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Abstract

Deep brain stimulation (DBS) devices capable of measuring differential local field potentials 

(∂LFP) enable neural recordings alongside clinical therapy. Efforts to identify oscillatory 

correlates of various brain disorders, or disease readouts, are growing but must proceed 

carefully to ensure readouts are not distorted by brain environment. In this report we identified, 

characterized, and mitigated a major source of distortion in ∂LFP that we introduce as mismatch 
compression (MC). Using in vivo, in silico, and in vitro models of MC, we showed that impedance 

mismatches in the two recording electrodes can yield incomplete rejection of stimulation artifact 

and subsequent gain compression that distorts oscillatory power. We then developed and validated 

an opensource mitigation pipeline that mitigates the distortions arising from MC. This work 

enables more reliable oscillatory readouts for adaptive DBS applications.
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I. Introduction

DEEP brain stimulation (DBS) has demonstrated efficacy in various neuropsychiatric 

disorders [1], [2], [3] but our understanding of its effects on brain signaling remains lacking. 

New devices that measure neural recordings directly in DBS patients are being used around 

[4], and even during [5], [6], [7], [8], [9], [10], active DBS therapy in order to identify 

correlates of diseases, or disease readouts. However, these new devices require caution to 

ensure any derived disease readout is reliable and stable over long periods of time.

A new class of DBS capable of differential local field potential (∂LFP) recordings enables 

long-term recording around the stimulation target [6], [7]. Unlike typical LFP recordings, 

∂LFP references two electrodes around the stimulation electrode to each other in order 

to subtract away large artifacts before sensitive amplifiers (Figure 1a) [7], [11]. Without 

subtraction, artifacts can leak into sensitive amplifiers and cause saturation, an extreme 

form of a more general process called gain compression (Figure 1c,d) [12]. Because gain 

compression may be overt or subtle (Figure 1c,d), analyses in the frequency-domain to 

identify the high-frequency changes associated with compression is needed to confirm and 

characterize it when present.

While ∂LFP can be very effective, even small asymmetries in recording electrodes can result 

in leaked artifacts many orders of magnitude larger than neural oscillations [7], [13]. These 

asymmetries in electrical impedances or surrounding tissue types, can differentially affect 

stimulation spread and field potential recordings [14], [15], [16], [17], [18]. Changes in 

impedance over weeks and months of symptom recovery can, through variability in resulting 

gain compression, confound analyses of neural oscillations [9], [15], [16], [19], [20] - a 

process we study here as mismatch compression (MC).
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In this study we characterize MC in a first-generation ∂LFP recording device, the Activa 

PC+S™ (Medtronic PLC, Minnesota, USA) [7]. Our core goal here was to mitigate the 

effects of MC for more reliable analyses of oscillations in ∂LFP recordings, particularly 

in the presence of active stimulation and over chronic timescales. We collected a set of 

clinical recordings from patients with treatment resistant depression (TRD) implanted with 

connectomics-guided DBS at subcallosal cingulate white matter (SCCwm), a brain target 

with known tissue heterogeneity in the volume of tissue activated (VTA) [2], [21], [22], 

[23]. Using multiple model systems, we developed an equivalent circuit, or focused model, 

of MC to confirm its presence, characterized its distortions to frequency-domain features, 

and validated a mitigation pipeline that avoid MC distortions for more reliable oscillatory 

analyses.

II. Methods

A. Clinical Protocol

Six patients with treatment resistant depression (TRD) were consented and enrolled in 

an IRB and FDA approved research protocol at Emory University (clinicaltrials.gov 

NCT01984710; FDA IDE G130107) (Table I). All six patients were implanted with 

a Medtronic Activa PC+S™ implantable pulse generator (IPG), a first-generation ∂LFP 

device used for opportunistic study of brain activity in clinical DBS [6]. Two Medtronic 

DBS3387 leads, each with four electrodes, were implanted bilaterally in patient-specific, 

tractographydefined SCCwm as previously described (Figure 1a) [24]. Patients underwent 

weekly clinical assessment, including DBS electrode impedance measurements and 

downloads of the previous week’s daily recordings.

B. Stimulation and Impedance

In each hemisphere’s SCC, stimulation was delivered to one of four electrodes spaced 1.5 

mm apart edge-to-edge Therapeutic DBS stimulation is delivered bilaterally at 130 Hz, 90 μs 

pulsewidth, biphasic waveform with IPG as cathode. Stimulation voltage is varied depending 

on clinical efficacy and experimental condition. All electrode impedances were measured 

in monopolar mode at 3 V and 100 Hz using the standard clinician-controller (Medtronic 

N’Vision) [25]. Impedance measurements were made at weekly clinical patient assessments 

over 28 weeks post-implantation. Impedance mismatch was calculated as the absolute value 

of the subtracted impedances in both electrodes each week.

C. Clinical (in Vivo) Recordings

1) Channel Sampling and Filters: Each DBS lead has four electrodes, with those 

on the left lead labeled E0-3 and the right lead labeled E8-E11 (Figure 1a). In this study, 

all recordings were taken with the electrodes directly adjacent to the therapeutic electrodes 

(Figure 1a). All PC+S™recordings were sampled at the dual-channel maximum of 422 

Hz. Hardware filters with limited settings were set as wide as possible, with 0.5 Hz 

high-pass and 100 Hz low-pass. In vivo, recordings were taken from bilateral SCC using 

patient-specific parameters for recording electrode number and channel gains (Table I). In 
vitro, a single DBS 3387 lead was connected to the channels 0-7 on the Activa PC+S™. 
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All recordings were collected using the clinical sensing tablet using clinical recording 

parameters settings.

2) Gain and Over Range Marker (ORM): Each channel has an adjustable gain 

parameter, selected from 250, 500, 1000, or 2000, set after visual inspection of the 

recorded spectrum during therapeutic stimulation (Table I). A PC+S™ specific over range 
marker(ORM) is present in all recordings at 105.5 Hz. The ORM, a constant amplitude 

signal in the recording, can be seen in the acute voltage sweep experiment across the full 

recording, with power changes evident during active stimulation (Figure 4a). This observed 

variability is indicative of gain compression, with saturation considered when the peak is no 

longer discernible (Figure 4a at 800 s).

3) Voltage Sweep Experiment: A voltage sweep experiment was performed in all 

patients at therapy initiation. Stimulation is delivered to the therapeutic electrode at voltages 

2V to 8V, with otherwise therapeutic stimulation parameters (See Methods II-C.3). Each 

stimulation condition was delivered for 1 min, with 1 min washout periods in between.

D. Benchtop (in Vitro) Construct

An agar-saline preparation of two spatially sequestered phases with distinct resistivity 

(Figure 1b) was constructed based on published experimental setups [26]. The saline phase 

was fixed at 0.5 mg
mL  of NaCl, and yielded measured impedances of approximately 800 Ω. The 

agar phase was fixed with high resistivity 0.1 mg
mL  of NaCl), and yielded measured impedances 

of approximately 1300 Ω. Agar mixture was poured into a 10 mL conical corning tube with 

blue fluorophore and placed in a 32C for 20 minutes to settle before saline phase was then 

added on top (Figure 4a). A demo DBS3387 lead was placed at the interface of the saline 

and agar layers using a micromanipulator (Figure 4b). Impedance mismatches measured 

across two non-adjacent electrodes ranged from 100 Ω in uniform media and 300 Ω across 

media (Figure 1b).

E. Focused (in Silico) Model

Gain compression was a central design challenge in the development of the PC+S™, and 

impedance mismatches in the recordings electrodes was an expected failure mode by device 

engineers [7]. Because of the deliberate design of ∂LFP channels, we can construct an 

explicit, computational model of MC in order to confirm its presence, characterize its 

distortions, and mitigate its distortions as best as possible. Our focused MC model consisted 

of four layers: the brain, the lead, the amplifier, and the analysis (Figure 1d).

1) Brain Layer: All brain signals are generated at 4220 Hz timeseries lasting 20 s. A 

single neural oscillation x3 was implemented as a stationary 15 Hz sinusoid (Figure 1d), 

and an independent 1
f  components added to x1 and x3 sources. Stimulation artifact was 

introduced as a truncated Fourier series of sine waves at the therapeutic stimulation fT, 

yielding the stimulation shaping harmonics (SSH). The stimulation S(t) is set six orders of 

magnitude larger than the neural oscillations, based on the typical difference between neural 
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oscillations μV and stimulation V [13], [27]. The Activa PC+S™ specific ORM is added at 

105.5 Hz in order to improve congruence between simulation and empirical recordings.

2) Lead Layer: The lead layer consists of two electrodes, electrodes e1 and e3, around 

the stimulating electrode e2. Both measure independently from two neural sources, labeled 

x1 and x3 for electrodes e1 and e3, respectively. The neural sources are independent of 

each other, with only x1 containing an oscillation at 15 Hz. Each electrode has a modeled 

impedance as a pure resistive component Z1 and Z3, respectively.

3) Amplifier Layer: Two subcomponents are implemented in the amplifier layer: a 

differential amplifier and a signal amplifier. The differential amplifier gains the difference 

of the two inputs, with the common-mode rejection ratio modeled as ∞ [7]. The output 

of the ideal differential amplifier then goes through a signal amplifier, modeled as either a 

perfect amp (fully linear), hard-clipping (piece-wise linear), or soft-clipping (tanh function), 

corresponding to the different models of saturation used clinically (Figure 1c). Soft-clipping 

yields the most realistic gain compression and can yield soft-clipping not discernible by eye 

(Figure 1d).

V lfp = g2 ⋅ tanh(g1 ⋅ V out)

(1)

Final subsampling by the analog-digital-converter (ADC) is modeled as a 10-fold 

downsample yielding a simulated partialLFP at 422 Hz, matching the settings of the 

PC+S™.

4) Analysis Layer: The final simulated ∂LFP (Figure 1e) was analysed in the frequency-

domain for oscillatory power changes with the same approach taken for empirical recordings 

(See Methods II-G). Gain compression is associated mainly with two frequency-domain 

distortions: broad-spectrum slope flattening and narrowband oscillatory artifacts [12], [28], 

[29]. Broad-spectrum slope flattening is visually distinct and fit on the logPSD using a 

polynomial of fourth order, shown to be informative in isolating oscillations [30], [31]. The 

narrowband distortions will be classified into three categories. First, the stimulation shaping 
harmonics that is the higher-frequency content that shapes the stimulation waveform beyond 

its 130 Hz base frequency. Second, the aliased shaping harmonics (ASH) that are the alises 

of the SSH above Nyquist rate (211 Hz). Third, the intermodulation harmonics (IMH) that 

arise from compressing the stimulation waveform.

F. Model Parameters

Model parameters (Table II) were chosen to yield simulated ∂LFP with MC-salient 

phenomenological features, particularly broad spectrum shape. Ad is amplitude of the 

stimulation artifact after common-mode rejection, which is set at 0.5 V to reflect a 10% 

stimulation leakage at typical impedance mismatches. Zb is the internal impedance of the 

differential channel, set based on communications with PC+S™ engineers to reflect an 

approximate equivalent impedance. x1 amplitude is the strength of the oscillation, set at 2 
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μV to reflect strong neural oscillation. g1 is the post-differential amplifier gain, g2 is the 

post-signal amplifier gain, both normalized to 1 for simplicity.

G. Oscillatory Analyses

All analyses were performed with a custom Python library, named dbspace, available 

through PyPI. ∂LFP were transformed to the frequency domain using a Welch power 

spectral density (PSD) estimate with 1024 FFT bins, 0% overlap, 844 sample Blackman-

Harris Window. PSDs were log-transformed 10 · log10(Pxx) to visualize logPSD and perform 

preprocessing. Oscillatory power was then computed as either the mean or median value of 

the PSD for a predefined frequency range corresponding to standard oscillatory bands: δ (1 

Hz to 4 Hz), θ (4 Hz to 8 Hz),, α (8 Hz to 14 Hz), β (14 Hz to 30 Hz), γ (30 Hz to 50 Hz) 

[4].

H. Mitigation Pipeline for MC

MC mitigation consists of a pipeline with four main steps performed on the log-transformed 

power spectral density (PSD; Figure 3). First, a fourth-order polynomial is fit and 

subtraction to remove broad-spectrum changes (Figure 3b, dotted orange line). Second, 

the frequency bands of oscillations are used to calculate power, with specific frequencies 

chosen to avoid distortions predicted in the focused MC model without extending a band’s 

traditional frequency range (Table III). Third, the median power across frequency bins is 

taken instead of the mean to mitigate remaining narrowband artifacts.

I. Gain Compression Ratio

A gain compression ratio (GCr) can be calculated on the original recording to determine 

the level of gain compression occurring. Comparing the power in the ASH artifacts (64 

Hz) versus the IMH (66 Hz) (Figure 6h) measures the level of gain compression. Gain 

compression ratio (GCr) is calculated as the log-ratio of power in the ASH (62 Hz)vs IMH 

(64 Hz).

J. Analysis and Simulation Code

The MC model is developed in a custom Python library and run across a set 

of scripts that integrate simulation with empirical analyses. Analyses and simulation 

were done through open-source Jupyter Notebooks available at https://github.com/virati/

mismatch_compression. Dependencies and associated libraries are available through PyPi: 

NumPy [32], SciPy [33], Allantools [34], and dbspace [35].

III. Results

A. Clinical ∂LFP Demonstrate Significant Variability

First, we inspect the clinical in vivo recordings to identify visible frequency-domain 

changes. Significant variability in the PSD was found in both voltage sweep experiments 

(Figure 4a) and weekly averaged recordings (Figure 4b). The primary changes observed 

were broad-spectrum increases in power and the emergence of numerous narrow-band 

peaks. In the voltage sweep, these changes are time-locked to active DBS and increase 
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with the DBS amplitude (Figure 4a). In the chronic recordings, significant broad-spectrum 

variability is found across 24 weeks of weekly average recordings (Figure 4b).

B. DBS Electrodes Have Dynamic Properties

Weekly impedance mismatches ranged between 0 Ω and 600 Ω with significant variability 

across time, between patients, and between leads (Figure 4c,d). Left and right impedances 

changed differently from each other, with left having more variability across patients than 

right. Two distinct dynamics are observed in the impedance mismatch: large week-to-week 

changes in the first 10 weeks, and stable beyond 10 weeks. The measured power in constant 

amplitude ORM can reflect saturation, and we observed large variability in the ORM power 

across time in each patient, across patients, and across hemispheres (Figure 4e,f). The ORM 

demonstrates large changes throughout the study, with the chronic therapy onset at 4 weeks 

consistently associated, across patient and hemisphere, with a large decrease.

C. Focal MC Model Evokes GC Distortions

We simulated ∂LFP at various impedance mismatches to observe distortions to the PSDs 

(Figure 5). In addition to the stimulation shaping harmonics (SSH) and the aliased 

stimulation harmonics (ASH), resulted in a distinct pattern of narrowband peaks when 

stimulating at 130 Hz and sampling at 422 Hz: largest at 32 Hz, 64 Hz, and 66 Hz. IMH 

at 66 Hz, specifically, is indicative of MC where the ASH 64 Hz would be present even in 

the absence of any gain compression. Interestingly, MC induces an absolute reduction of the 

simulated constant 15 Hz neural oscillation as a function of stimulation voltage (Figure 6a). 

Other artifacts are evident in vivo that are not generated by the MC model (Figure 5f).

D. In vitro Resistivity Mismatches Distort ∂LFP

To experimentally verify the MC hypothesis, in vitro ∂LFP recordings are measured at 

different impedance mismatches. Measurement in uniform saline are consistent with the 

predicted ASH and IMH artifacts, particularly the IMH at 66 Hz (Figure 5e,f). Measurement 

at the interface of saline and agar exhibited larger impedance mismatch and larger artifacts, 

confirming sensitivity of these distortions to impedance mismatch alone (Figure 6c,d). The 

distinction between the SAH 64 Hz artifact and the IMH 66 Hz is evident as a broader 

multipeak artifact, present in both in silico (Figure 5e) and in vitro models (Figure 5f). 

Recordings during the voltage sweep confirmed further sensitivity of the distortions to 

stimulation voltage at a fixed impedance mismatch, and the voltage sensitivity is stronger 

in the interface recordings than the uniform recordings (Figure 6d). Oscillatory powers 

calculated in each in vitro mismatch condition reflected the level of MC, with interface 

recordings having broadly higher measured power in all bands (Figure 6e,f). Note the 

presence of peaks that do not clearly change as a function of stimulation amplitude - such as 

the 60 Hz noise typical of power grids.

E. Assessing Gain Compression Ratio (GCr)

GCr calculated under each stimulation voltage for both the uniform (low impedance 

mismatch) and interface (high impedance mismatch) conditions (Figure 6g,h). Using the 

GCr, we observed a large difference between impedance mismatch conditions within a fixed 
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stimulation voltage (Figure 6i). The magnitude of this difference related to the stimulation 

amplitude non-linearly (Figure 6i) - 2 V stimulation at the interface condition demonstrated 

a larger GCr magnitude than 8 V at uniform condition.

F. Validating Mitigations

1) Uncorrected MC: Both in silico and in vitro ∂LFP identifies broad-band and narrow-

band distortions that are sensitive to impedance mismatch and stimulation amplitude (Figure 

5 and Figure 6). A mitigation pipeline for MC is developed for the case of 130 Hz to avoid 

features that can be distorted (See Methods II-H).

2) In Vitro Validation: The MC mitigation pipeline is validated using in vitro recordings 

during the voltage sweep (See Section II-C.3). The complete pipeline applied to in vitro 
voltage sweep normalized oscillatory power across different stimulation conditions (Figure 

7a,c). Residual variability in θ is evident, but the variability is much smaller than the 

variability without mitigation and in the reverse direction (Figure 7b vs Figure 7d).

3) In Vivo Application: We applied the mitigation to in vivo clinical recordings to 

demonstrate the effects on measured PSDs with MC (Figure 7e,f). In both patients, PSDs are 

brought into alignment through the removal of broad-band slope, and artifacts are avoided 

by adjusted oscillatory bands (Figure 7g,h).

IV. Discussion

Chronic measurements from ∂LFP recordings are becoming critical tools in engineering 

long-term disease readouts for slow-moving brain disorders [22], [36]. In this study, 

we confirmed that oscillatory power features from ∂LFP recordings can be distorted by 

mismatch compression and propose a novel approach to mitigating these distortions. The 

resulst enable more reliable analyses, while providing an open-source set of tools for 

generalizing and extending MC mitigation.

A. ∂LFP Recordings Consistent With Gain Compression

Oscillations in LFP reflect large-scale synaptic inputs into gray matter and correlate 

with function [13], [37], suggesting a first approach to disease readouts. We observed 

large ∂LFP changes in clinical in vivo recordings, both acutely with active stimulation 

and chronically with unclear correlates. Analyses demonstrated frequency-domain changes 

that were consistent with gain compression, expected by PC+S™ engineers [7], but more 

focused characterization and mitigation was needed to ensure impedance mismatches were 

not confounded with neural correlates of depression. An expected failure mode of the 

∂LFP channel in the Active PC+S™ is asymmetries in the recording electrodes leading 

to imperfect stimulation rejection, and subsequent saturation of recordings [7], [12]. One 

approach is to only analyze recordings without active stimulation, and our group’s work 

have identified potential depression readouts here [4], [38]. However, brain dynamics 

alongside active DBS may contain disease-critical information, like a running car provides 

more informative signs of underlying problems versus a car turned off.

Tiruvadi et al. Page 8

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2024 January 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



B. Impedances Can Be Mismatched and Dynamic

Heterogeneity of brain tissue around the recording electrodes, in particular between 

gray and white matter, is expected to yield differences in electrical impedance and 

differences in dynamics of those impedances [4], [16], [17], [23], [39], [40], [41], 

[42]. Analyses of volume of tissue activated (VTA) has shown clear, unavoidable 

heterogeneity in the composition of brain tissue around DBS electrodes, strongly suggesting 

unavoidable impedance mismatches [4], [23]. The SCCwm target has been well studied 

for antidepressant applications [2], [24], [43] and is a white matter target with gray 

matter around it [4]. VTA analyses demonstrate variability in the white matter tracts being 

modulated [23] and future studies may enable more explicit incorporation of VTA analyses 

to mitigate mismatch through optimizing targeting for higher recording fidelity. In both 

impedance mismatch and ORM measurements, two distinct phases were consistently seen 

across patients: a variable phase (0-10 weeks) and a stable phase (11-28 weeks), with 

significant variability between patients through all phases (Figure 4c,d). The mere presence 

of impedance mismatches that change over time raises concern for changing levels of 

artifact rejection; the simultaneous observation in clinical recordings of slope flattening and 

narrowband artifacts raised strong suspicion for MC distortions. Confirming and mitigating 

MC distortion is critical to ensuring any derived readout reflects neural oscillations related to 

depression, and not asymmetric tissue changes occurring at the same timescales of symptom 

recovery.

C. Focused MC Model Explains Benchtop Measurements

MC is expected as a failure mode in PC+S™ recordings [7] and we developed an equivalent 

circuit for our focused MC model (Figure 5). The central driver of MC is impedance 

mismatch between the recording electrodes, and simulated ∂LFP at differing impedance 

mismatch resulting in frequency-domain changes similar to those seen in vivo. Since we 

used a phenomenological LFP model with a simplified, but still congruent, stimulation 

waveform, we were able to confirm the presence of MC through the difference between 

ASH (64 Hz) and IMH (66 Hz) power (Figure 5e). By changing the impedance mismatch 

through an in vitro preparation and observing distortions associated with gain compression, 

as predicted by the focused MC model (Figure 5f), we confirmed the presence of MC 

in ∂LFP recordings taken with the Active PC+S™. In particular, the emergence of IMH, 

which trace back specifically to the clipping phenomena linked to gain compression (Figure 

1d), supports the presence of MC specifically, over higher-order interactions. While a zero-

mismatch condition was unattainable, likely because of differences in the internal wire 

resistance from electrodes to the IPG, the observation that increases in mismatch yielded 

the predicted broad- and narrow-band changes of GC was strong evidence of the expected 

MC. Every artifact predicted in the in silico model was present in the in vitro model 

and sensitive to impedance mismatch, confirming the presence of MC. Other peaks were 

apparent on visual inspection of in vitro recordings under all conditions, including 0 V 

and are considered device-specific artifacts not directly arising from mismatch compression. 

More sophisticated models can be integrated into the MC simulator codebase to predict 

distortions at different stimulation frequencies and in different devices, and to explain 

putative artifacts not explained by MC (Figure 5f; 22 Hz to 25 Hz). However, given the a 
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priori expectation of MC and the alignment of in silico and in vitro changes, we can confirm 

that MC is distorting recordings.

D. Preprocessing Removes Frequency-Domain Distortions

Minimizing the effect of MC distortion is crucial for a reliable long-term disease readout 

in ∂LFP recordings, but inverting it after data collection is impossible in the presence of 

noise. Our in silico model identified MC relevant distortions that were used to remove 

broad-band distortions and adjust the traditionally defined oscillatory bands (Table III). 

Removal of the broadband-slope yielded large improvements in the observed MC distortion 

(Figure 7b vs Figure 7d). Band ranges were chosen using both in silico and in vitro LFP 

during stimulation to find the maximal continuous range within standard oscillatory bands 

that also avoided ASH+IMH (Figure 6 vs Figure 4b). The adjusted bands remain inside their 

associated windows, enabling more congruent interpretation in the context of the broader 

literature. β*, for example, is a subset of β that is aligned with definitions of low-β found 

in Parkinson’s Disease DBS [44], [45]. β* was further constrained due to a PC+S™ artifact 

that was not linked to MC, and further investigation is needed to identify its source, but 

this step continues ignoring MC-related artifacts. This mitigation pipeline yielded oscillatory 

power calculations that converged across all stimulation voltages, leading to more accurate 

measurement (Figure 3). We then observe its effects on in vivo recordings from two patients, 

seeing PSDs across 24 weeks converge despite known impedance mismatches (Figure 7g,h).

E. Limitations

First, the reduced ∂LFP model does not recapitulate all device-specific artifacts and is, 

therefore, only one part of mitigating all potential distortions [9], [46]. Addition-ally, 

our phenomenological generation of ∂LFP limits the ability to link post-MC mitigated 

observations to neural generators in favor of focused characterization of MC. Second, the 

tissue-electrode interface ignores capacitance in impedance [47] and does not account for 

distortions in phase spectrum, only power spectral analyses. Third, the mitigation pipeline 

avoids features susceptible to MC distortion, potentially removing important neural activity 

in the 1
f  slope feature and in important frequency sub-windows [4], [31], [45]. Our proposed 

restriction on oscillatory band ranges limits subsequent generalization to the broader ranges 

established in the literature. Finally, we study and model MC in the presence of DBS artifact 

but other large-amplitude artifacts can drive MC, such as ECG and EMG signals evident in 

the PC+S™ [9]. Any large-amplitude artifact measured the tissue around the DBS lead can 

drive MC, with oscillatory distortions specific to the spectral content of the artifact.

F. Impact

The growth of connectomics guided DBS, especially in psychiatric indications, highlights 

the importance of accounting for tissue heterogeneity in ∂LFP recordings from gray matter 

when deliberately targeting white matter [14], [15], [20], [23], [41]. Given the variability in 

anatomy between hemispheres, patients, and targets, it’s unlikely that this mismatch can ever 

be avoided completely, and this work provides a needed first-characterization of a distortion 

process intrinsic to all ∂LFP recordings. While next-generation devices have gone a long 

way to improving recording hardware [8], [10], [46], MC remains a concern in any ∂LFP 
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device. Care must be taken to rule out MC in any readout applications, acute or chronic, 

if using a ∂LFP recording channel [10], [46]. Hardware-based improvements are certainly 

needed, and techniques like artifact blanking may help avoid amplifier distortions at the cost 

of missing key time windows for DBS effects [45], [48]. Even with hardware improvements, 

analytical mitigation strategies may enable low-cost bdDBS devices that can achieve similar 

readout utility. Ultimately, this work enables more reliable oscillatory analyses using ∂LFP 

devices, including first-generation Active PC+S™, particularly using supervised machine 

learning that leverages behavioral signals to isolate neural readouts [49].

V. Conclusion

Impedances mismatches in ∂LFP recordings can cause imperfect rejection of therapeutic 

stimulation and result in gain compression distortions, a process we characterize here as 

mismatch compression (MC). MC distorts specific frequency-domain features of recordings, 

specifically broad-spectrum 1
f  slope and narrowband artifacts at predictable frequencies. 

These distortions can be mitigated by ignoring features that are susceptible to distortion, 

a cautious approach that enables analysis of suboptimal recordings from a growing class 

of white-matter targets in psychiatric disorders, such as the SCCwm in depression studied 

here. Our results yield tools to improve development of reliable disease readouts, especially 

during active stimulation, that are critically needed in growing use of ∂LFP recordings. 

Future work focused on explicit inversion of MC distortions through models, like the 

one developed here, can enable low-cost adaptive DBS platforms that remain robust in 

slow-moving disease recovery and chronic timescales.
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Fig. 1. Mismatch Compression in ∂LFPs.
a, Clinical DBS leads have four electrodes, each of which can be in either gray or white 

matter. ∂LFP records from two electrodes around the stimulation electrode. b, An in vitro 
model introduces differences in resistivity to test whether impedance mismatches in the 

two electrodes causes gain compression in amplifiers. c, Amplifier transfer function shows 

how inputs are transformed into outputs. Three models are simulated here. d, Time domain 

output from the different amplifier models demonstrate the effects of gain compression, both 

hard-clipping and soft-clipping. e, Schematic of the focused MC model consists of brain, 

lead, amplifier layers. f, Simulated ∂LFP is analysed with the same approaches used for 

empirical measurements.
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Fig. 2. Empirical ∂LFPs.
a, in vitro agar construct with two distinct phases - saline (clear) and agar (blue). DBS lead 

is placed in saline phase. b, DBS lead is fixed at either uniform saline or interface conditions 

with microactuator rig. c, A 15 s in vivo recording from Activa PC+S™ without active 

stimulation. d, A 15 s in vivo recording with active stimulation. Recording settling time 

was seen in first few seconds. e, Stimulation onset during voltage sweep shows stimulation 

transient.
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Fig. 3. MC Mitigation Steps -
a, MC mitigation pipeline for ∂LFP recordings remove frequency features that can be 

distorted. b, Empirical PSD in saline at two stimulation voltages demonstrates mismatch 

compression. c, Adjustments to the frequency windows for oscillatory bands to avoid 

mismatch compression artifacts. In this illustration, no polynomial subtraction is performed. 

d, Comparison of mean and median power calculation within standard and adjusted bands. 

Calculations are performed in both 0V and 8V stimulation.
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Fig. 4. In vivo measurement variability.
a, Spectrogram of in vivo voltage sweep from 2V to 8V demonstrates significant changes 

locked to stimulation. b, Weekly averaged ∂LFP PSDs over seven months in a single 

patient demonstrate significant variability across months of recording. Each bold color curve 

(translucent) is a fourth-order polynomial fit to the weekly average (thin color curve). c, 

Impedance mismatches in recording electrodes of all patients demonstrate large, dynamic 

mismatches in left and (d) right DBS leads. e, An over-range marker (ORM) power was 

calculated across recordings from all weeks to assess presence of overt gain compression 

(saturation), demonstrating variability over the weeks in both left and (f) right channels.
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Fig. 5. Simulation generates gain compression distortions with impedance mismatch.
a, Simulated ∂LFP at a low impedance mismatch (ZΔ) shows artifacts during simulated 130 

Hz stimulation. Before stimulation (blue box and line) is compared to during stimulation 

(green box and line). b, Power spectral density (PSD) for the before and during stimulation 

time periods. c,d, Simulated ∂LFP at a high impedance. e, Simulated PSD at various 

stimulation voltages. Aliased simulation harmonics (ASH) and intermodulation harmonics 

(IMH) are labeled. f, Empirical recording in saline shows an observed peak at all simulated 

peaks. Additional peaks are present and not attributed to MC due to their insensitivity to 

impedance mismatches.
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Fig. 6. In vitro Mismatch Compression.
∂LFP recordings were captured in two configurations: a, uniform saline medium and b, 

interface of saline-agar. c, Uniform-medium PSDs at various voltages demonstrate distinct 

peaks, with 32 Hz, 64 Hz, and 66 Hz being highlighted for their voltage-dependence. 

d, Interface-media PSDs demonstrate more voltage-dependence. e, Oscillatory power 

calculated in uniform-medium at various stimulation voltages compared to f, interface-

medium. g, Recordings taken at both interface (solid dot) and uniform (empty dot), with 

a range of stimulation voltages 0V to 8V. h, Aliased stimulation harmonic (ASH) arise 

from suboptimally sampled stimulation shaping harmonics (SSH), while intermodulation 

hamornics (IMH) arise directly from amplifier gain compression. i, Gain compression 

ratio (GCr) calculated from ASH and IMH reflect both stimulation voltage and impedance 

mismatch.
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Fig. 7. Applied MC Mitigations.
a, Raw PSDs recorded in agar at stimulation voltages between 0V to 8V. b, Oscillatory 

power calculated in each band for each tested stimulation voltage. c, Corrected PSDs remove 

features that are corrupted by mismatch compression. d, Oscillatory power calculated 

converges to the no-stimulation condition across all stimulation voltages. e,f, PSDs from 

chronic recordings across 7 months in two patients. Thin lines are weekly averaged PSDs, 

bold lines are polynomial fits to highlight weekly variability. g,h, MC pipeline applied to all 

weekly PSDs shows removal of features distorted by MC. Significant inter-patient variability 

is observed; differences in oscillatory power can more confidently be ascribed to neural 

sources.
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TABLE I
Patient Demographics and Parameters.

Patient Demographics and Recording Channel Parameters

Patient Age Sex Recording Electrodes Gains

Patient 1 50 F (E1,E3)+(E8,E10) 250,2000

Patient 2 48 F (E1,E3)+(E9,E11) 1000,1000

Patient 3 70 F (E1,E3)+(E8,E10) 2000,2000

Patient 4 64 M (E1,E3)+(E9,E11) 2000,2000

Patient 5 62 F (E0,E2)+(E8,E10) 250,250

Patient 6 57 M (E1,E3)+(E8,E10) 250,250
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TABLE II

Model Parameters Used for Study Simulations

A d Z b 1
f Strength x1 amplitude g1 g2

0.5 1 · 104Ω 1 · 10−3 2 · 10−3 1 1
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