.2291.506. [DOI] [PubMed] [Google Scholar]
  19. Valley G., Rettger L. F. THE INFLUENCE OF CARBON DIOXIDE ON BACTERIA. J Bacteriol. 1927 Aug;14(2):101–137. doi: 10.1128/jb.14.2.101-137.1927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Woods D. D. Hydrogenlyases: The synthesis of formic acid by bacteria. Biochem J. 1936 Mar;30(3):515–527. doi: 10.1042/bj0300515. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES